Tag Archives: Technology

For America and Japan, Peace and Security Through Technology, Pt. 2

By Capt. Tuan N. Pham, USN

Part one of this two-part series calls for a bilateral technology roadmap to field and sustain a lethal, resilient, and rapidly adapting technology-enabled Joint Force (Multi-Domain Defense Force) that can seamlessly conduct high-end maritime operations in the Indo-Pacific.

Part two underscores the imperatives to do so, and provides geostrategic context by framing the growing technology competition within the region through the lens of Great Power Competition (GPC) in the 21st century. China, Russia, America, and Japan are intertwined in GPC, with all four nations fully committed to national security innovation for competitive advantages.

China – Seeking Global Technological Dominance (Technological Revisionism)

China has embarked on a whole-of-nation effort to achieve civil-military development and integration of emerging technologies, seeking to become a Science and Technology (S&T) superpower with a strong economy, a powerful military, and a harmonious society – able to fight and win global conflicts across every domain of strategic competition (economic, political, ideological, and military). Using national tools – government, industry, and academia – to promote domestic technological innovation and access foreign technology, Beijing hopes to leapfrog the United States and the other industrialized nations in technological prowess en route to global preeminence and the Chinese Dream of national rejuvenation. China invests heavily in advanced dual-use technologies, hoping that they will improve the People’s Liberation Army’s (PLA) capabilities and increase its capacities to achieve battlefield dominance across contested and interconnected warfighting domains.

The Military-Civil Fusion (MCF) strategy’s ultimate goal is the “gradual build-up of China’s unified military-civil system of strategies and strategic capabilities.” The strategy is not an addition to China’s other national strategic priorities, but rather a “supporting strategy whose parts integrate into China’s system of national strategies to form a broad national strategic system” that advances the Chinese Communist Party’s (CCP) overarching security and development goals and realizes its strategic aspirations (Chinese Dream). General Secretary of the CCP Xi Jinping described the MCF strategy as a “major policy decision designed to balance security and development, and is a major measure in response to complex security threats and a means of gaining strategic advantages.”

As the name suggests, the strategy seeks to synchronize and integrate civil and military operations, activities, and investments. The civil aspects encompass the economic and social systems that relate to national security as well as the contested domains and competitive technologies such as maritime, space, cyberspace, autonomy, and artificial intelligence (AI) that are intricately linked to the development and sustainment of “New Type Combat Capabilities.” The military aspects cover every aspect of national security to include the PLA and enabling national defense technologies and infrastructures. The MCF strategy gives the PLA unfettered access into civil entities developing and acquiring advanced technologies, to include state-owned and private firms, universities, and research programs such as the Thousand Talents Program. All in all, the strategy’s core goals are the optimization of national resource allocation, generation of combat readiness, and manifestation of economic prosperity.

The drive for technological dominance is not a new policy. The fixation with advanced technology dates back to the founding of the country and the founder Mao Zedong. Mao envisioned the “socialist world’s overwhelming superiority in S&T and came to see technological strength as central to economic, ideological, and geopolitical power for China” – a view that CCP leaders still hold today. Xi characterized the national pursuit of technology as “ganchao” (catch up and surpass). The strategic objective is one of the CCP’s most defining and enduring goals, and provides an essential policy framework to understand “China’s ambition to become a technological superpower, bringing together the legacies of Marxism, Maoism, and the relentless drive toward modernization [realization of the Chinese Dream] by the CCP.”    

Xi embraced “ganchao” and made it his own. In January of 2013, shortly after assuming power, Xi laid out his vision for China’s future through the lens of national rejuvenation and reinvigorated national efforts to “catch up and surpass,” reinforcing the legacy linkage of technological advancements to the ideology and identity of the CCP. Four years later, at the 19th National Congress of the CCP, Xi reaffirmed the strategic roadmap for the Chinese Dream. Xi moved China forward from Mao’s revolutionary legacy and Deng’s iconic policy dictum – “observe calmly, secure our position, cope with affairs calmly, hide our capacities and bide our time, be good at maintaining a low profile, and never claim leadership” – and heralded a new era in Chinese national development. To Xi, technological innovation, by all means, is necessary to surpass the West, and technological dominance is the path to realize global preeminence by 2049.             

Beijing’s Made in China 2025 and Internet Plus policies are two key components of China’s strategic plan to achieve technological dominance by the end of the decade and global preeminence by 2049. The former aims to push the economy towards higher value-added manufacturing and services through digital technology and automation. It is a blueprint to upgrade the manufacturing capabilities of Chinese industries into a more technology-intensive dynamo. The latter aims to capitalize on China’s massive online consumer market by building up the country’s domestic mobile Internet, cloud computing, big data, and Internet of Things (IoT) sectors. It is a roadmap to integrate information technology with the key industries of manufacturing, commerce, banking, and agriculture. Both policies have been characterized as an innovation mercantilism that leverages the power of the state to “alter competitive dynamics in global markets from industries core to economic competitiveness.” 

In the maritime domain, Xi called for accelerating innovation in marine technologies to increase capacity and improve naval development capability, fostering the development of domestic marine industries in support of both PLA modernization and reform efforts and national civilian projects like the Made in China 2025 and Digital Belt and Road Initiative. He promoted marine connectivity and practical collaboration to develop “blue partnerships” among like-minded maritime nations under the One Belt and One Road framework at last year’s China Marine Economy Expo.

Russia – Rebuilding Technology Base for National Greatness (Technological Revanchism)

In 2017, Russian President Vladimir Putin presciently declared that “whoever becomes the leader in this sphere [explicitly AI and implicitly technology at large] will become the ruler of the world.” The bold statement summarizes the purpose and intent behind the 2017 Strategy for the Development of an Information Society for 2017–2030, one of Putin’s key policy initiatives to restore Russia to its former glory. The strategy prioritizes areas deemed essential for the successful development of Russian information and communication technologies, specifically:

  • New generation of electronic networks
  • Processing of large volumes of data
  • AI
  • Electronic identification and authentication
  • Cloud computing
  • Post-industrial Internet
  • Robotics
  • Biotechnologies Information security

The strategy also devotes considerable attention to “ideological concerns, including the prioritization of Russian traditional spiritual and cultural values, popularization of Russian culture and science abroad, and proliferation of steady cultural and educational contacts with Russian compatriots living abroad.” The intent relates to the “Russian World” concept that aims to propagate Russian soft power abroad.

The 2017 Strategy for the Development of an Information Society supplements and complements the greater 2015 National Security Strategy (NSS) that codifies Russia’s strategic interests and national priorities. The strategic document identifies Russian national interests as “strengthening the country’s defense, ensuring political and social stability, raising the living standard, preserving and developing culture, improving the economy, and enhancing Russia’s status as a leading world power.” The strategy reflects a Russia more confident in its ability to defend its sovereignty, resist Western pressure and influence, and realize its great power aspirations.

The Russian military remains essential to Putin’s ambitious and expansive strategic plan to restore Russia to its former Soviet greatness. The incremental modernization of Russia’s military depends on the future viability and sustainability of the Russian defense industry. Moscow funds or subsidizes its defense industry primarily through four state-supported investment approaches that provide insights into current defense priorities and future defense developments: “In certain areas, the Kremlin invested significant resources in recapitalizing key defense corporations indicating its prioritization of the systems they produce and the technologies they develop. In other areas, Russia engaged in enduring support of critical defense corporations demonstrating its long-term commitment to key technologies. Another approach reflects the incorporation of its defense corporations into state-owned enterprises. The last approach is speculative investment in dual-use technologies through means such as venture capital.”

America – Maintaining Global Technology Leadership (Technological Superiority)

The 2017 NSS charges the National Security Enterprise to promote American prosperity by leading in research, technology, invention, and innovation to sustain and expand competitive advantages in today’s strategic environment of GPC. The tasked priority actions include understanding worldwide S&T trends, attracting and retaining inventors and innovators, leveraging private capital and expertise to build and innovate, and rapidly fielding inventions and innovations. The NSS also charges the Department of Defense (DOD) to preserve the peace through strength by renewing military capabilities to retain military overmatch for competitive advantages. Overmatch strengthens diplomacy and shapes the international environment to protect and advance U.S. national interests. To maintain military overmatch, the United States must restore the ability to build innovative defense capabilities, force readiness for major conflict and strategic competition, and size of the force so that it is capable of operating at a sufficient scale and for a duration to win across a range of contingencies and interconnected domains. Lastly, the NSS calls on key allies and partners to modernize, acquire the necessary joint warfighting capabilities, improve force readiness, expand the size of their forces, and affirm the political will to compete and win.     

Within the DOD, the 2018 National Defense Strategy, 2018 National Military Strategy, and Defense Planning Guidance collectively highlight the need for competitive technological innovation in national security to sustain and expand the U.S. military competitive advantages, and direct greater partnerships between the DOD and commercial enterprises to out-innovate global competitors. Nowhere is the need for commercial technological innovation more compelling than in the DOD. The 2019 Digital Modernization Strategy states that “technological innovation is a key element of future readiness and essential to preserving and expanding U.S. military competitive advantage in the face of near-peer competition and asymmetric threats.” The strategy calls for the ability, flexibility, and agility to innovatively and rapidly field technology-enabled warfighting capability to the warfighter faster than potential adversaries. The guiding principles for DOD’s acquisition of commercial technology capabilities underscore that “preserving and expanding our military advantage depends on our ability to deliver technology faster than our adversaries and the agility of our enterprise to adapt our way of fighting to the potential advantages of innovative technology.”   

Within the Department of Navy, Chief of Naval Operations Admiral Michael Gilday emphasizes the role of allies and partners in enforcing international maritime norms and operating together as a technology-enabled Joint Force. He declared his intention to bring key U.S. allies and partners along with the U.S. Navy (USN) as it moves into high-end maritime operations at last year’s 12th Regional Sea Power Symposium. He told his contemporaries from more than 30 foreign navies that “today, the very nature of our operating environment requires shared common values and a collective approach to maritime security…and that makes steady, enduring Navy-to-Navy relationships more important than ever”. He concluded his remarks by addressing the fluid technological environment and how emerging disruptive technologies affect the character of naval operations and warfare (warfighting). He underscored tactical cloud computing, AI, and machine learning as technological drivers of change for the USN and by extension allied and partnered navies. 

Admiral Gilday expounded on these points when he promulgated his initial guidance to the Fleet a few months later. The directive, in the form of a fragmentary order (FRAGO), simplified, prioritized, and built on the foundation of “A Design for Maintaining Maritime Superiority 2.0” issued by his predecessor. The FRAGO directs dedicated efforts across three critical areas – warfighting, warfighters, and the future Navy – and focuses on building alliances and partnerships to broaden and strengthen global maritime awareness, access, capabilities, and capacities. 

The FRAGO aligns well with the Secretary of Navy’s (SECNAV) guidance to mitigate the unpredictability of the future by building and maintaining a “robust constellation of partners and allies to work with us to solve common security challenges which are beyond our ability to predict, or defeat alone.” The SECNAV underscored two key initiatives. First, cooperative international agreements jointly produce, procure, and sustain naval armaments to reduce U.S. and partner costs, improve bilateral interoperability, and forge closer ties between U.S. and partner nation operating forces and acquisition and logistics communities. Second, S&T and data exchange agreements facilitate Research and Development (R&D) and information exchanges with allied or friendly nations, and marshal the technological capabilities of the United States and our key allies and partners to accelerate R&D and fielding of equipment for the common defense.  

The FRAGO also aligns well with the newly released Tri-Service Maritime Strategy (Advantage at Sea, Prevailing with All-Domain Naval Power). The joint strategy focuses on China and Russia and guides the Naval Service (USN, U.S. Marine Corps, and U.S. Coast Guard) for the next decade to prevail across the continuum of competition. The strategy has two main components. First, it articulates the employment of integrated all-domain naval power across the competition continuum. Second, it guides the development of an integrated all-domain naval force.

Japan – Advancing Toward Society 5.0 (Technological Evolution)

Japan takes a broader societal perspective of the Fourth Industrial Revolution (4IR). In 2017, Japanese Prime Minister Shinzo Abe unveiled Society 5.0, a future society that leverages technology in the key pillars of infrastructure, finance technology, healthcare, logistics, and AI to achieve economic advancement and solve societal problems. The super-smart society (Society 5.0) is the fifth step in the evolution of human development. It follows the information society (Society 4.0), industrial society (Society 3.0), agricultural society (Society 2.0), and hunting and gathering society (Society 1.0). The vision is to liberate people from routine tasks and to meet the needs of every person while not surrendering all control to technology. Society 5.0 boldly creates a social contract and economic model by fully integrating the technological innovations of the 4IR throughout every facet of Japanese society. The dual-use nature of these developing civil technologies also has national security applications and implications. 

Like in the United States, GPC influences Japan’s national security perspectives as outlined in its NSS. The NSS shapes Japanese defense priorities through the lens of enduring regional threats like China, North Korea, and Russia; emerging contested and interconnected domains of space, cyberspace, and the electromagnetic spectrum (EMS); the U.S.-Japan Alliance; and the Free and Open Indo-Pacific. Within the Ministry of Defense (MOD), the National Defense Planning Guidelines for FY2019 and Beyond, Mid-Term Defense Program FY2019-2023, and 2019 R&D Vision call for the development of a Multi-Domain Defense Force (Joint Force) that can conduct seamless and integrated cross-domain operations to preserve the security, prosperity, and independence of Japan. These operations fuse the new domains of space, cyberspace, and the EMS with the traditional domains of maritime, air, and land. The challenge for the MOD is how best to leverage the pervasive technological innovation happenings in the government, private industry, and academia within Japan and collaborate with the U.S. DOD on technological innovation.

Japan Maritime Self-Defense Force (JMSDF), in coordination with the other services, continues to make prudent targeted investments to develop a Multi-Domain Defense Force, strengthen the U.S.-Japan Alliance, take better care of its personnel, and hedge for the future. The FY2019,  FY2020, and FY2021 defense budgets (JMSDF allocation) focus on building capabilities and increasing capacities in command, control, communications, computers, ISR, and targeting (C4ISRT), information warfare, cyberspace network operations and defense, space warfare, undersea warfare, and ballistic missile defense. The JMSDF also makes investments in four enabling organizational areas. Firstly, enhance function in all phases through continuous enhancement of necessary capabilities. Secondly, better develop concepts necessary for defending the country by utilizing the JMSDF capabilities to their full potential. Thirdly, further strengthen cooperation through deepening relationships with other navies with the U.S.-Japan Alliance as its core, and through making full use of joint and comprehensive relationships with various partners. Lastly, improve personnel programs, the foundation of the JMSDF, both in quality and in quantity.

Technology Competition

GPC is alive and well in the Indo-Pacific, particularly in the contested technology domain. Russia, China, America, and Japan are entangled in a competitive technology race for economic prosperity and national security. Although allied Washington and Tokyo are fully committed to national security technological innovation as evidenced by their respective national defense strategies and mutual pursuit of a technology-enabled Joint Force (Multi-Domain Defense Force), the broader DOD (USN) and MOD (JMSDF) must better leverage emerging technologies and developing concomitant warfare concepts (doctrines) to adapt to the new way of fighting. Otherwise, the United States and Japan risk ceding the technology domain and consequently military superiority in the Indo-Pacific to revisionist China and revanchist Russia.

CAPT Pham is a maritime strategist, strategic planner, naval researcher, and China Hand with 20 years of experience in the Indo-Pacific. He completed a research paper with the Office of Naval Research (ONR) at the U.S. Naval War College (USNWC) in 2020. The articles are derived from the aforesaid paper. The views expressed here are personal and do not reflect the positions of the U.S. Government, USN, ONR or USNWC.

Featured Image: SAN DIEGO (Feb. 23, 2017) Cmdr. Mark Stefanik, commanding officer of the littoral combat ship USS Montgomery (LCS 8), discusses the ship’s engineering capabilities with Japan Maritime Self Defense Force Director of Ships and Weapons Division, Capt. Shinichi Imayoshi. (U.S. Navy photo by Fire Controlman 1st Class Nathaniel J. Wells/Released)

Harnessing Tech Innovation from Blockchain to Kill Chain

By Jimmy Drennan

With all of the hype surrounding bitcoin and other cryptocurrencies, it can be difficult to sort through the noise and it might seem trendy to ask the question “How can this technology benefit my organization?” After all, a cryptocurrency started as a joke in honor of dog memes recently achieved a $2B valuation. Still, the underlying technological innovation behind Bitcoin, the blockchain, has real, concrete advantages that can impact numerous industries, from banking to logistics.

Applications in maritime operations are no exception. Blockchain is essentially a distributed database that incentivizes network consensus to make it extremely difficult to alter recorded data. Think of it this way: blockchain is like a museum that offers free entry, but heavily secures each exhibit with anti-tamper systems such that they can only be observed, not stolen or defaced. That so-called “immutability property” makes blockchain useful any time data integrity (i.e. preservation of data) is more important than data security (i.e. privacy of data).

Ideas are already being formulated by the Secretary of the Navy’s Innovation Advisory Council on how blockchain can improve additive manufacturing. Perhaps the most intriguing example of how blockchain can assist naval operations lies in ensuring an accurate recognized maritime picture (RMP). In naval warfare, nothing is more important when forming a kill chain than ensuring one has properly identified the target. RMP is even more critical when relying on networks, and the U.S. Navy has invested heavily for decades to become the world’s preeminent networked force. Blockchain has the potential to solve two of the Navy’s biggest problems associated with building RMP: ambiguity and manipulation. In fact, the broader maritime industry can also benefit from the use of blockchain due to inherent security flaws in the widely used automatic identification system (AIS).

What is a Blockchain?

A brief primer on how blockchains work will help to illustrate how they can impact naval operations. A blockchain used to record financial transactions, called “cryptocurrency,” is perhaps the best example to use. It is a distributed ledger that keeps track of every transaction ever conducted. Bitcoin, the original and most well-known cryptocurrency, relies upon a large network of independent users to prevent “double spending.”  Since cryptocurrency is just data, and not something tangible that is traded for goods or services, it would normally be easy for someone to spend it twice and delegitimize the entire system. Bitcoin’s unique process solved the double spending problem by calling upon its network users to work together to verify each transaction. Bitcoin conducts “consensus building” by offering a prize (currently 12.5 bitcoin) to a randomly selected user helping to verify the latest transaction. Once consensus is built and a transaction is verified, a new 12.5 bitcoin is awarded (i.e. mined) and the transaction is recorded to the blockchain. Each subsequent transaction is built upon the last, making it very difficult to retroactively manipulate data on the blockchain. In fact, the only way for a nefarious actor to alter a previous transaction or record an invalid transaction would be to achieve 51 percent of the computing power on the bitcoin network. For reference, today the world’s most powerful supercomputer, China’s Sunway Taihulight, would comprise just 0.6 percent of the bitcoin network’s computing power, which is growing exponentially.

Recognized Maritime Picture

U.S. and coalition navies rely on secure tactical data networks to share information from a variety of sensors to build RMP. Since RMP is built from the input of numerous, widely distributed users in these networks, they are susceptible to errors like “dual tracks” (i.e. a single ship or aircraft being broadcast to the network as two contacts) or faulty navigational data causing a ship to misreport its own course and speed. These errors can lead to ambiguity in RMP that could lead to critical delays in successfully identifying a threat. Tactical data networks are also susceptible to intrusion and manipulation, no matter how secure they are. Like any cybersecurity system designed to keep unauthorized users out, navies constantly strive to make their tactical data networks more secure against ever more determined adversaries.

Blockchain technology can help navies mitigate the problems of ambiguity and manipulation in building RMP. By building tactical data networks on a blockchain foundation, ambiguity will be resolved naturally as “consensus” develops around new tracks and they are distributed throughout the network. Once consensus is built around a track, blockchain’s immutability property makes it very difficult for subsequent users to clutter RMP with errant data on that track. Likewise, an unauthorized user trying to manipulate RMP by infiltrating tactical data networks will be challenged to alter data on established tracks. Even if a cyber attack attempted to insert new false tracks into the network, specialized blockchain features could be developed to override track data that is not corroborated by friendly sensors. A blockchain that utilizes special features and operates on secure networks is an example of a  private blockchain. Going back to the museum example, a private blockchain is like a museum that employs robust anti-tamper systems on the exhibits, but also restricts entry to museum members only. A disadvantage of a private blockchain is the reduction in available computing power, due to limited users, to ensure data integrity. The cost of rebuilding U.S. and coalition navy tactical data networks from the ground up utilizing blockchain will likely be significant; however, the advantages in data integrity by mitigating ambiguity and manipulation are worth analyzing.

Much as U.S. and coalition navies could benefit from private blockchain, the maritime industry at large could benefit from public blockchain to improve its RMP. Worldwide, mariners use AIS – an open network of ship position, course, and speed data – as a primary tool for building RMP. Implemented in the early 2000s, AIS has been critical to improving safety of navigation. Still, AIS has inherent flaws that blockchain could be used to fix. Because it is open source, AIS data can easily be manipulated to make a ship appear in a different location, report false course and speed, or even mimic another ship’s identity. As Glenn Hayes explains in the Maritime Electronics Journal, AIS “is vulnerable to malicious transmissions and runs the risk of being manipulated by individuals seeking to deceive the system.”  Illegal fishing, piracy, and smuggling are just a few of the reasons one might seek to deceive AIS. As use of AIS spreads, potential security issues will only increase. The data manipulation that AIS is susceptible to is exactly the type of vulnerability that blockchain was developed to address. With targeted funding and industry-wide effort, blockchain can provide data integrity to AIS to improve maritime safety and deter illegal activity at sea.

Countering Maritime Smuggling

Another potential application of blockchain in maritime operations could be in supply chain improvements to counter maritime smuggling of drugs, weapons, or any illicit cargo. Lieutenant Junior Grade Henry Bond wrote an insightful article for U.S. Naval Institute Proceedings on the potential for blockchain to protect the DoD supply chain. Lieutenant Bond’s analysis can be expanded to include the global shipping industry. Specifically, smugglers often exploit the inherent difficulties in conducting cargo inspections on container ships by concealing contraband within legitimate cargo in innocuous, unmarked containers. Economic and operational constraints do not often allow for the time it would take to open and inspect hundreds of containers pierside, and physical constraints usually prohibit at-sea inspection. So, to counter maritime smuggling via container ships, navies and law enforcement agencies must focus on deterring the use of containers vice locating illicit cargo in transit. Blockchain portends to act as a potential deterrent by openly and irrevocably recording the status of every container in the supply chain. Essentially, each container could be treated like a “transaction” in the blockchain, so that once it is loaded as part of a legitimate shipment, its status relative to all other nearby containers is “locked down,” making it very difficult to mix in an illegitimate container at a later point. Events like the opening or repositioning of a container could also be recorded as “transactions” to further complicate smugglers’ to conceal illicit cargo.

Ideas like those of Lieutenant Bond or the SECNAV Innovation Board are sound, but they require further development because blockchain is still a nascent technology. DoD, and the maritime industry at large, would do well to assign additional research funding to pursue ideas for applying blockchain in national defense and maritime safety.

Jimmy Drennan is the Vice President of CIMSEC. These views are the author’s alone and do not necessarily reflect the position of any government agency.

Featured Image: ORLANDO, Fla. (August 12, 2014) Sailors train on a new diesel generator simulator during a project review at Naval Air Warfare Center Training Systems Division in Orlando, Fla. (U.S. Navy photo by Darrell Conley/Released)

Options in the Stars: Automated Celestial Navigation Options for the Surface Navy

CIMSEC is committed to keeping our content FREE FOREVER. Please consider donating to our annual campaign now so we can continue to provide free content.

By LTJG Kyle Cregge, USN

In response to the four recent mishaps, the U.S. Navy Surface Force is going through a cultural shift in training, safety, and mission execution. The new direction is healthy, necessary, and welcomed in the wake of the tragedies. Admiral Davidson’s “Comprehensive Review of Recent Surface Force Incidents” examines a myriad of different aspects of readiness in the Surface Force and the recommendations are far-reaching. There will likely be more training and scrutiny added to officer pipelines and ship certifications, some of which will come from the newly-created Naval Surface Group Western Pacific.

Included in the review were the subjects of Human Systems Integration (HSI) and Human Factors Engineering (HFE), in which the Review Team Members describe how “Navy ships are equipped with a navigation ‘system-of-systems,’” and that “The large number of different bridge system configurations, with increasingly complex and ship-specific guidance on how to make them work together, increases the burden on ships in achieving technical and operational proficiency.” I had the same experience – one where an Officer of the Deck (OOD) was challenged to monitor up to five different consoles with assistance from six different watchstanders while maintaining safety of navigation and executing the plan of the day. Thankfully, the recommendations in the Comprehensive Review address these difficulties, and five specifically address the immediate, unique needs of OODs:

  • 3.2 Accelerate plans to replace aging military surface search RADARs and electronic navigation systems.
  • 3.3 Improve stand-alone commercial RADAR and situational awareness piloting equipment through rapid fleet acquisition for safe navigation.
  • 3.4 Perform a baseline review of all inspection, certification, assessment and assist visit requirements to ensure and reinforce unit readiness, unit self-sufficiency, and a culture of improvement.
  • 3.8 As an immediate aid to navigation, update AIS laptops or equip ships with hand-held electronic tools such as portable pilot units with independent ECDIS and AIS.
  • 3.13 Develop standards for including human performance factors in reliability predictions for equipment modernization that increases automation.

One solution to the recommendations would be the addition of Automated Celestial Navigation (CELNAV) systems which could provide additional navigation support to Bridge watchstanders. Specifically, the systems could continuously fix the ship’s position in both day and night with as good, if not better, accuracy provided by sights and calculations using a computer, without the risk of human error or GPS spoofing. An automated celestial navigation system could either feed directly into the ship’s Inertial Navigation System (INS) or feed into a display in the pilothouse (with which a Navigator could verify the accuracy of active GPS inputs within a specified tolerance), both of which would provide redundancy to existing navigation systems. Automatic CELNAV systems are already used in the military, could be applied to surface ships rapidly, and could serve as a redundant, automated, and immediate aid to navigation against the potential threat of GPS signal disruption.

The Review Team’s recommendation to accelerate replacement of aging radars is a primary focus to support OODs, but given the capabilities of peer competitors against our GPS, rapid investment in shipboard CELNAV systems would be a worthwhile secondary objective. There is significant evidence of Russia testing a GPS spoofing capability in the Black Sea in June of this year, when more than twenty merchant ships’ Automated Identification Systems (AIS) were receiving locations placing them 25 nautical miles inland of Russia, near Gelendyhik Airport, rather than in the north-eastern portion of the Black Sea. Further, China maintains plans to actively combat the use of the Global Hawk UAV, to include, “electronic jamming of onboard spy equipment and aircraft-to-satellite signals used to remotely pilot the drones, [and] electronic disruption of GPS signals used for navigation.” At the outbreak of broader conflict one can imagine a far greater and more extensive denial effort for surface forces.  

Due to potential threats, there are built-in securities for military GPS receivers to combat disruption threats.  These include the Selective Availability Anti-Spoofing Module (SAASM) and expected upgrades for GPS Block III, to include more secure signal coding, with a scheduled inaugural launch in Spring 2018. Automated CELNAV can actively compliment both security mechanisms by providing redundancy against a technical failure or a cyber-attack and before the remaining GPS Block III satellites are brought online.

From a training perspective, the U.S. Navy reinstituted celestial navigation instruction for midshipmen in 2016 and quartermasters and junior officers in 2011 throughout their pipelines. The officers and quartermasters are trained to use the computer-based program STELLA (System To Estimate Latitude and Longitude Astronomically), developed by George Kaplan of the U.S. Naval Observatory in the 1990s. While the use of the program has sped the process of sightings to fixes from nearly an hour down to minutes, there is still a delay and the potential for human error. Automated CELNAV systems can provide both an extra layer of shipboard security against the potential threat of GPS disruption and assist in fixing the ship’s position continuously and as accurately as human navigators. Both arguments support increased readiness in the surface force and make ships more self-sufficient in the event of potential GPS disruption.

In 1999 George Kaplan argued that independent alternatives to GPS were necessary and required and that the hardware to implement these alternatives was readily available. Potential Automated CELNAV systems that could be configured for surface ships are already used in both the Navy and the Air Force. Intercontinental Ballistic Missiles (ICBMs),  SR-71 Blackbird,  RC-135, and the B-2 Bomber each use systems like the NAS-26, an astro-inertial system initially developed in the 1950s by Northrop for the Snark long-range cruise missile. Similar systems have previously been proposed for the Surface Forces. Cosmo Gator, an automated celestial navigation system, was submitted by LT William Hughes, then-Navigator of USS Benfold (DDG 65). This system would update the ship’s Inertial Navigation System (INS) with the calculated celestial position to provide essential navigation data for the rest of the combat system. OPNAV N4 funded LT Hughes’ proposal in March 2016 following the Innovation Jam event onboard USS Essex (LHD 2). Rapidly acquiring any of these various Automated CELNAV options supports the same piloting and situational awareness recommendations as an integrated bridge RADAR suite. The Navy can continue to cultivate a culture of improvement and further equip ships through the acquisition of more immediate aids to navigation like CELNAV systems.

Conclusion

As a result of the Comprehensive Review and associated ship investigations, the Surface Force is looking at innovative solutions to ensure that tragedies aren’t repeated. While the Navy strives to build a culture of improvement and to implement the CNO’s “High-Velocity Learning” concept continually, we must seek answers not only to the problems we face today but the threats we face tomorrow. The threats from peer competitors are defined and growing, but the options to provide greater shipboard redundancy are already created. In the same context that the Surface Force will endeavor to improve human systems integration for our bridge teams, we also should pursue Automated Celestial Navigation systems to make sure those same teams are never in doubt as to where they are in the first place. 

Lieutenant (junior grade) Kyle Cregge is a U.S. Navy Surface Warfare Officer. He served on a destroyer and is a prospective Cruiser Division Officer. The views and opinions expressed are those of the author and do not necessarily state or reflect those of the United States Government or Department of Defense.

Featured Image: PHILIPPINE SEA (Sept. 3, 2016) Midshipman 2nd Class Benjamin Sam, a student at the U.S. Merchant Marine Academy, fixes the ship’s position using a sextant aboard the Arleigh Burke-class guided-missile destroyer USS Benfold (DDG 65). (U.S. Navy photo by Mass Communication Specialist 3rd Class Deven Leigh Ellis/Released)

NAFAC: The 4th Battle for the Atlantic and Technology’s Impact on Warfighting

By Sally DeBoer

For the past fifty-six years, the United States Naval Academy has hosted the Naval Academy Foreign Affairs Conference (NAFAC). NAFAC, planned and executed by the midshipmen themselves, brings together outstanding undergraduate delegates as well as notable speakers, scholars, and subject matter experts from around the nation and the world to discuss a current and relevant international relations issue. The theme for this year’s conference, A New Era of Great Power Competition?, seeks to explore the shifting dynamics of the international system, challenges to a U.S. – led world order, the nature of potential future conflicts, the challenge of proto-peer competitors and rising  as well as what steps the U.S. might take to remain the primary arbiter of the international system at large. As this topic is of great interest to CIMSEC’s readership, we are proud to partner with NAFAC in this, their 57th year, to bring you a series of real-time posts from the day’s events in Annapolis, MD. CIMSEC would like to recognize MIDN 1/C Charlotte Asdal, NAFAC Director, and her staff for allowing us to participate in this year’s events and for inviting our readership to virtually share in the week’s rich academic environment.

Robert H. McKinney Address – Vice Admiral James Foggo, III, Director, Navy Staff and Former Commander 6th Fleet

“The greatest leaders must be educated broadly.” – Gen. George Olmstead

Vice Admiral James Foggo III addressed midshipmen and delegates Thursday morning, the last day of the NAFAC conference. The address, bolstered by personal anecdotes, videos, and photographs from the Navy Staff Director and former 6th Fleet Commander, largely addressed the question of great power competition from the perspective of the United States’ relationship with the Russian Federation. The admiral’s address familiarized the audience with recent history and current operations within the Mediterranean, Arctic, Baltic and beyond, informing the day’s discussion on the evolution of great power competition in the coming decades.

What Makes a Great Power?

To begin, VADM Foggo was careful to define the terms used in answering the question: Are we in a new era of great power competition? The admiral expressed confidence that the United States remains the greatest nation in the world, providing exposition on what makes the United States a great power.  Great powers, he explained, go beyond the sum of their people, economic, or military strength to offer ideas, opportunity, and leadership, using their power to affect change for the world’s weakest and most vulnerable populations. Russia, he went on to conclude, is not by this definition a great power – their “sum” qualifies the Federation as a major power, but their actions, primarily enacted in self-interest, disqualify them from great power status.  Understanding this distinction is crucial.

The 4th Battle for the Atlantic

VADM Foggo provided helpful historical context for the historical relationship between the Soviet Union/Russian Federation and the United States. The First Battle for the Atlantic, he explained, occurred during the course of World War One, while the Second, where the United States and her allies defeated axis powers relentless undersea tactics with “grit, resolution, the submarine detection system, and the lend-lease program to Britain.” The third battle, he explained, occurred during the course of the Cold War. An unclassified report based on the 3rd Battle Innovation Project commissioned by the United States Submarine Force on the contribution of U.S. undersea assets to U.S. victory in the Cold War concluded with the following sentiment: “someday, we may face a 4th Battle of the Atlantic.” VADM Foggo asserted that we are, indeed, in the midst of this battle now. The admiral and his co-author Alarik Fritz of the Center for Naval Analysis, collected their thoughts in an article published by the United States Naval Institute,  “The 4th Battle for the Atlantic.”

Rising Tensions 

VADM Foggo characterized the aforementioned 4th Battle for the Atlantic though a series of examples and anecdotes. Beginning with Russia’s invasion of Georgia in 2008, the United States exercised its responsibility as a great power to seek to deescalate tensions and compromise where possible by pursuing the Reset policy with the Russian Federation. This policy, he explained, did not work as intended. In 2014, the U.S. was once again surprised by Russia’s aggressive and illegal actions in Ukraine. This unjustified action, he went on, is an example of why Russia is not a great power, but rather only a major power. This action partially inspired the “back to basics” policy for U.S. defense thinkers and policymakers called for by ADM Greenert.

Admiral Foggo recommended several books to the audience, including ONI’s Russian Navy report, which he emphasized was a “must read” for tomorrow’s defense and foreign policy leaders.

Continued Vigilance

VADM Foggo explored a few key areas where Russia is challenging U.S. and allied interests, providing tangible examples. In the Arctic, he explained, Russians currently operate seven former Cold War bases at company- and battalion- strength units with an endurance of a year or more. Russia has militarized the Arctic, which concerns the U.S. and our allies, particularly the Norwegians, regarding restricted access to international waters. To drive this point home, the admiral displayed a photograph of the Russian flag planted at the geographical North Pole, moved there by a Russian submersible.

U.S. Navy ship encounters aggressive Russian aircraft in Baltic Sea, April 12, 2016. (U.S. European Command)

Given the venue of the conference, VADM Foggo appropriately addressed his professional experience with aggressive actions by the Russian Federation at sea. Beginning with the Su-24 flyby of the USS Donald Cook (DDG-75) in the Black Sea, during which, he emphasized, the wingtip of the Russian aircraft was no more than 30 feet from the deck of the destroyer, the Russian Naval forces escalated tensions in response to U.S. presence in Russia’s adjacent international waters and beyond. The admiral explained the import of strategic communication to gain the moral high ground, which the U.S. achieved by declassifying and releasing an image of the Su-24 narrowly off the bridge wing of the Donald Cook, along with diplomatic protest and meaningful presence in the form of BALTOPS 2016.

“49 Ships Became 52”

BALTOPS is a NATO exercise to improve and display the interoperability of allied forces. The 2016 exercise communicated a clear strategic message; the exercise boasted three amphibious landing operations (versus the previous year’s two), extensive anti-submarine warfare (ASW) operations with three allied submarines and maritime patrol and reconnaissance (MPRA) aircraft, and more. In an effective anecdote that illustrated the Russian response to the exercise, the admiral shared that when reviewing photos from the PHOTOEX conducted during BALTOPS, 52 ships appeared in the photograph – 49 allied vessels, two Russian destroyers, and a Russian AGI. “49 ships, he recalled, became 52.” Tellingly, the Russian response to the success of the strategic messaging of the exercise included “a Stalin-like purge of Russian commanders in the Baltic Fleet,” due to their unwillingness to challenge western ships. Further reinforcing the point, VADM Foggo shared moreexamples of his interactions with Russian counterparts in multilateral and bilateral discussions.

Looking Forward – “The Surest Guarantee of Peace”

The tone of VADM Foggo’s remarks was one of stark realism, but also optimism as well. The admiral expressed confidence in the forces that were under his command, but reiterated to the audience of future diplomatic and military leaders the crucial nature of continued vigilance and continued action in support of the United States’ responsibilities as a great power. He included a timely example – the recent strikes on a Syrian airbase in response to the use of chemical weapons by the Assad regime. “Great powers react, but they react proportionally,” the VADM concluded, expressing belief in the possibility that such actions can bring compromise – a concept, he said, a great power should pursue and prioritize.

Technology and Cyber-Competition Panel

Note: The following information is paraphrased from the panelists’ remarks – their thoughts, remarks, and research are their own and are reproduced here for the information of our audience only.

Panelists Brigadier General Greg Touhill, USAF (ret.), the First Federal Chief of Information Security Officer, Mr. August Cole, Senior Fellow at the Atlantic Council and co-author of Ghost Fleet, and Dr. Nicol Turner-Lee, Fellow at the Center for Technology and Innovation at the Brookings Institution, were given the opportunity to provide open-ended remarks before the question and answer portion of the panel.

A Strategic Framework for Cybersecurity

Cybersecurity is a provocative issue, and General Touhill used his opening remarks to dispel some common rumors about the cyber realm. This is not a technology issue, he went on, but a risk management issue; it is an instrinsic facet of [the United States’] national economy and security to be sensitive to the protection of our technology, information, and competitive advantage. Cybersecurity, he explained, is not all about the tech, but rather about the information. When considering cyber strategy, the General contended that a direct, simple strategy is best and most likely to be effectively executed. To this end, he outlined five lines of effort:

  • Harden the workforce: risk exposure is tremendous, as our culture, norms, and economy rely on automated information systems – this includes home, federal, and corporate entities
  • You can’t defend what you don’t know you have. Information is an asset, and should be treated as such.
  • Within five years, every business will be conducting asset inventory and valuation of its information as any other asset – some entities within the Federal Government, he explained, may not appreciate the value of their information and may not even realize they have it.
  • Do the right things, the right way, at the right time: Cyber hygiene is great, but has to be applied smartly – 85 percent of breaches, he explained, are due to improper patching of common vulnerabilities. The basics come first – stakeholders should update apps, OS, and apply other simple fixes. Care and due diligence is required.
  • Investment. The General introduced “Touhill’s Law,” which contends that one human years accounts for twenty five “computer” years – by this math, some machines in the federal government architecture are several thousand years old. Depreciation and recapitalization are key; from a strategic standpoint, neglecting this reality is a failure.
  • It’s all about the risk. In a contemporary sense, much of the risk is deferred to server management teams and IT, and decisions on that risk are not being made at the right levels.

The general indicated a desperate need for a cogent strategic cyber framework on which to operate and that these five lines of effort are a good foundation for such a framework.

Fiction’s Role in Challenging Assumptions

August Cole, a noted analyst and fiction author, began by recounting the impact that Tom Clancy’s 1986 thriller Red Storm Rising had on his life. As a fiction author, he went on the explain, his job is to think the unthinkable, devoting intellectual energy and professional attention to considering tomorrow’s conflict from a multitude of perspectives. Fiction, Cole explained, allows us to consider an adversaries perspective and confront our own biases to present a bigger truth.

Cole and his co-author Peter Signer’s novel Ghost Fleet addresses the rise of China – the book starts a conversation in an engaging way that captured the authors’ imagination. The writing process caused the authors to confront some uncomfortable truths. The American way of war, he said, is predicated on technical superiority that isn’t necessarily in line with our evolving reality. The reliance on tech creates a vulnerability, and through the lens of great power competition, we should be thinking about the difference between our assumptions about conflict and how conflict will actually be. One must challenge their assumptions, and resist the urge to fall in love with their own investments.

Information as a Commodity and Vulnerability

As a policy analyst and social scientist, Dr. Turner-Lee looks to understand behaviors that are overlaid with technology – she has focused on what we need to do to create equitable access to technology. Tech, she explained, is changing the nature of human behavior and increasing vulnerabilities. We must consider, she said, how we are contributing to the evolution of the tech ecosystem from the realm of consumption to an entity that effects the fabric of national security. What we understand as being “simple” actually isn’t, and what started as a privacy discussion has evolved into a security issue. When considering social media, Dr. Turner-Lee went on, it is interesting to see how 140 characters can become the catalyst for campaigns that threaten national security.

Dr. Turner-Lee  mentioned the concept of pushback from technology companies against government requests for information and policies that need to be engaged to address this. There is a role, she explained, for the military to identifies vulnerabilities, while companies are appointing chief privacy officers and innovation officers, while lastly, the research community needs people to understand how information has become a commodity. As researchers, she explained, she and her colleagues are trying to find vulnerability and understand the impact on our national economy by looking at the nature of human behavior prescribing the right policies to ensure threats are minimized.

Given the current security landscape for cyber, what do you see as the greatest cyber threats facing the U.S.?

Brig. Get Touhill explained that at the Department of Homeland Security, they binned threats into 6 groups:

  • Vandals – frequent and common
  • Burglars – financially motivated and prevalent 
  • Muggers – this includes hacks like SONY as well as cyber-bullies
  • Spies – can be either insiders or traditional political-military threat looking to gain a competitive edge by stealing intellectual property.
  • Sabatuers – pernicious, difficult to find, and could be, for example, an individual who is fired but retains access to a system.
  • Negligent Users – This group constitutes the greatest threat. This group includes the careless, negligent, and indifferent in our own ranks.

China has been evidently and aggressively pursuing AI, hypersonic, quantum computing, and other next-generation technology – what does this mean for our assumption about the American way of war over the next several decades?

August Cole explained that the U.S. must directly confront the assumption that we will always have the edge of technical superiority – this may very well remain true, he said, but we cannot count on it. From a PRC military point of view, they look to not only acquire capabilities but further their knowledge on how best to employ them. We must, he went on, work to connect information and technology that we would not instinctively put in the same basket by considering, for instance, the battlefield implications of a hack on a healthcare provider who serviced military personnel. Technology, he explained, will alter the relationship between power and people, and understanding this connection is complex and difficult. Fiction allows us to synthesize these realms in a way that may be difficult otherwise – and appreciate the operational implications.

How has social media impacted our ability to monitor and address national security threats?

Dr. Turner-Lee began by exploring the implication of emerging social media tools that do not curate data (think Snapchat), explaining that as encryption technology has become more sophisticated, it has further complicated the national security problem. Nicole referred to “permission-less innovation,” meaning that the tech community continues to innovate in ways that cannot be controlled and this innovation is sometimes disruptive. Social media, she went on, is not always designed with privacy in mind, and enacting privacy policies has been reactionary for many companies.

Turner-Lee addressed the general hesitation of users to hand over or allow the collection of their information – personal data, she said, is seen as just that – personal – and companies promote this quality in their tech. For instance, she alluded to the current lawsuit between Twitter and the federal government over the identities of disruptive Twitter accounts. The disconnect between privacy and security, she concluded, can sometimes constitute a weakness.

The moderator pointed out that while tech has developed, policy has lagged. Mr. Cole added that the “internet of things” provides a corollary to this. Further development of wearable or say-to-day tech that generates and collects data automatically has national security implications. He provided an example in the domain of land warfare, suggesting that operators could notionally create a digital map based on device feedback. The data and processing power to make these analytics will exist, he affirmed, but we haven’t considered it.

Dr. Turner-Lee further elaborated that machine-to-machine interactions, which are based on algorithms that predict what you will or will not do, sustain a threat to national security when those algorithms are incorrect or tampered with. For instance, autonomous vehicles could be hacked and directed in a way that makes them a vehicular bomb. Overcoming machine-to-machine bias is very difficult and constitutes a security risk proportional to our dependence on machine-to-machine tech. This is a space, she said, with many vulnerabilities, driving itself in ways we are unaware of.

Conclusion

The final day of NAFAC 2017 proved a fitting end to three days of intense discussion and consideration on the topic of a new era of great power competition. VADM Foggo’s address brought a much needed operational perspective to the delegates and attendees, relaying the seriousness and immediate applicability of the question at hand, particularly for those midshipmen who will be serving aboard operational vessels in just a few short months. Further, the Technology and Cyber-Competition panel provided much needed context for the changing nature of tomorrow’s conflicts, challenging many long-held assumptions about the way of war.

Our representatives were impressed with the diligence, research, and creative thought participants brought to the round table panels. Readers can look for select publications from the Round Tables next week, when CIMSEC will share outstanding research essays from delegates. CIMSEC is extremely grateful to the United States Naval Academy, MIDN Charlotte Asdal and her NAFAC staff, and senior advisors and moderators for allowing us to participate in this year’s conference and share the great value of this discussion with our readership.

Until next year!

Sally DeBoer is the President of CIMSEC for 2016-2017. She can be reached at president@cimsec.org.

Featured Image: A CH-53E Super Stallion helicopter flies ahead of the amphibious assault ship USS Peleliu (LHA-5) after conducting helocast operations at Pyramid Rock Beach, Marine Corps Base Hawaii. The helocast was part of a final amphibious assault during Rim of the Pacific (RIMPAC) Exercise 2014. (U.S. Marine Corps photo by Cpl. Matthew Callahan/Released)