Tag Archives: Strategy

China’s Yuan-class Submarine Visits Karachi: An Assessment

In May 2015, a Chinese Type 041 Yuan-class submarine (pennant number 335) entered the Indian Ocean and made a week-long port call at Karachi, Pakistan. This development caused alarm in India, at least in the media circles, particularly since it comes barely six months after the first-ever Indian Ocean deployment of China’s Song-class submarine between September and November 2014, and its docking in Sri Lanka’s Colombo port. Notably, following the Colombo docking, NMF view-point titled “PLA Navy’s Submarine Arm ‘Stretches its Sea Legs to the Indian Ocean” of 21 November 2014 had predicted future Chinese submarine dockings in Pakistan’s ports. These seminal developments call for an objective assessment in terms of China’s intent underlying its submarine deployments in the Indian Ocean and its implications for India.

Alike the port call in Sri Lanka, China is likely to justify the submarine visit to Pakistan as a replenishment halt enroute to PLA Navy’s ongoing counter-piracy mission in the Gulf of Aden. However, these deployments may be seen in context of the growing volatility of the security environment in the South China Sea, including the increasing brinkmanship between China and the United States. In case of a maritime conflict in the area, China’s energy shipments transiting the Indian Ocean are strategically vulnerable. Through its submarine deployments, China may be seeking to deter its potential adversaries against interdicting its Sea Lines of Communication (SLOC) in the Indian Ocean.

Route of the Yuan class submarine.

By virtue of its opaque operating medium, a submarine has always been a potent platform of war. The technological advances in satellite and air surveillance have not been able to offset the submarine’s inherent advantage of stealth. On the other hand, the advances in underwater weaponry – particularly submarine-launched anti-ship and land-attack missiles – have further enhanced the submarine’s lethality. The only constraint of a conventional (diesel-driven) submarine – like the Song-class – is to re-charge its batteries, for which its need to come up to the sea surface (for access to atmospheric oxygen) every two or three days, depending upon the usage of the batteries. This limits the submarine’s operational role and makes it highly vulnerable. However, Air Independent Propulsion (AIP) technology – such as on the Yuan class – has eased this constraint substantially, since its stored liquid oxygen enables the submarine to operate underwater for an extended durations of as much as two to three weeks.

Among the aims specific to the Yuan 335 call at Karachi, the foremost may be to showcase the Yuan to the Pakistan Navy. Notably, news-reports indicate that Pakistan Navy (PN) is likely to acquire up to eight Chinese Type 41 Yuan-class submarines. The contract between Karachi Shipyard and Engineering Works Limited (KSEW) and China Shipbuilding and Offshore International Co. Ltd. (CSOC) includes building some of these at KSEW. These submarines are equipped with Sterling AIP system, which the Chinese claim is more efficient than the AIP systems currently available in the world. The week-long docking of the Yuan at Karachi – too long merely for replenishment – may also have been utilised for training of the KSEW and PN personnel on the submarine, and its machinery and weapon systems, particularly the AIP system.

In broader terms, the two sets of Chinese submarine forays into the Indian Ocean (Colombo and Karachi) are likely to be ‘trial balloons’ for regular operational deployments of Chinese submarines in the region. The current deployments are also likely to be meant to familiarise the PLA Navy with the new operational environment in the Indian Ocean, train them for distant missions, collect intelligence, and collate hydrographic data specific to the Indian Ocean, which is essential for future submarine operations in the region. At present, the Chinese submarines need to replenish only fuel, food and fresh water. In the longer term, with the PN (and some other regional navies such as the Thai Navy) operating the same submarines, the PLA Navy is likely to benefit from a more comprehensive logistics support – technical services, machinery and equipment spare-parts and even ammunition. This will enable the Chinese submarines to remain deployed in the Indian Ocean for extended periods.

While China may continue to deploy its conventional submarines in the Indian Ocean, these are likely to be supplemented with the upgraded version of its new-generation Type 093 nuclear attack submarines (SSNs), whenever these are operationally deployable. These SSNs are likely to be armed with anti-ship and land-attack missiles, and capable of launching Special Operations Forces (SOF) via Swimmer Delivery Vehicles (SDV). Since SSNs do not need replenished, these submarines would not need to enter any regional port, unless China wants to demonstrate a deterrent posture.

China and India share a complex relationship, competitive, and even potentially adversarial. Hence, even if increasing Chinese submarine deployments in the Indian Ocean is not directly targeted at India, the development has severe national security implications for New Delhi. The response to increasing Chinese submarine forays in the Indian Ocean lies in developing affective air, ship and submarine based Anti-Submarine Warfare (ASW) capabilities, including sub-surface Maritime Domain Awareness (MDA).

Captain Gurpreet S Khurana, PhD is the Executive Director, National Maritime Foundation, New Delhi. The views expressed are his own and do not reflect the official policy or position of the Indian Navy, the NMF or the Government of India. He can be reached at [email protected].

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.
Select a Donation Option (USD)

Enter Donation Amount (USD)

Where is the Navy Going To Put Them All? (Part One)

Where is the U.S. Navy Going To Put Them All?

Part 1: More Drones Please. Lot’s and Lot’s of Them!

AORH class jpeg

Sketch by Jan Musil. Hand drawn on quarter-inch graph paper. Each square equals twenty by twenty feet.

Recent technological developments have provided the U.S. Navy with major breakthroughs in unmanned carrier landings with the X-47B. A public debate has emerged over which types of drones to acquire and how to employ them. This article suggests a solution to the issue of how to best make use of the new capabilities that unmanned aircraft and closely related developments in UUVs bring to the fleet.

The suggested solution argues for taking a broader look at what all of the new aerial and underwater unmanned vehicles can contribute, particularly enmasse. And how this grouping of new equipment can augment carrier strike groups. In addition, there are significant opportunities to revive ASW hunter killer task forces, expand operational capabilities in the Arctic, supplement our South China Sea and North East Asia presence without using major fleet elements and provide the fleet with a flexible set of assets for daily contingencies.

These sorts of missions provide opportunities for five principal types of drones. Strike, ISR and refueling drones as winged aircraft to fly off fleet platforms, UUVs and the Fire Scout helicopter. So we have five candidates to be built, in quantity, for the fleet. Let’s examine each of the suggestions for what they should be built to accomplish, what sort of weapons or sensors they need to be equipped with and what doctrinal developments for their use with the fleet need to happen.

Strike drone

The current requirements are calling for long range, large payload, and the ability to aerially refuel and are to be combined with stealth construction techniques for the airframe, even if not stealth coated. These size and weight parameters mean this drone will require CATOBAR launching off an aircraft carrier’s flight deck. Which also means it will be supplementing, and to some extent replacing, the F-35C in the air wings for decades to come. The merits of how many strike drones versus F-35Cs, and the level of stealth desired for both, will be an ongoing debate for the foreseeable future.

Given that a strike drone built with these capabilities will be tasked with similar mission requirements to the F-35C, we will assume for now that the weapons and ISR equipment installed will be equivalent, if not exactly the same as the F-35C. This implies that whatever work the U.S. Navy has already done in developing doctrine for use of the long range strike capacity the F-35Cs brings to the fleet should only need to be supplemented with the addition of a strike drone.

It is worth remembering that while these drones are unmanned, since they are CATOBAR they will still require sailors on deck to move, reload and maintain them. Sailors who also need a place to eat, sleep, etc.

And the carriers are already really busy places. However welcome the strike drone winds up being, there is not going to be enough room on the carriers to be add even more equipment. Therefore each drone will be replacing something already there, both physically within the hangar bay and financially within the Navy’s budget.

ISR drone

Most of the current public discussion surrounding an ISR equipped drone is rather hazy about what sort of sensors, range and weapons, if any, are wanted. However, the philosophical debate over mission profile, including a much smaller size, localized range requirement and the presumed emphasis on ISR tasks is revealing. The key points to concentrate on for such a drone are the suggested set of missions to be conducted by an arc of ISR drones around a selected location, sensor and networking capabilities, range and durability requirements and a limited weapons payload.

The traditional use of aerial search capabilities onboard a carrier task force was over the horizon, well over the horizon thank you very much, locating of the opponents surface assets. Over the years the extended ranges of aircraft and the development of airborne ASW assets changed the nature of the search and locate mission and the assets being used to conduct it. Adding space based surveillance changed things once more. The coming improvements in networking and data processing capabilities inside a task force, a steadily rising need for over the horizon targeting information coupled with the need to function within an increasingly hostile A2AD environment has once more altered the requirements of the search and locate mission. Search and locate essentially has become search, locate, network and target.

Being able to fund as well as field large numbers of anything almost always means keeping it smaller, and deleting anything not strictly needed beyond occasional use is an excellent way to accomplish this. For the ISR drone, not arming it with anything beyond strictly self-defense weapons is an excellent way to keep size and costs down. Since the primary missions of the ISR drone will be the new search, locate, network and target paradigm, concentrating funding on those capabilities is an excellent way to limit both development and operating costs.

Particularly since putting a large number of the drones, each capable of at least 24-30 hours on station, supplemented by refueling, in an arc around a task force in the direction(s) of highest concern means that the SuperHornets of the fleet can largely be freed from the loiter and defend mission and return to being hunters.

Since I am assuming the railgun will also be joining the fleet in large numbers some discussion about the range of the search, locate, network and target arc suggested above as it relates to the railgun is in order. The publicly disclosed range of the railgun is 65 miles, so an arc of ISR drones needs to be farther out from the task force than that, quite some way beyond that to provide time to effectively network location and target data developed back to the shooters. In the anticipated A2AD environment the primary threat is very likely to be a missile, mostly subsonic but the potential for at least some of them being hypersonic exists. Therefore, the incoming missiles or aircraft will need to be located, networked information sent to the surface assets armed with railguns and the targeting information processed quickly enough that the bars of steel launched as a result will be waiting for the incoming missile at 65 miles. Precisely how far out beyond the railguns effective range the arc of ISR drones will need to be will almost certainly vary by circumstance and the nature of the opponent’s weaponry. Nevertheless, whether subsonic or hypersonic, missiles move rapidly and this means an effective arc of ISR drones will have to be a long distance out from the task force. The farther out the arc is, a higher number of drones will be needed to provide adequate coverage.

This implies a need for a minimum of 6-8 ISR drones on station, 24/7, in all kinds of weather. Since there are inevitable maintenance problems cutting into availability time, this implies a task force will need take twice that number to sea with it. Particularly if a second arc of two or three ISR drones is maintained just over the horizon, or simply overhead. This inner group can also provide local networking abilities for the ASW assets of the task force. Having at least one ISR drone close in to provide a rapid relay of information around the task force by its sub hunters should also be planned for as a doctrinal necessity.

This arc of ISR drones is a wonderful new capability to have, but…., but fifteen drones are not going to fit on a CVN. Not when an essentially equivalent number of something else needs to be removed to make room for the newcomers. Our carriers are packed as it is with needed airframes and trading out fifteen of them from the existing air wing is not going to happen.

Nor is there room elsewhere in the fleet. The CCGs and DDGs have limited space on their helo decks, but even if the new ISR drone were equipped with the modified VTOL engine from the Osprey program, there still wouldn’t be space for more than a few of them. Once more, it is a case of needing to take something out of the fleet to put the new capability in.

This means we have to build a new class, or classes, of ships to operate and house the quantities of drones desired, including operating space, hanger and maintenance space and sailor’s living spaces.

Refueling drone

A drone primarily dedicated to the refueling mission takes on another of the un-glamorous, but unending tasks involved in operating a task force. Instead of the proposed return of the S-3 Vikings as tankers, a somewhat larger drone can be designed from scratch to be a flying gas station with long range and loitering times, presumably with vastly more fuel aboard and built to only occasionally load weapons or sensors under the wings. It could have ISR capabilities or ASW weapons slung under the wings as distinctly secondary design characteristics. In understanding when to use manned versus unmanned systems obviously any extra weight and space gained by losing a cockpit allows for more fuel carried, longer loitering times and extra range. These advantages need to be balanced against the occasional need for a pilot’s skills on scene.

UUVs

As for the UUVs in development, much has been made of their ability to dive deeply and search for things as well as their ability to autonomously operate far out in front of a task force, including the possibility of submarine launched missions. While interesting a more incremental use of the roughly six feet long torpedo shaped UUV currently in use for deep diving missions might be more appropriate.

While we wait on further research developments to establish ways to effectively utilize a long range, long duration UUV reconnaissance drone, a more mundane use of what we have right now can readily be used for ASW purposes. We could equip a six-foot UUV with the sensors already in use for ASW purposes and cradle it in open sided buoy in order to hoist the UUV in and out of the water. This buoy could be used over the side, or far more usefully, launched and recovered by helicopter. Wave and say hello Fire Scouts.

Fire Scouts

Any helicopter asset that the U.S. Navy has can be used of course, but without a pilot aboard the Fire Scouts are much better suited for the long hours required to successfully prosecute ASW. Taking off with the UUV cradled inside it’s buoy, the Fire Scout can deploy the buoy, allow the tethered UUV to swim to the thermocline or other desired depth, hover while allowing the UUV to transmit or simply silently listen, wait for the resulting data that is collected to be reported via the tether and broadcast by an antenna on the buoy and then once the UUV has swum back into it’s cradle within the buoy, drop back down and relift the buoy and move it to the next needed position. This redeployment can be hundreds or thousands of yards away at the mission commander’s discretion. This cycle can be repeated as many times as wanted or fuel for the Fire Scout allows. A difficulty that can be resolved aboard the nearest surface ship with a helo deck, leaving the buoy drifting in place, UUV on station and transmitting as refueling takes place. Shift changes by pilots should not materially interrupt this cycle. The most likely limitation that will force the Fire Scout to lift buoy and UUV out of the water for return aboard will be the exhaustion of the power source aboard the buoy being used to operate the reel for the tether and broadcast the data collected to an overhead airframe. Which just happens to be another use for the ISR drone or a ScanEagle.

In the next article we will examine how the Navy can make profitable use of UUVs and buoys, deployed and maneuvered across the ocean by the Fire Scout helicopter, in quantity, in pursuit of the ASW mission. Read Part Two here

Jan Musil is a Vietnam era Navy veteran, disenchanted ex-corporate middle manager and long time entrepreneur currently working as an author of science fiction novels. More relevantly to CIMSEC he is also a long-standing student of navies in general, post-1930 ship construction thinking, and design hopes versus actual results and fleet composition debates of the twentieth century.

CIMSEC is and always will be free for everyone, but we would be grateful for those who wish to provide a modest regular donation to support our operations.
Select a Donation Option (USD)

Enter Donation Amount (USD)

The Coast Guard and Maritime Strategy

By Peter Swartz

In Prof. James Holmes’s recent CIMSEC review of CAPT Pete Haynes’s splendid new book on U.S. Navy strategic thinking since the end of the Cold War, he called for bringing the U.S. Coast Guard (USCG) into the Maritime Strategy narrative.

He’s in luck: The same set of CNA [Formerly Center for Naval Analyses] studies that CAPT Haynes used for his book also addresses that very issue. The CNA studies were written in 2007 in the wake of the publication of the U.S. Cooperative Strategy for 21st Century Seapower (CS21) maritime strategy and were completed in 2011, while CS21R (the maritime strategy’s revision) was in gestation. They cover the development of U.S. Navy strategy from 1970 to 2010, the context to same, and include sections on USN relationships with each of the other services, including the USCG.

As designed, the CNA studies are being used as an adjunct to the Navy’s current Strategic Enterprise initiative and as a basis for a burgeoning literature on recent U.S. naval strategy, including CAPT Haynes’s dissertation and book, and Dr. Sebastian Bruns’s masterful dissertation (in English) at the University of Kiel. A copy of the material on USN-USCG relationships, extracted from four of the studies and then integrated as a discrete stand-alone document, is available here.

Peter Swartz is a retired U.S. Navy Captain and for more than 20 years has been with CNA, which includes the Navy’s Federally Funded Research and Development Center (FFRDC). He is the author of the U.S. Navy Capstone Strategies series, a comprehensive analysis of the Navy’s capstone strategy, policy, and concept documents from 1970 to 2010. He has also authored other studies on U.S. Navy and U.S. Coast Guard plans, policy and operations, and is the CNA scientific analyst for the Navy’s OPNAV Strategy and Policy Division (N51).

Call for Articles: Chinese Military Strategy Week, 3-7 Aug 15

Week Dates: 3-7 Aug 15
Articles Due: 29 Jul 15
Article Length: 500-1500 Words
Submit to: nextwar(at)cimsec(dot)org

In a watershed moment, the Chinese Ministry of National Defense recently published a white paper on the Chinese Military Strategy (with an English-language version made available and published almost immediately by USNI News). This document lays out a policy for future Chinese military engagement with the world, proclaiming the centrality of active defense as the essence of the Chinese Communist Party’s military strategic thought and then describing an approach for implementing this military policy in the air, cyber, land, and maritime domains. This document comes at a particularly interesting time as General Martin Dempsey, Chairman on the Joint Chiefs of Staff, has since approved a new National Military Strategy for the United States, a strategy that names China explicitly as culpable for increased tension in the Asia-Pacific region and establishes an explicit interactive dynamic between the Chinese and U.S. strategies. While this is not the first time a U.S. National Military Strategy names China as a consideration, the shift in tone here is noteworthy.

During the first week of August, CIMSEC will host a series focused on exploring the relationship between the new Chinese military strategy and the strategic policies of the United States and others. Of particular interest are the dynamics of symmetry and asymmetry in their respective National Military Strategies (ideological, technological, doctrinal, coalitional, etc.); the implicit and explicit assumptions in each; the potentially divergent social and political purposes of such documents given their sources; and the implications for the other elements of national power in China, the United States, and the other actors (state and otherwise) in the international system. If the United States and China were to pursue their stated military strategies in whole or in part, what are the implications for their relative and absolute advantage? What are the acknowledged and unacknowledged risks for each in their stated policies?

Contributions should be between 500 and 1500 words in length and submitted no later than 29 July 2015. Publication reviews will also be accepted.

Eric Murphy is a Strategist and Operations Research Analyst with the United States Air Force and a graduate of the School of Advanced Air and Space Studies.

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.
Select a Donation Option (USD)

Enter Donation Amount (USD)