Tag Archives: US Navy

An Alternative History for U.S. Navy Force Structure Development

By John Hanley

U.S. Navy and Department of Defense bureaucratic and acquisition practices have frustrated innovations promoted by Chiefs of Naval Operations and the CNO Strategic Studies Groups over the past several decades.1 The Navy could have capabilities better suited to meet today’s challenges and opportunities had it pursued many of these innovations. This alternative history presents what the Navy could have been in 2019 had the Navy and DoD accepted the kinds of risks faced during the development of nuclear-powered ships, used similar prototyping practices, and accepted near-term costs for longer-term returns on that investment.

Actual events are in a normal font while alternatives are presented in italics.

Admiral Trost and Integrated Power Systems

Recognizing that electric drive offered significant anticipated benefits for U.S. Navy ships in terms of reducing ship life-cycle cost (including 18 to 25 percent less fuel consumption), increasing ship stealth, payload, survivability, and power available for non-propulsion uses, and taking advantage of a strong electrical power technological and industrial base, in September 1988, then-U.S. Chief of Naval Operations Admiral Carlisle Trost endorsed the development of integrated power systems (IPS) for electric drive and other ship’s power for use in the DDGX, which became the Arleigh Burke (DDG-51) class destroyer. He also established an IPS program office the following fiscal year.2

To reduce technical risk, the Navy began by prototyping electric drive on small waterplane area twin hull (swath) ships, including its special program for the Sea Shadow employing stealth technology. Using a program akin to Rickover’s having commissioned the USS Nautilus (SSN 571) in just over three years of being authorized to build the first nuclear powered submarine, the Navy commissioned its first Arleigh Burke destroyer with an IPS in 1992. Just as Rickover explored different nuclear submarine designs, the Navy developed various IPS prototypes as it explored the design space while gaining experience at sea and incorporating rapidly developing technology.

Admiral Kelso and Fleet Design

Admiral Frank Kelso became CNO in 1990 at the end of the Cold War, shortly before Iraq invaded Kuwait. Facing demands for a peace dividend. Admiral Kelso noted that the decisions the he made affected what the Navy would look like in 30-50 years and asked his SSG what the nation would need the naval forces for in future decades. The future pointed to the cost growth of military systems producing a much smaller fleet if the practice of replacing each class with the next generation of more expensive platforms continued. Chairman of the Joint Chiefs General Colin Powell’s Base Force proposal in February 1991 called for reducing the Navy to 451 ships with 12 carriers by 1995, reducing the fleet from 592 ships (including 14 carriers) in September 1989. Having just accepted this, Kelso’s SSG briefed him that that cost growth would result in a Navy of about 250 ships by the 2010s if the Navy and Defense Department continued to focus on procuring next generation platforms rather than capabilities.

Building upon his reorganization of OPNAV and inspired by the joint mission assessment process developed by his N-8, Vice Admiral Bill Owens, Kelso disciplined OPNAV to employ this methodology. The effort reoriented Navy programs toward payloads to accomplish naval missions in a joint operation, rather than focusing on platform replacement. As restrictions on Service acquisition programs increased,3 Kelso worked closely with the Secretary of the Navy to fully exploit authorities for procuring systems falling below the thresholds for Office of the Secretary of Defense (OSD) approval to gain experience with prototypes before committing to large scale production costing billions of dollars. Under the leadership of Owens and Vice Admiral Art Cebrowski, the Navy made significant progress in C4ISR systems needed for network centric warfare that were interoperable with other Services systems.4

Beginning the Revolution

In 1995, Chief of Naval Operations Jeremy (Mike) Boorda redirected his CNO Strategic Studies Group to generate innovative warfighting concepts that would revolutionize naval warfighting the way that the development of carrier air warfare did in World War II.

The first innovation SSG in 1995-1996 identified the promise of information technology, integrated propulsion systems, unmanned vehicles, and electromagnetic weapons (rail guns), among other things. They believed that the ability to fuse, process, understand, and disseminate huge volumes of data had the greatest potential to alter maritime operations. They laid out a progression from extant, to information-based, to networked, to enhancing cognition through networks of human minds employing artificial intelligence, robotics biotechnology, etc. to empower naval personnel to make faster, better decisions, for warfighting command and sustainment. For sustainment they imagined “real-time, remote monitoring systems interconnected with technicians, manufacturers, parts distributors, and transportation and delivery sources; dynamic business logic that enables decisions to be made and actions to be executed automatically, even autonomously; and a system in which sustainment is embedded in the operational connectivity architecture, becoming invisible to the operator except by negation.” Their force design proposed a netted system of numerous functionally distributed and physically dispersed sensors and weapons to provide a spectrum of capabilities and effects, scaled to the operational situation.5

Admiral Boorda passed away just as the SSG was preparing to brief him. After he became CNO, Admiral Jay Johnson decided to continue the SSG’s focus on innovation focus when he heard the SSG’s briefing.6 The next SSG in 1997 advocated many of these concepts in more depth, emphasized modularity, and added a revolutionary “Horizon” concept on how the Navy could man and operate its ships that in ways that would increase the operational tempo of the ships while changing sailors’ career paths in a manner that would provide more family stability and time at home.7 The following SSG worked with the Naval Surface Warfare Centers on designs for ships using IPS armed with rail guns that could sustain and tender large numbers of smaller manned and unmanned vessels for amphibious operations and sea control; among other enhancements.8 Subsequent SSGs extended such concepts, added new ones and enhanced designs for the future.9

Despite pressures on Navy budgets, OPNAV created program offices to pursue naval warfare innovations at a rate of about $100 million per year for each effort, though some programs required less.10

Building on the U.S. Army’s efforts to develop a rail gun for the M-1 tank, the Navy began heavy investment in prototyping rail guns in the late 1990’s and early 2000’s. By 2005 prototypes had been installed in Arleigh Burke-class destroyers. Since only warheads were required, magazines could hold three times as many projectiles as conventional rounds. The ability to shift power from propulsion to weapons inherent in IPS also stimulated more rapid advances in ship-borne lasers and directed energy weapons.

Rather than designing new airframes, the Navy automated flight controls to begin flying unmanned F/A-18 fighters and A-6 attack aircraft as part of air wings to learn what missions were appropriate and what the technology could support. This led the fleet rapidly discovering ways to employ the aircraft for dangerous and dull missions, reducing the load on newer air wings. Mixed manned-unmanned airwings began deploying in 2002. It also led to programs for automating aircraft in the Davis-Monthan Air Force Base boneyard to allow rapidly increasing the size of U.S. air forces in the event of war. Using lessons from existing air frames, the Navy began designing new unmanned combat air vehicles (UCAVs).

The Navy prototyped lighter than air craft for broad area surveillance; secure, anti-jam communications, and fleet resupply. These evolved to provide hangers and sustainment for unmanned air vehicles.

Figure 1: The Boneyard at Davis-Monthan AFB, Tucson, AZ (Alamy stock photo/Used by permission)

Figure 2: Sea Shadow (IX-529), built 1984 (U.S. Navy photo 990318-N-0000N-001/Released)

Building on the success of the 1995 Slice Advanced Technology Demonstrator11 operated by two people using a computer with a feeble 286 processor and lessons from the stealthy Sea Shadow, the Navy began prototyping similar vessels of about 350 tons designed for rapidly reconfiguring using modular payloads of that could be for different missions including anti-submarine warfare (ASW), mine warfare, sea control and air-defense using guns, strike, and deception.12 These prototype vessels used IPS and permanent magnet motors for high speed in high sea states. Initial modules employed existing systems while the plug-and-play nature of the modules allowed rapid upgrades. By 2005 the Navy had a flotilla of this version of optionally-manned littoral combat ships forward stationed in Singapore, refining tactics and organizational procedures. By 2010 the Navy had built a prototype of the SSG’s stealthy UCAV assault ship with a squadron of UCAVs.

Figure 3: SLICE ACTD 1996 (about 100 tons). (Pacific Marine & Supply Co. photo)

Figure 4: UCAV Assault Ship concept in 1997

The Navy replaced the Marine’s existing Maritime Prepositioning Force and redesigned the Navy’s Combat Logistics Force, with a cost saving $17 billion over 35 years using a common hull form using an integrated propulsion system, electric drive, and electromagnetic/directed energy weapons in a logistics and expeditionary ship variants. The electric drive freed space for unmanned surface, air, and undersea vehicles to support both combat and logistics functions. The expeditionary ships were capable of sustaining operations for 30 days without resupply and large enough to configure loads for an operation, rather than having to go to a port and load so that equipment came off in the appropriate order, which was the extant practice. The logistics variant could accommodate a 400-ton vessel in its well-deck to serve as a tender for forward deployed flotillas. The force was designed to project power up to 400 nautical miles inland using a larger tilt-wing aircraft than the V-22, which could fly at 350 knots.

Command decision programs emphasized the use of algorithms to inform repeated decisions. Building on combined arms ASW tactics employing surface, air, and submarine forces that proved successful in the 1980s, the Navy developed an undersea cooperative engagement capability for the theater ASW commander, exploiting maps of the probability of a submarine being at a particular location in the theater. This included development of advanced deployable arrays that allowed the Navy to surveil new areas on short notice. Additionally, capabilities to surveil and deliver mines using undersea unmanned vehicles were enhanced to allow maintaining minefields in adversary ports and choke-points.

One of the biggest advancements was in fleet sustainment. Technologies and policies that industry and had applied provided a roadmap for changing the Navy’s maintenance philosophy. Netted small, smart, sensors; networks; and on-site fabrication enabled the development of a cognitive maintenance process. By 2010 watchstanders no longer manually logged data and neural networks predicted times to failure. Platform status could be monitored remotely. Detection of anomalies in operating parameters would trigger automatic action in accordance with business logic. Using data from computer aided design both provided tutorials for maintain equipment, and identified parts needed to conduct repairs; allowing automatically generating parts requests. Inventory control systems ordered replacement parts as they were used. Sharing this data across the fleet and the Navy made much of the manpower involved in supply redundant. Ship’s force was freed from supply duties to focus on fighting the ship. Providing the data to original equipment manufacturers allowed them to track failure rates and update designs for greater reliability. Additive manufacturing (3D printing) allowed deployed ships to make parts needed for rapid repairs and reduced costs for maintaining prototype equipment and vessels. Only a few years was required to return investments required to transition to sustainment and inventory practices used by industries such as Caterpillar, General Motors, and Walmart (and now Amazon). Sustainment practices allowed ships to remain forward deployed in high readiness for much longer periods. Advances in employing AI for sustainment contributed exploiting AI for weapons systems.

The Navy began experimenting with the Horizon concept which called for creating flotillas of ships with the majority forward deployed with departmental watch teams rotating forward to allow sailors more time at home in readiness centers where they could train and monitor the status of ships to which they would deploy. Sailors would spend 80 percent of their careers in operational billets, advancing in their rating from apprentice, to journeyman, to master as they progressed. Assigning sailors to extraneous shore billets to give them time at home was no longer required.13 Readiness centers were established originally for smaller classes of ships, and the concept was in place for Burke-class destroyers and incoming classes of surface combatants in 2008.14 The advantages to this operational approach included: (1) the number of deployment transits were substantially reduced; (2) gaps in naval forward presence coverage in any of the three major theaters was eliminated; (3) two of the three ready platforms remaining in CONUS were operationally “ready” platforms 100% of the time, and all three over 90% of the time.15 New non-intrusive ways of certifying the platforms and crews as “ready” for operations freed them from the yoke of the inspection intensive inter-deployment training cycle and joint task force workups. This allowed the Navy to move away from cyclic readiness and towards sustained readiness.

The U.S. Navy in 2019

Using extensive prototyping of small manned and unmanned vehicles, weapons, combat, and C4ISR systems enhanced by AI with human oversight and control, the Navy in 2019 had a diverse set of capabilities to deal with rapidly emerging security challenges and opportunities. Forward stationed and deployed flotillas with their tenders provided surface and undersea capabilities similar to aircraft flying from a carrier.16 The agility provided by this approach over past acquisition practices developed for the Cold War allowed the Navy to enhance budgets for those prototypes that proved successful while accelerating learning about how to integrate rapidly changing technology. The success of rail guns and directed energy weapons as standard armaments on dispersed forces flipped the offense-defense cost advantages for air and missile defense. Implementing the sustainment and readiness concepts removed large burdens from ship’s forces that allowed them to concentrate on warfighting rather than maintenance and administration.

The Peoples’ Liberation Army Navy in 2019

One downside was that the PLA Navy closely observed and copied the USN. Through industrial espionage and theft of intellectual property, the PLAN acquired USN designs as the systems were begin authorized for procurement. With process innovation, China was able to field many of these systems even more quickly than the U.S., resulting in greater challenges even than the rapid build-up of Chinese maritime forces and global operations over the past decade. This taught the U.S. to think through competitive strategies, considering more carefully the strategic effects of adversaries having similar capabilities, rather than blindly pursuing technological advantages.


Captain John T. Hanley, Jr., USNR (Ret.) began his career in nuclear submarines in 1972. He served with the CNO Strategic Studies Group for 17 years as an analyst and Program/Deputy Director. From there in 1998 he went on to serve as Special Assistant to Commander-in-Chief U.S. Forces Pacific, at the Institute for Defense Analyses, and in several senior positions in the Office of the Secretary of Defense working on force transformation, acquisition concepts, and strategy. He received A.B. and M.S. degrees in Engineering Science from Dartmouth College and his Ph.D. in Operations Research and Management Sciences from Yale. He wishes that his Surface Warfare Officer son was benefiting from concepts proposed for naval warfare innovation decades ago. The opinions expressed here are the author’s own, and do not reflect the positions of the Department of Defense, the US Navy, or his institution.



1. As CNO, Admiral Tom Hayward established a Center for Naval Warfare Studies at the Naval War College in 1981 with the SSG as its core. His aim was to turn captains of ships into captains of war by giving promising officers an experiences and challenges that they would experience as senior flag officers before being selected for Flag rank. He personally selected six Navy officers, who were joined by two Marines. The group succeeded in developing maritime strategy and subsequent CNOs continued Hayward’s initiative. Over 20% of the Navy officers assigned were promoted to Vice Admiral and over 10 percent were promoted to full Admiral before CNO Mike Boorda changed the mission of the group to revolutionary naval warfare innovation in 1995.

2. This decision, however, was subsequently reversed due to concerns over cost and schedule risk with DD-21 (Zumwalt Class) being the first large surface combatant with IPS. The Navy established the IPS office in 1995 vice 1989. (O’Rourke 2000).

3. The Goldwater-Nichols Act in 1986 restricted Service acquisition authorities and created significant challenges for the Navy (Nemfakos, et al. 2010).

4. Owens and Cebrowski were assigned to the first SSG as Commanders and shared an office. Their concepts for networking naval, joint, and international forces to fight forward against the Soviets significantly influenced the Maritime Strategy of the 1980s and led to changes in fleet tactics and operations. Owens went on to serve as Vice Chairman of the Joint Chiefs of Staff with Cebrowski as his J-6 continuing their efforts. Cebrowski later directed OSD’s Office of Force Transformation in the early 2000s.

5. (Chief of Naval Operations Strategic Studies Group XV 1996). Imagine distributing the weapons systems on an Aegis cruiser across numerous geographically dispersed smaller vessels to cover more sea area while providing better mutual protection; elevating the phased-array radar to tens of thousands of feet using blimp-like aircraft; all networked to enhance cooperative engagement while providing a common operational picture covering a wide area.

6. Jay Johnson had served as an SSG fellow 1989-1990 and initially was unsure whether to return to the previous SSG model.

7. (Chief of Naval Operations Strategic Studies Group XVI 1997)

8. Most of the detailed descriptions below are statement from what the SSGs envisioned would happen.

9. The SSG focused solely on naval warfare innovation beginning in 1997, substantially changing the mission from making captains of war, until CNO John Richardson disestablished it in 2016.

10. 1997 was the nadir for Navy procurement budgets following the post-Cold War peace dividend. Focused on the Program of Record, OPNAV decided not to pursue SSG innovations.

11. Though OSD had programs for Advanced Technology Demonstrations (ATDs) to demonstrate technical feasibility and maturity to reduce technical risks, and Advanced Concept Technology Demonstrations (ACTDs) to gain understanding of the military utility before commencing acquisition, develop a concept of operations, and rapidly provide operational capability, acquisition reform beginning with the Packard Commission and Goldwater-Nichols and belief in computer simulation gutted the use of prototypes in system development.

12. The decision that the Littoral Combat Ship must self-deploy resulted in increasing the ship’s displacement by about an order of magnitude. Roughly ten of the smaller vessels could be purchased for each LCS. The missions in normal font are included in LCS modules.

13. Horizon sought to make 80% of Navy personnel available for deployment. In contrast, less than 50% of the Navy’s personnel were in deployable billets in 1996.

14. In 1997 the surface combatant 21 program which became the LCS and Zumwalt-class destroyers was scheduled for initial operational capability in 2008.

15. Based on a three to six-month depot availability once every five years.

16. Professor Wayne Hughes, Captain USN (Ret,) calls these a two-stage system.

Feature photo: Artist’s conception of DD-21: a low-signature and optimally-manned warship featuring railguns and an Integrated Power System (IPS). Public domain image.

Options in the Stars: Automated Celestial Navigation Options for the Surface Navy

CIMSEC is committed to keeping our content FREE FOREVER. Please consider donating to our annual campaign now so we can continue to provide free content.

By LTJG Kyle Cregge, USN

In response to the four recent mishaps, the U.S. Navy Surface Force is going through a cultural shift in training, safety, and mission execution. The new direction is healthy, necessary, and welcomed in the wake of the tragedies. Admiral Davidson’s “Comprehensive Review of Recent Surface Force Incidents” examines a myriad of different aspects of readiness in the Surface Force and the recommendations are far-reaching. There will likely be more training and scrutiny added to officer pipelines and ship certifications, some of which will come from the newly-created Naval Surface Group Western Pacific.

Included in the review were the subjects of Human Systems Integration (HSI) and Human Factors Engineering (HFE), in which the Review Team Members describe how “Navy ships are equipped with a navigation ‘system-of-systems,’” and that “The large number of different bridge system configurations, with increasingly complex and ship-specific guidance on how to make them work together, increases the burden on ships in achieving technical and operational proficiency.” I had the same experience – one where an Officer of the Deck (OOD) was challenged to monitor up to five different consoles with assistance from six different watchstanders while maintaining safety of navigation and executing the plan of the day. Thankfully, the recommendations in the Comprehensive Review address these difficulties, and five specifically address the immediate, unique needs of OODs:

  • 3.2 Accelerate plans to replace aging military surface search RADARs and electronic navigation systems.
  • 3.3 Improve stand-alone commercial RADAR and situational awareness piloting equipment through rapid fleet acquisition for safe navigation.
  • 3.4 Perform a baseline review of all inspection, certification, assessment and assist visit requirements to ensure and reinforce unit readiness, unit self-sufficiency, and a culture of improvement.
  • 3.8 As an immediate aid to navigation, update AIS laptops or equip ships with hand-held electronic tools such as portable pilot units with independent ECDIS and AIS.
  • 3.13 Develop standards for including human performance factors in reliability predictions for equipment modernization that increases automation.

One solution to the recommendations would be the addition of Automated Celestial Navigation (CELNAV) systems which could provide additional navigation support to Bridge watchstanders. Specifically, the systems could continuously fix the ship’s position in both day and night with as good, if not better, accuracy provided by sights and calculations using a computer, without the risk of human error or GPS spoofing. An automated celestial navigation system could either feed directly into the ship’s Inertial Navigation System (INS) or feed into a display in the pilothouse (with which a Navigator could verify the accuracy of active GPS inputs within a specified tolerance), both of which would provide redundancy to existing navigation systems. Automatic CELNAV systems are already used in the military, could be applied to surface ships rapidly, and could serve as a redundant, automated, and immediate aid to navigation against the potential threat of GPS signal disruption.

The Review Team’s recommendation to accelerate replacement of aging radars is a primary focus to support OODs, but given the capabilities of peer competitors against our GPS, rapid investment in shipboard CELNAV systems would be a worthwhile secondary objective. There is significant evidence of Russia testing a GPS spoofing capability in the Black Sea in June of this year, when more than twenty merchant ships’ Automated Identification Systems (AIS) were receiving locations placing them 25 nautical miles inland of Russia, near Gelendyhik Airport, rather than in the north-eastern portion of the Black Sea. Further, China maintains plans to actively combat the use of the Global Hawk UAV, to include, “electronic jamming of onboard spy equipment and aircraft-to-satellite signals used to remotely pilot the drones, [and] electronic disruption of GPS signals used for navigation.” At the outbreak of broader conflict one can imagine a far greater and more extensive denial effort for surface forces.  

Due to potential threats, there are built-in securities for military GPS receivers to combat disruption threats.  These include the Selective Availability Anti-Spoofing Module (SAASM) and expected upgrades for GPS Block III, to include more secure signal coding, with a scheduled inaugural launch in Spring 2018. Automated CELNAV can actively compliment both security mechanisms by providing redundancy against a technical failure or a cyber-attack and before the remaining GPS Block III satellites are brought online.

From a training perspective, the U.S. Navy reinstituted celestial navigation instruction for midshipmen in 2016 and quartermasters and junior officers in 2011 throughout their pipelines. The officers and quartermasters are trained to use the computer-based program STELLA (System To Estimate Latitude and Longitude Astronomically), developed by George Kaplan of the U.S. Naval Observatory in the 1990s. While the use of the program has sped the process of sightings to fixes from nearly an hour down to minutes, there is still a delay and the potential for human error. Automated CELNAV systems can provide both an extra layer of shipboard security against the potential threat of GPS disruption and assist in fixing the ship’s position continuously and as accurately as human navigators. Both arguments support increased readiness in the surface force and make ships more self-sufficient in the event of potential GPS disruption.

In 1999 George Kaplan argued that independent alternatives to GPS were necessary and required and that the hardware to implement these alternatives was readily available. Potential Automated CELNAV systems that could be configured for surface ships are already used in both the Navy and the Air Force. Intercontinental Ballistic Missiles (ICBMs),  SR-71 Blackbird,  RC-135, and the B-2 Bomber each use systems like the NAS-26, an astro-inertial system initially developed in the 1950s by Northrop for the Snark long-range cruise missile. Similar systems have previously been proposed for the Surface Forces. Cosmo Gator, an automated celestial navigation system, was submitted by LT William Hughes, then-Navigator of USS Benfold (DDG 65). This system would update the ship’s Inertial Navigation System (INS) with the calculated celestial position to provide essential navigation data for the rest of the combat system. OPNAV N4 funded LT Hughes’ proposal in March 2016 following the Innovation Jam event onboard USS Essex (LHD 2). Rapidly acquiring any of these various Automated CELNAV options supports the same piloting and situational awareness recommendations as an integrated bridge RADAR suite. The Navy can continue to cultivate a culture of improvement and further equip ships through the acquisition of more immediate aids to navigation like CELNAV systems.


As a result of the Comprehensive Review and associated ship investigations, the Surface Force is looking at innovative solutions to ensure that tragedies aren’t repeated. While the Navy strives to build a culture of improvement and to implement the CNO’s “High-Velocity Learning” concept continually, we must seek answers not only to the problems we face today but the threats we face tomorrow. The threats from peer competitors are defined and growing, but the options to provide greater shipboard redundancy are already created. In the same context that the Surface Force will endeavor to improve human systems integration for our bridge teams, we also should pursue Automated Celestial Navigation systems to make sure those same teams are never in doubt as to where they are in the first place. 

Lieutenant (junior grade) Kyle Cregge is a U.S. Navy Surface Warfare Officer. He served on a destroyer and is a prospective Cruiser Division Officer. The views and opinions expressed are those of the author and do not necessarily state or reflect those of the United States Government or Department of Defense.

Featured Image: PHILIPPINE SEA (Sept. 3, 2016) Midshipman 2nd Class Benjamin Sam, a student at the U.S. Merchant Marine Academy, fixes the ship’s position using a sextant aboard the Arleigh Burke-class guided-missile destroyer USS Benfold (DDG 65). (U.S. Navy photo by Mass Communication Specialist 3rd Class Deven Leigh Ellis/Released)

Why Does the United States of America Need a Strong Navy?

The following essay is the winning entry of the CIMSEC 2017 Commodore John Barry Maritime Security Scholarship Contest.

By Patrick C. Lanham

The United States of America was, is, and will remain a maritime nation. Flanked by vast oceans, covered from the north by Canadian arctic and the south by Mexican desert, the United States occupies one of the strongest strategic positions of any nation in history. This, however, comes at a cost: to trade and interact with most of the world, America must cross the Atlantic and Pacific Oceans. This exposes American trade to hostile nations, even relatively weak ones. This is not a new concept for American strategic planners. The United States’ first overseas conflict, the Barbary Wars, stemmed from this exact vulnerability. That struggle continues to this day, with the most recent example being U.S. Navy intervention in the Maersk Alabama hijacking by pirates off Somalia in 2009. Therefore, it has always been in the vital interest of this country to maintain a strong, well-resourced, and well-led navy. Without one, there is no conceivable way the United States could continue to maintain the world’s greatest economy in today’s globalized world.

Whenever America was most threatened or imperiled by conflict, the United States Navy has always stepped up to meet the challenge. From sparring with the great powers of Europe, to constricting the Confederacy, decisively defeating the Imperial Japanese Navy, and deterring the Soviet Union, the U.S. Navy has a proven track record of keeping America safe. By projecting outwards, the United States has kept war and devastation away from American shores. This is a solid policy, but it is one that requires a strong navy to pursue in any meaningful manner. This is further enhanced by a robust network of allies which the United States currently enjoys, but these nations will not sit on the frontlines without clear evidence of credible and capable American commitment to their own security. In this regard, what better signal of commitment is there than the strongest Navy in the world off their coast?

A strong navy, used in concert with allied nations and backed up by a vigorous economy, is a potent deterrent to conflict and enables diplomacy. It convinces adversaries that war is either unwinnable or too costly to wage. This helps the United States negotiate favorable outcomes through diplomacy, which will always be preferable to war. Some might argue that by building a strong navy or military in general, it promotes jingoism and can escalate tensions between rivals. While this is certainly true in some historical instances, I would argue that in America’s case it has prevented conflict much more than it has incited it. For example, during the Cold War, the U.S. Navy integrated with the rest of the North Atlantic Treaty Organization (NATO), and played a crucial role in containing the Soviet Navy in the North Atlantic. If not for their strong presence, any effort to reinforce NATO forces at the inner German border, in the event of a war with the Warsaw Pact, would have been spoiled by Soviet submarines. As we know, that war never happened and that is due in no small part to the U.S. Navy, which was both large and technologically advanced during that time period.

Yet again the United States stands at another crossroads in history. The post-Cold War peace is slowly eroding as revisionist powers seek to alter, through coercion, the international order to their benefit. Some nations, considered “near-peer” competitors, boast strong naval capabilities of their own. China is in the midst of a particularly large naval buildup using their extensive industrial base and newfound wealth to rapidly increase the quality and quantity of their naval forces. The U.S. Navy once again finds itself center stage in a great power rivalry after a nearly three-decade hiatus. The conflicts are dynamic, the competition is intense, and the advantages are fleeting. This is the new reality that we face today as a nation returning to competition with near-peer states. A strong United States Navy brings with it many tools that are useful to strategically outmaneuver these competitors. Chief among these tools is flexibility. In a world diseased with uncertainty, flexibility is the cure. It is not only critical to warfighting, but critical to avoiding conflict. A strong, well-trained, flexible navy is able to respond and adapt to new situations to maintain escalation control, but also fight to win if things go south. More on the warfighting side of the house, flexibility better enables U.S. forces in key regions to counter asymmetric threats or weapons – a favorite among some of the more prominent American adversaries. Another key tool is presence. A bigger, stronger navy is able to be deployed to build partnerships, deter potential enemies, and quickly respond to threats in more places across the globe. One only has to look at the recent chemical weapons use in Syria and the subsequent American response to realize that this not an abstract theory, but a proven concept.

For the United States, a strong navy is not a “want” but a “need.” Historically, it has been extremely effective at advancing U.S. national interests.  It is critical to deterring foreign adversaries and maintaining prosperity, not just for the U.S., but for all nations. Nations that have free and unrestricted access to global sea lanes for trade are more likely to grow and prosper which reduces the chance of conflict inside and outside its own borders. Throughout history, a strong navy has been a source of national pride and the United States is no exception. It gives us confidence and optimism as a society, and allows us to sleep at night knowing that someone has our backs.

Patrick C. Lanham graduated from Cocoa Beach High School and will be attending the University of Central Florida to study International and Global Studies. He may be reached on Twitter @p_lanham or via e-mail at pclanham@cfl.rr.com.

Featured Image: USS Ronald Reagan (CVN 76) transits the Pacific Ocean with ships participating in the RIMPAC 2010 combined task force. (U.S. Navy/MC3 Dylan McCord)

Don’t Give Up on the Littoral Combat Ship

By LT Kaitlin Smith

The Littoral Combat Ship (LCS) program has been subjected to heavy scrutiny, and much of it is justified. What is getting lost in the discourse is the real capability that LCS provides to the fleet. From my perspective as an active duty service member who may be stationed on an LCS in the future, I’m more interested in exploring how we can employ LCS to utilize its strengths, even as we seek to improve them. Regardless of the program’s setbacks, LCS is in the Fleet today, getting underway, and deploying overseas. Under the operational concept of distributed lethality, LCS both fills a void and serves as an asset to a distributed and lethal surface force in terms of capacity and capability.

Capacity, Flexibility, Lethality

The original Concept of Operations written by Naval Warfare Development Command in February 2003 described LCS as a forward-deployed, theater-based component of a distributed force that can execute missions in anti-submarine warfare, surface warfare, and mine warfare in the littorals. This concept still reflects the Navy’s needs today. We urgently need small surface combatants to replace the aging Avenger-class mine countermeasure ships and Cyclone-class patrol craft, as well as the decommissioned Oliver Hazard Perry-class frigates. Capacity matters, and “sometimes, capacity is a capability” in its own right. We need gray hulls to fulfill the missions of the old frigates, minesweepers and patrol craft, and until a plan is introduced for the next small surface combatant, LCS will fill these widening gaps.

LCS was also envisioned as a platform for “mobility” related missions like support for Special Operations Forces, maritime interception operations, force protection, humanitarian assistance, logistics, medical support, and non-combatant evacuation operations. Assigning these missions to LCS frees up multimission destroyers and cruisers for high-end combat operations. We’ve already seen how LCS can support fleet objectives during the deployments of USS FREEDOM (LCS 1) and USS FORT WORTH (LCS 3). Both ships supported theater security operations and international partnerships with Pacific nations through participation in the Cooperation Afloat Readiness and Training (CARAT) exercise series. USS FREEDOM conducted humanitarian and disaster response operations following the typhoon in the Philippines, and USS FORT WORTH conducted search and rescue operations for AirAsia flight QZ8501. The forward deployment of the ships to Singapore allowed for rapid response to real-world events, while allowing large surface combatants in the region to remain on station for their own tasking. With an 11-meter rigid hull inflatable boat onboard, LCS is well-suited to conduct visit, board, search, and seizure missions in Southeast Asia to combat piracy and protect sea lanes.

The presence of more ships on station doesn’t just allow us to fulfill more mission objectives; capacity also enables us to execute distributed lethality for offensive sea control. One of the goals of distributed lethality is to distribute offensive capability geographically. When there are physically more targets to worry about, that complicates an enemy’s ability to target our force. It also allows us to hold the enemy’s assets at risk from more attack angles.

The other goals of distributed lethality are to increase offensive lethality and enhance defensive capability. The Fleet can make the LCS a greater offensive threat by adding an over-the-horizon missile that can use targeting data transmitted to the ship from other combatants or unmanned systems. In terms of defensive capability, LCS wasn’t designed to stand and fight through a protracted battle. Instead, the Navy can increase the survivability of LCS by reducing its vulnerability through enhancements to its electronic warfare suite and countermeasure systems.

LCS may not be as survivable as a guided missile destroyer in terms of its ability to take a missile hit and keep fighting, but it has more defensive capability than the platforms it is designed to replace. With a maximum speed of over 40 knots, LCS is more maneuverable than the mine countermeasure ships (max speed 14 kts), patrol craft (max speed 35 kts), and the frigates (30 kts) it is replacing in the fleet, as well as more protective firepower with the installation of Rolling Airframe Missile for surface-to-air point defense. Until a plan has been established for future surface combatants, we need to continue building LCS as “the original warfighting role envisioned for the LCS remains both valid and vital.

New Possibilities

LCS already has the capability to serve as a launch platform for MH-60R helicopters and MQ-8B FireScout drones to add air assets to the fight for antisubmarine warfare and surface warfare operations. LCS even exceeds the capability of some DDGs in this regard, since the original LCS design was modified to accommodate a permanent air detachment and Flight I DDGs can only launch and recover air assets.

USS Freedom (Lockheed Martin photo)

We have a few more years to wait before the rest of the undersea warfare capabilities of LCS will be operational, but the potential for surface ship antisubmarine warfare is substantial. A sonar suite comprised of a multifunction towed array and variable depth sonar will greatly expand the ability of the surface force to strategically employ sensors in a way that exploits the acoustic environment of the undersea domain. LCS ships with the surface module installed will soon have the capability to launch Longbow Hellfire surface-to-surface missiles. The mine warfare module, when complete, will provide LCS with full spectrum mine warfare capabilities so that they can replace the Avenger class MCMs, which are approaching the end of their service life. Through LCS, we will be adding a depth to our surface ship antisubmarine warfare capability, adding offensive surface weapons to enable sea control, and enhancing our minehunting and minesweeping suite. In 2019, construction will begin on the modified-LCS frigates, which will have even more robust changes to the original LCS design to make the platform more lethal and survivable.

The light weight and small size of LCS also has tactical application in specific geographic regions that limit the presence of foreign warships by tonnage. Where Arleigh Burke-class destroyers weigh 8,230 to 9,700 tons, the variants of LCS weigh in from 3,200 to 3,450 tons. This gives us a lot more flexibility to project power in areas like the Black Sea, where aggregate tonnage for warships from foreign countries is limited to 30,000 tons. True to its name, LCS can operate much more easily in the littorals with a draft of about 14-15 feet, compared to roughly 31 feet for DDGs. These characteristics will also aid LCS’s performance in the Arabian Gulf and in the Pacific.

Of course, any LCS critic might say that all this capability and potential can only be realized if the ships’ engineering plants are sound. My objective here is not to deny the engineering issues—they get plenty of press attention on their own—but to highlight why we’ll lose more as a Navy in cutting the program than by taking action to resolve program issues. It’s worth mentioning that the spotlight on LCS is particularly bright. LCS is not the only ship class that experiences engineering casualties, but LCS casualties are much more heavily reported in the news than casualties that occur on more established ship classes.


LCS was designed as one part of a dispersed, netted, and operationally agile fleet,” and that’s exactly what we need in the fleet today to build operational distributed lethality to enable sea control. Certainly, we need to address the current engineering concerns with LCS in order to project these capabilities. To fully realize the potential of the LCS program, Congress must continue to fund LCS, and Navy leaders must continue to support the program with appropriate manning, training and equipment.

LT Nicole Uchida contributed to this article. 

LT Kaitlin Smith is a Surface Warfare Officer stationed on the OPNAV Staff. The opinions and views expressed in this post are hers alone and are presented in her personal capacity. They do not necessarily represent the views of the Navy or the Department of Defense.

Featured Image: PEARL HARBOR (July 12, 2016) – The littoral combat ship USS Coronado (LCS 4) transits the waters of Pearl Harbor during RIMPAC 2016. (U.S. Navy photo by MC2 Ryan J. Batchelder/Released)