Category Archives: Future Tech

What is coming down the pipe in naval and maritime technology?

@Channel – A Dialogue Concerning Kill Webs

By The Naval Constellation

The Naval Constellation is an online, unofficial forum resident on the team communication application Slack. The group includes Navy, Marine Corps, and Coast Guard officers, enlisted, and civilians, and serves as a place to break down organizational silos and facilitate conversation on topics ranging from innovation to strategy, emerging technology, and more. While it has existed and grown for six years, we are now partnering with CIMSEC on an enduring public series, “@Channel,” to be published as the conversation warrants it. Contact information to join future conversations like this can be found at the bottom of the article.

The below is a discussion from the Constellation between 11 participants identified by first name. It has been lightly edited for clarity. All content is submitted with the participants’ consent.

Shane: @channel, Kyle and I are discussing how the Joint Force ought to think about warfare as disabling or breaking down kill webs rather than kill chains; that these webs should be thought of almost as complex adaptive systems (CASs), not multiple reducible chains of effects. What’s the best mental model for attacking or defending against kill webs in war?

Jason: Kill chains are single path, unidirectional, and fairly fragile. Kill webs are multipath, multi-directional, and resilient. To take out a web you have to affect the node and surrounding nodes… That means you need to affect proximal relationships, not just specific targets. Counterintuitively, precision fires don’t work on kill webs. You need an area of effect and less precise methods.

Throw a rock through the spider web, don’t clip individual strands.

 DARPA’s Adapting Cross-Domain Kill-Webs (ACK) Program
Figure 1 – Depiction of DARPA’s Adapting Cross-Domain Kill-Webs (ACK) Program. 

Chris: I think of kill chains as being the decision process. We are hindered by the chain of command and decision process that is fragile effect and does have a single path. Kill webs are what Jason described above, but they are aspirational right now. I’d argue that most of our systems are not part of kill webs and are still really fragile. Are we that adaptive? Do our systems actually work that way outside of a very structured exercise?

And if they are, will our Command and Control (C2) process actually let us operate like that?

Jason: Kill webs take a lot of energy to maintain. They are resilient, but if disrupted are more difficult to restore. I recommend a hybrid approach.

Kyle: Would you describe China’s A2AD networks as kill webs? Is there any difference?

Jason: Certainly. Highly resilient, taking out a single node won’t affect the web, but a significant enough, broad disruption, and the system would be hard to reconstitute.1

Figure 2 – An interpretation of the kill web-centric Mosaic Warfare concept for a Chinese audience, published in the April 2021 edition of the PLA journal Aero Weaponry.

Chris: Jason, do you design a kill web so that it fails to a chain? Or do you choose what systems are part of a web and which are a chain? 

Jason: It needs to fail to chains. That’s essentially what graceful degradation is… The reduction of nodal complexity until the issue is solved. Isolate the system, identify the problem, and reconstitute the system. For example, we should actually practice moving from battlegroup, coordinated operations to a unit, disconnected independent ops, and back again. The back again shouldn’t be “the network is back.” That’s unrealistic.

Instead, its independent ops, becoming two ships talking, becoming a group of ships coordinating, becomes battlegroup operations.

We actually do this in damage control. Think about engineering redundancy. We make the system more complicated than it has to be by building redundant systems. Two of the same system with a series of crossovers and disconnects. If something leaks in the system, you can isolate a portion without fully shutting down the system. You may have some penalties to efficiency… Can only operate with a 50% flow rate for example… But the system keeps working and furthermore… The degradation makes the system simpler to troubleshoot and operate.

Shifting back to the more complex operations should be deliberate – just because you fixed one thing, doesn’t mean there aren’t secondary issues you will find when you bring it back up to a higher level of complexity… Open the isolation valves too fast and you end up with 100% flow against potential unknown issues you haven’t fixed yet.

Shane: Do we do enough to train the Information Warfare Community (IWC) in how to understand and potentially disrupt, degrade, deny or destroy complex systems like kill webs?

Ryan: We absolutely do not do enough to train the IWC in this.

That’s the issue with webs and warfare at the liminal edge. We believe that shooting a few multimillion-dollar surface-to-air missiles (SAM) at an ISR (Intelligence, Surveillance and Reconnaissance) drone is Distributed Maritime Operations (DMO), or that mixing up a CVW (Carrier Air Wing) composition enables more resiliency. Neither are webs – they are chains – and we think of warfare in a chain mentality.

The Navy fundamentally lacks the ability to see outside the cave and assess how cyber or info ops might result in degraded C2 from a geographic node in the web. Or space-based effects. Nor would JFMCCs (Joint Force Maritime Component Commanders) know how to employ that kind of stuff at the Fleet or AOR (Area of Operations) level.

Kurt: I’d argue no one in the USG (United States Government) can assess cyber ops, and no one in the US military (except maybe the bubbas at CYBERCOM) trust that cyber can reliably deliver the right effect at the right time for cyber to be selected before a traditional kinetic option is selected.

Ryan: I think breaking up kill webs requires a truly joint effort. That’s not something we can expect our CSGs (Carrier Strike Groups) or single DDGs (Guided Missile Destroyers) to determine and execute alone.2

China, on the other hand, does this really well with its joint structure and national technical means. We would do well to think on how that can be broken down, and how a similar construct “with American characteristics” might be developed to serve attacking CASs.3

Kyle: So as much as I understand the concepts we’re applying here, what I struggle with is assigning the WHAT to invest in and WHO needs WHAT training.

Is this Fleet staffs? Individual ships or units? Everyone? What are we buying that would turn our chains into webs, and is that even feasible with our current acquisition process? Isn’t a “Cloud of Fire Control Data” sort of what you want?4

Kurt: I think the Navy can’t do it alone.

Alex: Kurt, because the Navy doesn’t have the assets to populate a web, i.e. “this is inherently ‘Joint’”? Or because culturally the Navy is resistant to implementing the organizational changes to exploit a web should it exist?

Ryan: Yes to both.

Kurt: Maybe I don’t know what you all mean by “web.” I’m assuming you mean some ultra-resilient system (like a mesh network) exists that can absorb significant damage before a worrisome degradation of capability occurs. And if that damage isn’t adequately and appropriately applied, the system would shrug off the attack with very little actual impact to the overall system.

Kurt: I said the Navy can’t do it alone because the Navy almost assuredly doesn’t have the fielded capabilities to unilaterally destroy what I (perhaps incorrectly) am assuming is a multi-domain, multi-modal “kill web.” Ignoring everything else, the way the DoD (Department of Defense) allocates (or doesn’t, as it happens) cyber forces would preclude Navy cyber from having a major role in fights occurring outside certain geographic boundaries.

Alex: Ah, the Navy can’t attack/dismantle an adversary kill web alone. I think there’s a parallel discussion about implementing and using blue force kill webs.

Louis: I like the term “ecosystem”, which brings to mind perhaps “full-spectrum ecological attack” or something. Military eco-collapse.

Matt: I think that the idea of webs will require different C2 and ways to think about sensor/weapon/target pairings. We can’t allocate a set of assets for a single or small set of targets unless we want a very narrow web.

I think that chains can be a way to test and think about paths through the web but they’ll always need to have follow-up analysis as a web. In aerospace engineering (AE) we used to have a joke that you know you’re an AE if you’ve represented a wing as a plane, the plane as a line, and the line as a point (to simplify the calculation). The same holds, you can test paths through the web exquisitely using analysis and might have to run exercises as exquisitely planned chains or small webs, but we should war game and do larger [Modelling and Simulation] as webs. I worry about webs though, if we need the always-on comms to make them work. That means they’re fragile and our already targeted comms infrastructure will be an easy point of failure.

Mike: In my mind, having multiple comms channels is part of what would make a web a ‘web’.

Matt: I agree, but those might be very low bandwidth or short duration or one way rather than bi-directional. We don’t just turn on “Uber comm path 1” and know that will link everyone with the same protocols.

Mike: It worked in World War Two, some of the naval battles in the Slot [during the Guadalcanal campaign] came down to real-time unencrypted bridge-to-bridge radio to share info across the Fleet rapidly.

Matt: Absolutely think of them as complex adaptive systems, but if you do then you have to accept that any given path through the web might not give you the same performance twice, or that the assets you thought you’d have for a given mission might be taken over by another use of the web. This is where the joint piece comes in, the bigger the web the more possible elements in any given role/roles.

Practicing as a web will be hard though. We need MMO (massively multiplayer online) wargaming that is always on. I should be able to log in with the rest of my DDG or on my own, and should be able to find other players online. We would also need some way to figure out classification so we could play red as accurately as possible without giving up methods and sources. We should have stats that we can download and leader boards and tutorial sessions that are always available. Have practice where people can try out ideas free of criticism and then have more serious competitions where people are graded and that data-rich environment is plumbed to find out how to do better.

This is going to be expensive, in terms of dollars and resources, but would be well worth it. We could/should have layers of detail, so someone can play a simpler game against

Others in one on one or play in very detailed complex many on many battles.

Nick: Agreed, and you can’t benefit from AI-enabled reinforcement learning (think AlphaGo)5 to make tactical and operational recommendations without building a robust modeling and simulation environment first.

So, this virtual environment has to essentially mirror the real-world COP (Common Operational Picture), or at least have exposed APIs (Application Programming Interfaces) that are formatted similarly, so you can train a model in a simulated environment and immediately deploy that same model into an operational context.

Matt: Use peoples’ play to train the AI as you go?

Nick: You could do it either way. You have a rewards/punishments system, where let’s say people play China, and fight to China’s tactics and capabilities. A model can then iterate through millions of blue force responses to find the one with the highest probability of success and make those as recommendations. Another method is you can program China’s tactics in as broad rules, but have it be an AI instead of people, so the two models learn from each other. The reason for machine learning is that there are so many exponentially complex scenarios in the responses, you can’t necessarily try all of them every time, so you train a model that can estimate the best response without needing to try every scenario. That was the significance of the AlphaGo achievement in beating the world champion at Go.6

Once a model is trained though, you can deploy it to look at real-world situations and make recommendations for blue force actions based on its training in the simulated environment. 

Google's AlphaGo beats Go master
Figure 3 – Google’s AlphaGo beats Go master Lee Se-dol in 2016.

Alex: I think this is the end state that LVC (Live, Virtual, Constructive) training should aim for. Imagine if off each coast there was a persistent virtual battlespace that you could “log” into, either with a ship, aircraft, or submarine (not sure how LVC is thought to work for subs, if at all).

Nick: Also, having no experience or interaction with JADC2 (Joint All-Domain Command and Control), would someone mind explaining how that initiative relates to the kill web concept?[7] I was under the impression that the JADC2 initiative was trying to help solve that problem.

Shane: JADC2 should, in theory, give you the technical ability to link together currently non-compatible networks, sensors, and weapons systems. But from what I can gather JADC2 is pretty much only about that technical ability. There’s no attempt to get people to conceptualize attacking webs as opposed to just attacking a series of chains. That’s not really a technical thing, it’s more a doctrine, training, and TTPs (Tactics, Techniques, and Procedures) thing.

That half seems to be sorely lacking.

If you would like to join the conversation at the Naval Constellation, please email: navalconstellation@gmail.com

Endnotes

1. “Military and Security Developments Involving the People’s Republic of China 2020, Annual Report to Congress.” Office of the Secretary of Defense. https://media.defense.gov/2020/Sep/01/2002488689/-1/-1/1/2020-DOD-CHINA-MILITARY-POWER-REPORT-FINAL.PDF 

2. Captain Carmen Degeorge, U.S. Coast Guard, Commander Nathaniel Schick, U.S. Navy, and Lieutenant Colonel Jimmy Wilson And Majors Chad Buckel And Brian Jaquith, U.S. Marine Corps. “Naval Integration Requires A New Mind-Set”. 2021. U.S. Naval Institute. https://www.usni.org/magazines/proceedings/2021/october/naval-integration-requires-new-mind-set-0.

3.” Military and Security Developments Involving the People’s Republic of China 2020, Annual Report to Congress.” Office of the Secretary of Defense. https://media.defense.gov/2020/Sep/01/2002488689/-1/-1/1/2020-DOD-CHINA-MILITARY-POWER-REPORT-FINAL.PDF

4. Shelbourne, Mallory. 2020. “Navy’s ‘Project Overmatch’ Structure Aims To Accelerate Creating Naval Battle Network – USNI News”. USNI News. https://news.usni.org/2020/10/29/navys-project-overmatch-structure-aims-to-accelerate-creating-naval-battle-network.

5. “Google AI Defeats Human Go Champion”. 2017. BBC News. https://www.bbc.com/news/technology-40042581

6. Ibid.

7. “Joint All-Domain Command and Control (JADC2)”. Congressional Research Service. July 1, 2021. https://crsreports.congress.gov/product/pdf/IF/IF11493 

Featured Image: PHILIPPINE SEA (Jan. 22, 2022) An F-35C Lightning II, assigned to the “Black Knights” of Marine Fighter Attack Squadron (VMFA) 314, and an F/A-18E Super Hornet, assigned to the “Tophatters” of Strike Fighter Squadron (VFA) 14, fly over the Philippine Sea. (U.S. Navy photo by Mass Communication Specialist 2nd Class Haydn N. Smith)

Solving Communications Gaps in the Arctic with Balloons

Emerging Technologies Topic Week

By Walker D. Mills

Defined by their remoteness and extreme climate, the polar regions present an array of tactical and operational challenges to US forces as sea icing, repeated thawing and freezing cycles, permafrost, and frequent storms can complicate otherwise simple operations. However, often overlooked are the challenges to communications, which are critical to Navy and Coast Guard vessels operating in the polar regions. Perhaps once possible to ignore, these challenges are becoming more pressing as the Marines, Navy and Coast Guard increase their operations at higher latitudes and place more emphasis on the arctic and more arguments are made for sending Marines and soldiers to the arctic for training and presence. In order for US naval forces to compete in the polar regions and fight if needed, the military needs to invest in persistent and reliable communications capabilities. One solution is high-altitude balloons.

Arctic experts have long understood the difficulty of communicating in the arctic, noting that “While communicating today might be easier than it was for Commodore Perry 111 years ago, it’s not that much better.” Arctic communications are especially difficult for a number of reasons. Satellite-based options are limited or nonexistent because the vast majority of satellites maintain equatorial orbits, which means the polar region’s extreme latitudes fall outside satellite range. Though a few satellites follow non-equatorial orbits, there are simply not enough to provide continuous connectivity at the bandwidth needed for modern operations.    

There are also natural barriers to communications in the arctic. The ionosphere covering the polar regions has a high-level of electron precipitation, which is the same characteristic that produces the Northern Lights. However, this interferes with and degrades the high-frequency (HF) radios that the military normally uses for long-range communications in the absence of satellites. Additionally, the extreme climate and cold weather in the arctic presents another challenge to communications infrastructure such as antennas and ground stations. Arctic conditions make it harder to access and maintain ground arrays, batteries expire faster in colder temperatures, and equipment can easily be buried by falling snow and lost.

Finally, the near complete lack of civilian infrastructure complicates arctic communications. The polar regions comprise about eight percent of the earth’s surface, accounting for over 10 million square miles of land on which only about 4 million people live. Most are clustered in small communities, resulting in sparse commercial communications infrastructure across the region. However, persistent and reliable communications are absolutely essential for the successful employment of maritime forces in the arctic.

One solution is for naval forces to use high-altitude balloons that provide temporary communications capabilities. Balloons are far cheaper than satellites and much more responsive. They can be quickly deployed where coverage is needed and fitted with communications payloads specific to the mission. They are also low-cost and effective enough that they can be used not only in operations but also in training at austere locations.

Balloons offer a degree of flexibility critical for operations in remote environments like the arctic. Differently sized balloons can be fitted with specific capacities for mission-tailored      requirements and priorities. The size of payload, loiter time, and capabilities are primarily a function of balloon size. Large balloons and stratospheric airships can stay aloft for months, while smaller “zero pressure” balloons might last hours or a few days. Given their diverse uses and capabilities, high-altitude balloons have already been used to provide communications in hard-to-access environments by organizations such as NASA, the US Air Force, and Google. For example, researchers at the Southwest Research Institute and NASA have supported atmospheric balloon flights over the poles that lasted up to a month – more than enough time to meet operational needs.

Though there are various ways to launch and lift high-altitude balloons, recent advances show that hydrogen gas is the best candidate. Researchers at the Massachusetts Institute of Technology’s Lincoln Laboratory recently discovered a new way to generate hydrogen with aluminum and water. With this new ‘MIT process,’ researchers have already demonstrated the ability to fill atmospheric balloons with hydrogen in just minutes – a fraction of the time it takes using other methods. The MIT process promises to be not just faster, but also cheaper and safer than other methods of hydrogen generation. It also means that units can generate hydrogen at the point of use – obviating the need to store or transport the volatile gas or other compressed gasses. The researchers have demonstrated effective hydrogen generation with scrap and recycled aluminum and with non-purified water including coffee, urine, and seawater.

The deployment of balloons utilizing this new hydrogen generation process would be extremely simple. A balloon system could conceivably be developed where the system is simply dropped into the ocean from a ship, airplane, or helicopter with a mechanism that causes it to self-deploy when it comes into contact with seawater. This single system – one that does not require stores of compressed gas or an electrolyzer to generate hydrogen – would also take up far less space than other balloons and the associated equipment required to get them aloft. Balloons full of hydrogen gas could also act as giant batteries as the hydrogen can also be used to power communications equipment or sensors.

So far, the US Coast Guard has been leading the way with arctic communications. The service has highlighted improving communications in the arctic as part of their first line of effort in the 2019 Arctic Strategic Outlook and as a key initiative in their 2015 Arctic Strategy Implementation Plan. Along with the Marine Corps, the service has also been experimenting with Lockheed’s Mobile User Objective System (MUOS), a next-generation satellite communication constellation intended to replace the constellation that the Pentagon relies on today. But even the systems’ creators are clear that in extreme polar regions, MOUS may only offer eight hours of coverage per day. Constellations of small and cheap cube satellites might also be a partial fix for the communications dead zones, but hundreds or thousands would be required to cover a region as large as the arctic. The Army and the Air Force are also interested and intend to invest $50 million each toward arctic communications. The Army has previously experimented with using high-altitude balloons to support multi-domain operations and might be a key partner in developing an arctic communications capability, and the Air Force is looking at using commercial broadband satellites to meet service and joint communications needs in the arctic.

Communications issues are a consequence of the polar operating environment and an obstacle for the military services operating there. But just because the environment is difficult does not mean that US forces have to go without persistent and reliable communications. High-altitude balloons could plug the communications gap not just for maritime forces but also for the Army and special operations units operating in these extreme latitudes. Developing and deploying high-altitude communications balloons, lifted by hydrogen gas generated by the MIT process, offers near-term capability for US forces operating in polar regions with underdeveloped communications infrastructure.

Walker D. Mills is a U.S. Marine Corps officer serving as an exchange officer in Cartagena, Colombia, the 2021 Military Fellow with Young Professionals in Foreign Policy, a non-resident WSD-Handa Fellow at Pacific Forum, and a Non-Resident Fellow with the Brute Krulak Center for Innovation and Future War. 

 The views expressed are his alone and do not represent the United States government, the Colombian government, the United States military, or the United States Marine Corps.

Feature Image: A NASA long duration balloon is prepared for launch on Antarctica’s Ross Ice Shelf near McMurdo Station in 2004. (NASA photo)

Back to the Future: Routine Experimentation with Prototypes

By John Hanley

Broad agreement exists that the Department of Defense’s, and thus the Navy’s, acquisition system is bound like Gulliver by Lilliputian processes, resulting in an inability to adapt. This inflexibility threatens to increase the risks to operating forces as they face a growing number of adaptive adversaries, ranging from China and Russia, North Korea and Iran, to the Islamic State, Al Qaeda, and others.1 Well-intended legislation and increasing reliance upon computer modeling to inform the selection of future platforms and systems are major contributors to the current situation. Greater reliance on experimenting with prototypes at sea could provide a large improvement.2

Introduction

Congress passed the Goldwater-Nichols legislation in 1986 to promote joint operations and provide more civilian control by creating an Undersecretary of Defense for Acquisition and reducing the role of the Chief of Naval Operations (CNO) and other Service Chiefs in acquisition decisions. This legislation added joint duty requirements to the already-packed career paths for line officers, even as it added new educational and experience requirements for acquisition professionals.3 The Defense Acquisition Workforce Improvement Act in 1990 further created mandatory requirements for a more professional acquisition force. Line and acquisition professionals “had completely different chains of command and, consequently, were situated in different performance evaluation and promotion structures.”4 Having little appreciation for an increasingly complex acquisition process, line officers had trouble articulating their needs to an acquisition workforce that was itself increasingly isolated from the operational environment.

Though the Packard Commission that informed Goldwater-Nichols legislation called for more prototyping to gain experience with new platforms and systems before making major investments, the Department of Defense (DoD) and the Navy increasingly turned to computer-based combat and campaign simulations as a cheaper and more flexible way to inform acquisition decisions.5 This had the effects of further separating the experience of fleet operators from Navy acquisition, and removed an important source of data for ensuring computer-based simulations were accurate.6

In their book Switch: How to Change Things When Change Is Hard, Chip and Dan Heath highlight the value of bright spots; examples of projects that work well to make a case for needed change.7 This article suggests some bright spots, and continuing challenges, in acquiring capabilities the Navy needs to adapt to rapidly emerging security opportunities and challenges.

A Virtuous Prototype Cycle

As a junior officer, I was privileged to be assigned to the USS Guitarro (SSN 665) in San Diego in 1973. The Guitarro played a major role in developing tactics for prototype combat systems deployed to the Pacific submarine fleet, in particular the new Submarine Towed Array Sensor System (STASS) along with its BQR-20 series digital sonar displays. In the mid-1970s, Guitarro also installed the first digital submarine combat system (BQQ-5 sonar and Mk-117 fire control system) and participated in the development of submarine-launched Harpoon and Tomahawk cruise missiles.8

Following my service on the Guitarro, I became an operations analyst supporting several programs. The Naval Electronics Systems Command (PME-108) was sponsoring the Coordination in Direct Support (CIDS) program developing technology and techniques for communicating with submarines to operate in direct support of carrier battle groups, and the Over-the-Horizon Targeting (OTH-T) program was developing technology and techniques for targeting ships with Harpoon and Tomahawk missiles at ranges beyond the line of sight. These programs integrated their efforts with the Tactical Development and Evaluation Program sponsored by the OP-953 on the Navy staff. My next job involved working with the Chief of Naval Operations Strategic Studies Group where I witnessed the speed with which a small team of intelligence specialists, engineers using the latest technology, and Navy leadership could deliver cutting edge capabilities to the fleet very rapidly.

My experience in these programs taught the value of providing prototypes to the fleet early. Working with prototypes allowed us to develop tactics and techniques that the system developers never considered, and highlighted operational limitations and misperceptions of those developing the systems. Fleet analysis data contributed directly into operations analysis, computer simulations, and war games. The experience also demonstrated the limitations of tightly-coupled integrated systems as opposed to systems with modules that could adapt and change easily. As my career continued, I observed revisions to the DoD acquisition system that diminished the role of prototyping and extended times to demonstrate new capabilities to the fleet, usually exceeding cost estimates and requiring modifications as operators discovered what they could, and could not do.

Sonar Towed Arrays and Digital Displays

STASS was a long, linear array of hydrophones deployed behind the submarine on a cable. This kept the array’s sensors away from the towing submarine’s radiated noise, significantly improving the signal-to-noise ratio needed to detect faint signals. It could detect contacts behind the submarine that were screened from the hull-mounted sensors in the bow. Its length provided a larger aperture to detect lower frequencies at longer ranges. This sonar system made submarines more effective.

However, the new system had its challenges. Initially, a sonar operator could monitor only one of the array’s 16 beams at a time, by listening and/or monitoring the BQR-20’s digital display.9 The display would provide a waterfall of illumination if a signal was detected on that beam. Low frequencies required several minutes of integration time to process signals from the ambient noise. Thus it could take more than an hour to search though all of the beams. The submarine also had to travel at slow speed to prevent the noise from water flowing over the hydrophones from masking signals from other vessels. Even with the slower speeds, the longer detection ranges provided the new sonar system significantly increased the search rate in deep ocean areas.

The principal tactic for estimating a targets range using passive sonar was developed by Lieutenant John Ekelund in 1956.10 Ekelund’s approach significantly improved upon target motion analysis techniques that involved only plotting bearings to a target over time. His method involved calculating the rate of change of the relative bearing of the contact as the host submarine maneuvered on two courses. The time to do the calculation affected the accuracy of the estimate. Slow maneuvering with the STASS was frustrating.

Our sister ship, USS Drum (SSN 677), was the first ship in the Pacific fleet to receive the new STASS. To reduce the time maneuver to a new course, Drum tried a tactic of speeding up through the turn, then slowing to reduce the flow noise. Unfortunately, the sub slowed faster than the array, resulting in the array’s cable wrapping around the horizontal stabilizer on the sub.

Guitarro then had its opportunity to develop tactics for employing the STASS. Our efforts focused on three areas: maneuvering the ship, sonar search procedures, and plotting contacts. I had the lead on plotting. Current practice used a “compressed” time-bearing plot along with “strip” plots. The time bearing plot provided bearing rates needed to compute Ekelund ranges. Speed strips marked with various speeds were manually aligned across bearings to a contact’s for estimating its range, course, and speed. Given the time required to generate contact bearings with the STASS, we developed an “expanded” time-bearing plot.

A big innovation occurred when Dr. Ted Molligen (a ship rider from Analysis and Technology, Inc.) noted that the array’s beams were cones and the sea bottom was a plane. The intersection of a cone and a plane is a hyperbola. Therefore, when the contact’s signal bounced off the bottom, which occurred frequently in the Pacific, we were dealing with lines of bearing along a hyperbola. Within a day, we manufactured templates of hyperbolas out of plexiglass for strip plotting using bottom bounce signals. Without measuring bearing rates, the intersection of two hyperbolas provided a contact’s estimated position quickly after our maneuver.

Another unanticipated effect was the ability to observe the contact’s Doppler signal shift in near-real time. Thus we could observe not only the contact’s bearing change during maneuvers, but also whether it was opening or closing us. Reconstructed plots of our target clearing its baffles (simulating “crazy Ivans”) during exercises showed our depiction of the target’s motion to be very accurate.

The next breakthrough occurred when we received the BQR-22 a couple of months later. The BQR-22 could process two beams simultaneously. We discovered that, with some regularity, we would receive both direct path and bottom bounce signals from the contact. The different signals would arrive on different beams because of their paths through the water. The intersection of a direct path line of bearing with a bottom bounce hyperbola produced an estimate of the target’s range without having to maneuver. Exercise reconstruction showed our estimates to be within a few percent of the target’s range.

Under the leadership of our superb Executive Officer, Lieutenant Commander Dan Bacon, we documented the tactics we had developed for maneuvering the sub, conducting the sonar searches, and plotting in a tactical memo and submitted it to Commander, Submarine Forces Pacific. He replaced our cover with his, and distributed it as a Tactical Memorandum to the fleet.

Within a year, we received the BQR-23 that processed four beams simultaneously. We then deployed with this sonar system, and other prototype sensors and processors, for operations in the western Pacific. Deploying with prototype equipment was routine in the submarine force.

During World War II U.S. submarines could attack only surfaced enemy submarines.11 In 1949, the submarine force created Submarine Development Group 2 and tasked it with antisubmarine warfare (ASW) as part of an effort to preserve the submarine force structure during demobilization. Within twenty years, the U.S. submarine force went from having essentially no ASW capability to becoming the dominant ASW force in the world. Following their motto of “Science, Technology, Tactics”, the Group employed a program of designing, conducting, and reconstructing exercises to develop tactics for prototype systems, and reconstructing submarine performance during operations using extensive data collected during patrols.12 Using the Group’s methodology, we were able to exploit the STASS and the BQR-20 series digital displays and document proven tactics for the fleet that significantly improved the U.S. advantage over Soviet submarine forces within an 18 month period.

In contrast, installing the first submarine digital combat system in the shipyard demonstrated challenges that occur when developing systems without prototyping. The system had no feature for entering bearings directly from the periscope. Apparently, the engineers thought that all approach and attack would use sonar only. We also were told that adding hyperbolic ranging to the software in the central computer complex, which serviced the sonar and fire control system, would take at least a decade. Stand-alone computers came to support search planning and target motion analysis since the integrated system was incapable of rapid change.

Coordination in Direct Support

Admiral Rickover had pushed through the development of the Los Angeles-class submarines by arguing that their higher speed would allow them to screen a carrier battle group.13 The major problems were communicating with submarines to keep them on station as the battle group maneuvered, to direct them to prosecute contacts detected by other battle group platforms, and to prevent other battle group ASW forces from attacking them. Also, based on the way that the U.S. targeted German U-boat radio transmissions during World War II, our silent service routinely disabled its radio transmitters while on patrol to prevent detection. Standard submarine communications involved the submarine getting an antenna to the surface for broadcasts that were repeated for eight hours on a two-hour cycle. The submarine restricted its speed to a few knots when at communications depth, both to prevent anyone seeing the wake of the periscope and to keep its floating wire antenna on the surface. Thus the submarine could best communicate at scheduled intervals, and could not transit at battle group speeds while communicating.

Rear Admiral Guy H.B. Shaffer took the methods he had used commanding Submarine Development Group 2 with him to the Naval Electronic Systems Commands program office PME-108.14 He established the Coordination in Direct Support (CIDS) program to develop means to communicate with submarines providing direct support to carrier battle groups.

The Submarine Analysis Notebook provided the methodology and data required for assessing submarine ASW performance. The first step in the CIDS program was to develop a Fleet Exercise Analysis Guide that provided a conceptual battle group ASW process and performance metrics.15 PME-108 then worked with the Tactical Development and Evaluation (TAC D&E) Program and the numbered fleets to schedule participation in their exercises, and invited the Navy laboratories to provide prototype communications systems for submarine communications. The prototypes included everything in the electromagnetic spectrum from blue-green lasers to Extremely Low Frequency (ELF) radios and a variety of acoustic communication methods.16 For each exercise a team would work with relevant commands to design the exercise and develop data collection plans. The team would then ride key ships in the exercise providing advice on accomplishing exercise training and tactical development objectives, and overseeing the data collection. Following the exercise, the team would reconstruct and analyze the event in full, including documenting the timelines for each ASW interaction and every ASW communication over every communications path.

This approach allowed prototypes to be evaluated not just as stand-alone systems, but demonstrated their value both in enhancing communications as part of a suite of systems operating simultaneously and in accomplishing the mission of protecting the carrier from submarines attacking with torpedoes and cruise missiles.

Occasionally a laboratory would offer a prototype that was operationally unsuitable. One such system was a shaped buoy weighing several thousand pounds to be towed behind a submarine at depth and speed to push an antenna to the surface. Had the buoy hit a surface vessel, or submarine at shallower depth, it would have had the impact of a torpedo without the explosion.

Documenting every step of the communications path demonstrated the delays created by communications controlled by the submarine operating authority ashore. This led the submarine force to provide Submarine Element Coordinators (SEC) at sea with the battle group. The exercises explored many operational schemes with these SECs adjusting submarine broadcast schedules and using ELF or acoustic “bell-ringers” to call the submarine to communications depth for higher data rate communications.

After 10 fleet exercises conducted over a three-year period involving all the numbered fleets, the CIDS program demonstrated that the tactical concept for using submarines as an outer screen moving with the carrier battle group was infeasible. This led to alternative schemes for employing submarines supporting task groups. The communications data proved valuable and was incorporated in the Navy’s Warfare Environment Simulator which allowed teams playing task group platforms on different terminals to receive information with realistic time delays.17 Over time, this became the Navy Simulation System, but lost its original purpose of focusing on command and control issues using fleet data.

Over-the-Horizon Targeting

Shortly after the command and control fleet exercises, the Navy began deploying Harpoon and was getting ready to deploy Tomahawk missiles to the fleet. So RADM Shaffer established an Over-the-Horizon Targeting (OTH-T) program within PME-108. The approach followed the CIDS program; developing a fleet exercise analysis guide, designing exercises to incorporate prototype systems and tactics, collecting data, and conducting analyses. The Mediterranean, with its high shipping density and many islands, provided the most challenging environment for OTH-T.

The exercises were again successful in demonstrating that the technology and tactics were insufficient to support the proposed concepts for anti-ship Tomahawk use. This and the abundance of targets ashore were major factors in emphasizing land attack versus anti-ship versions of the Tomahawk missile.

Advanced Technology Panel

By the late 1970s, Navy efforts to develop special intelligence sources provided deep penetration of Soviet Navy thinking and practices.18 The CNO repurposed the Navy’s Advanced Technology Panel (ATP), created in the 1970s, to become the main customer for this highly restricted intelligence.19 The ATP was a small group of the senior admirals on his staff, his top ‘thinkers’, who were cleared primarily to review special programs, but did a lot more.20 Working closely with the Navy laboratories, the leadership could deliver counters to what the Soviets were deploying within months to a year or two of having firm intelligence on their systems.

CNO Admiral Tom Hayward, on the advice of then Under Secretary of the Navy Robert Murray, formed a Strategic Studies Group of six promising Navy officers selected personally by him and two Marines at the Naval War College in 1981. Murray characterized the SSG as changing captains of ships into captains of war, employing terms that Winston Churchill used when he said that he needed more of those in World War I.

That fall, the ATP led by Vice CNO Admiral Bill Small was looking for ways to game using new, sensitive intelligence. In January 1982, the SSG was asked to develop concepts employing the new intelligence. The SSG held an extensive war game in April 1982. Admiral Small brought the ATP to Newport for two days at the conclusion of the game to review the results. The concepts used in the game became the foundations for the 1980s Maritime Strategy and rapidly changing war plans. The ATP was able to focus special programs on providing capabilities tailored to executing the new war plans.21

Two Different Paths: Nuclear Submarines and Distributed Surface Combat Power

Prototyping should not be restricted only to the payloads on vessels. In 1951, then Captain Hyman G. Rickover received authorization to build nuclear powered submarines. USS Nautilus (SSN 571) was commissioned in 1954 with a pressurized water reactor. The Navy then commissioned:

  • The USS Seawolf (SSN 575) with a liquid metal cooled reactor in 1957. This design presented too many risks and was quickly replaced.
  • The USS Triton (SSRN 586) in 1959, a large radar picket submarine with two reactors.
  • The USS Tullibee (SSN 597) in 1960, a very small, quiet submarine with a small reactor.
  • The USS Jack (SSN 605) in 1967 with direct drive and counter-rotating shafts and propellers.

These submarines, along with the small classes of SSNs built between the prototypes, explored the design space, adapted design features, and informed the building the following classes of nuclear submarines.22 The large capacity of the USS Hallibut (SSGN 587), designed to shoot Regulus nuclear cruise missiles, allowed it to adapt to different missions over its service life.

In 1996, the CNO Strategic Studies Group briefed its concepts for dispersed and distributed surface power to the CNO.23 The Group had in mind fast, stealthy ships of several hundred tons capable of mounting modular payloads for different missions. They anticipated that the Navy would explore the design space with prototypes, as it did with nuclear submarines. Instead, DoD acquisition processes led to the Littoral Combatant Ship. Rather than using a range of small and large prototypes using differing propulsion concepts, the Navy ended up with two much larger ship classes that have had many early difficulties.

Conclusion

The DoD acquisition system has come to believe that we must precisely predict the threat decades into the future, optimize designs by spending many million dollars on computer analysis, and then commit billions of dollars for procurement, without any of the experience and operator feedback provided by prototypes. This developmental approach incurs major cost, schedule, and performance risks because the future remains stubbornly uncertain – just as it always has been.

A better alternative is to prototype operational systems and platforms rapidly, providing agility to adapt to emerging threats and take advantage of emerging technology. Programming, budgeting, and contracting processes present major hurdles. Though routine acquisition procedures do not support such agility, Other Transaction Authority and similar processes authorized by Congress should be employed to their maximum extent. However, to do so effectively will require reinvigorating experimenting with prototypes in fleet exercises in ways similar to Submarine Development Group 2, the CIDS and OTH-T programs, and early nuclear submarine force development.

Captain John T. Hanley, Jr., USNR (Ret.) began his career in nuclear submarines in 1972. He served with the CNO Strategic Studies Group for 17 years as an analyst and Program/Deputy Director. From there in 1998 he went on to serve as Special Assistant to Commander-in-Chief U.S. Forces Pacific, at the Institute for Defense Analyses, and in several senior positions in the Office of the Secretary of Defense working on force transformation, acquisition concepts, and strategy. He received A.B. and M.S. degrees in Engineering Science from Dartmouth College and his Ph.D. in Operations Research and Management Sciences from Yale. He wishes that his Surface Warfare Officer son was benefiting from concepts proposed for naval warfare innovation decades ago. The opinions expressed here are the author’s own, and do not reflect the positions of the Department of Defense, the US Navy, or his institution.

Endnotes

  1. For example see Barber, Arthur H. “For War Winning Innovation, Fix the Process.” Naval Institute Proceedings, October 2016 and National Academy of Sciences-Engineering-Medicine. “The Role of Experimentation Campaigns in the Air Force Innovation Lifecycle.” Washington DC: National Academies Press, 2016.
  2. This type of experimentation involves trying out concepts and technology at sea, and learning from the results. Attempts by the former Joint Forces Command to restrict the concept of experimentation to hypotheses without control cases were inappropriate, misused, and misguided.
  3. U.S. Code Title 10 Chapter 87.
  4. Charles Nemfakos, Irv Blickstein, et. al. The Perfect Storm: The Goldwater-Nichols Act and Its Effect on Navy Acquisition. Santa Monica: RAND, 2010.
  5. David Packard, President’s Blue Ribbon Commission Defense Management, A Quest for Excellence: Final Report to the President, Washington, D.C., June 30, 1986.
  6. John T. Hanley, Jr. “Changing the DoD’s Analysis Paradigm: The Science of Wargaming and Combat/Campaign Simulation.” Naval War College Review, Winter 2017.
  7. Chip Heath, Dan Heath. Switch: How to Change Things when Change is Hard. (New York: Broadway Books, 2010).
  8. The first installation of the BQQ-5 and Mk-117 was not called a prototype at the time. However, the submarine museum adjacent to Sub Base New London now characterizes it as a prototype.
  9. A story on the waterfront was that the BQR -20 resulted from a sonar Chief in San Diego who observed a mechanic using a digital processor when diagnosing his car engine. He obtained a device and connected it into his sub’s system, demonstrating an ability to see distinct frequencies.
  10. Ekelund’s story is a classic example of junior officer innovation. See http://www.public.navy.mil/subfor/underseawarfaremagazine/issues/archives/issue_15/ekelund.html .
  11. Captain Gene Porter, USN (Retired) informed me of an action on Action of 9 February 1945 where the Royal Navy submarine HMS Venturer sank the U-boat U-864 in the North Sea off the Norwegian coast. This action is the first and so far only incident of its kind in history where one submarine has intentionally sunk another submarine in combat while both were fully submerged.
  12. For a comprehensive account see “Submarine Warfare and Tactical Development: A Look – Past, Present, and Future: Proceedings of the Submarine Development Group TWO & Submarine Development Squadron TWELVE 50th Anniversary Symposium 1949-1999,” U.S. Naval Submarine Base Groton, Connecticut: Submarine Development Squadron TWELVE, 1999.
  13. The Los Angeles or 688 class had twice the shaft horsepower of the proceeding 637 class, and cost about twice as much. It originally sacrificed under ice and electronic surveillance capabilities to keep the costs down. The submarine force was under the gun from Secretary of Defense MacNamara’s Systems Analysis Office to demonstrate that the benefits of about 20% more speed were worth the cost. In fact, since both classes had the same sonars and weapons, the tactical speeds for detecting targets attack ranges were the same, and the 637 could conduct under ice and electronic surveillance missions. Captain Gene Porter, USN (Retired) provided oversight from OSD’s Systems Analysis Office. Studies demonstrated that the extra 688 speed was most useful in evading enemy torpedoes, but not worth twice the cost of the submarine.
  14. Submarine Development Group 2 became Submarine Development Squadron 12 in the mid-1970s. The Naval Electronics Systems Command is now the Space and Naval Warfare Systems Command (SPAWAR).
  15. The author contributed to writing the CIDS Fleet Exercise Analysis Guide and wrote the OTH-T Fleet Exercise Analysis Guide.
  16. ELF frequencies are 3-30 Hertz, corresponding to wave lengths 10,000 to 100,000 kilometers. The data rate is a few characters per minute. ELF energy penetrates seawater to a greater depth than higher frequencies, allowing the submarine to remain at depth and receive communications. The prototype ELF transmitter was on the order of 100 miles long, located in upper Michigan and required the submarine to tow a long antenna. The program used a bull under the transmitter to monitor any biological effects.
  17. The author also used this data in 1982 to model and analyze the first Chief of Naval Operations Strategic Studies Group Combined Arms ASW concept for rapidly gaining forward sea control and attacking Soviet submarines in their bastions. This work resulted in quickly changing U.S. naval war plans. Over their careers, Admiral William A. Owens expanded the original SSG concept into his Systems-of-Systems ideas and Vice Admiral Arthur Cebrowski into his Net Centric Warfare concepts. John T. Hanley, Jr. “Creating the 1980s Maritime Strategy and Implications for Today.” Naval War College Review, 2014: 11-30 provides more details.
  18. Christopher Ford and David Rosenberg, The Admirals’ Advantage: U.S. Navy Operational Intelligence in World War II and the Cold War (Annapolis; MD: Naval Institute Press, 2005), p. 84.
  19. John B. Hattendorf, The Evolution of the U.S. Navy’s Maritime Strategy, 1977–1986, Newport Paper 19 (Newport, R.I.: Naval War College Press, 2004), pp. 32-33.
  20. Admiral William N. Small, U.S. Navy (Retired), “Oral History.” Interviewed by David F. Winkler, Naval Historical Foundation, 1997, p. 56.
  21. Ibid. Hanley 2014 and Petrucelli, Joe. 2021. “John Hanley on Convening the Strategic Studies Group and Assessing War Plans.” CIMSEC. March 23. Accessed April 26, 2021. https://cimsec.org/john-hanley-on-convening-the-strategic-studies-group-and-assessing-war-plans/.
  22. The principal argument against such prototypes is the cost of maintaining one-off designs. Space in this article does not permit an exploration of how technologies such as 3D printing could change this calculus.
  23. The author was Deputy Director of the CNO Strategic Studies Group at this time.

Featured Image: Navy Petty Officer 2nd Class Shawn Halliwell monitors a waterfall display on his sonar system during a battle drill aboard the strategic missile submarine USS Maryland, Feb. 16, 2009. (DoD Photo).

For America and Japan, Peace and Security Through Technology, Pt. 2

By Capt. Tuan N. Pham, USN

Part one of this two-part series calls for a bilateral technology roadmap to field and sustain a lethal, resilient, and rapidly adapting technology-enabled Joint Force (Multi-Domain Defense Force) that can seamlessly conduct high-end maritime operations in the Indo-Pacific.

Part two underscores the imperatives to do so, and provides geostrategic context by framing the growing technology competition within the region through the lens of Great Power Competition (GPC) in the 21st century. China, Russia, America, and Japan are intertwined in GPC, with all four nations fully committed to national security innovation for competitive advantages.

China – Seeking Global Technological Dominance (Technological Revisionism)

China has embarked on a whole-of-nation effort to achieve civil-military development and integration of emerging technologies, seeking to become a Science and Technology (S&T) superpower with a strong economy, a powerful military, and a harmonious society – able to fight and win global conflicts across every domain of strategic competition (economic, political, ideological, and military). Using national tools – government, industry, and academia – to promote domestic technological innovation and access foreign technology, Beijing hopes to leapfrog the United States and the other industrialized nations in technological prowess en route to global preeminence and the Chinese Dream of national rejuvenation. China invests heavily in advanced dual-use technologies, hoping that they will improve the People’s Liberation Army’s (PLA) capabilities and increase its capacities to achieve battlefield dominance across contested and interconnected warfighting domains.

The Military-Civil Fusion (MCF) strategy’s ultimate goal is the “gradual build-up of China’s unified military-civil system of strategies and strategic capabilities.” The strategy is not an addition to China’s other national strategic priorities, but rather a “supporting strategy whose parts integrate into China’s system of national strategies to form a broad national strategic system” that advances the Chinese Communist Party’s (CCP) overarching security and development goals and realizes its strategic aspirations (Chinese Dream). General Secretary of the CCP Xi Jinping described the MCF strategy as a “major policy decision designed to balance security and development, and is a major measure in response to complex security threats and a means of gaining strategic advantages.”

As the name suggests, the strategy seeks to synchronize and integrate civil and military operations, activities, and investments. The civil aspects encompass the economic and social systems that relate to national security as well as the contested domains and competitive technologies such as maritime, space, cyberspace, autonomy, and artificial intelligence (AI) that are intricately linked to the development and sustainment of “New Type Combat Capabilities.” The military aspects cover every aspect of national security to include the PLA and enabling national defense technologies and infrastructures. The MCF strategy gives the PLA unfettered access into civil entities developing and acquiring advanced technologies, to include state-owned and private firms, universities, and research programs such as the Thousand Talents Program. All in all, the strategy’s core goals are the optimization of national resource allocation, generation of combat readiness, and manifestation of economic prosperity.

The drive for technological dominance is not a new policy. The fixation with advanced technology dates back to the founding of the country and the founder Mao Zedong. Mao envisioned the “socialist world’s overwhelming superiority in S&T and came to see technological strength as central to economic, ideological, and geopolitical power for China” – a view that CCP leaders still hold today. Xi characterized the national pursuit of technology as “ganchao” (catch up and surpass). The strategic objective is one of the CCP’s most defining and enduring goals, and provides an essential policy framework to understand “China’s ambition to become a technological superpower, bringing together the legacies of Marxism, Maoism, and the relentless drive toward modernization [realization of the Chinese Dream] by the CCP.”    

Xi embraced “ganchao” and made it his own. In January of 2013, shortly after assuming power, Xi laid out his vision for China’s future through the lens of national rejuvenation and reinvigorated national efforts to “catch up and surpass,” reinforcing the legacy linkage of technological advancements to the ideology and identity of the CCP. Four years later, at the 19th National Congress of the CCP, Xi reaffirmed the strategic roadmap for the Chinese Dream. Xi moved China forward from Mao’s revolutionary legacy and Deng’s iconic policy dictum – “observe calmly, secure our position, cope with affairs calmly, hide our capacities and bide our time, be good at maintaining a low profile, and never claim leadership” – and heralded a new era in Chinese national development. To Xi, technological innovation, by all means, is necessary to surpass the West, and technological dominance is the path to realize global preeminence by 2049.             

Beijing’s Made in China 2025 and Internet Plus policies are two key components of China’s strategic plan to achieve technological dominance by the end of the decade and global preeminence by 2049. The former aims to push the economy towards higher value-added manufacturing and services through digital technology and automation. It is a blueprint to upgrade the manufacturing capabilities of Chinese industries into a more technology-intensive dynamo. The latter aims to capitalize on China’s massive online consumer market by building up the country’s domestic mobile Internet, cloud computing, big data, and Internet of Things (IoT) sectors. It is a roadmap to integrate information technology with the key industries of manufacturing, commerce, banking, and agriculture. Both policies have been characterized as an innovation mercantilism that leverages the power of the state to “alter competitive dynamics in global markets from industries core to economic competitiveness.” 

In the maritime domain, Xi called for accelerating innovation in marine technologies to increase capacity and improve naval development capability, fostering the development of domestic marine industries in support of both PLA modernization and reform efforts and national civilian projects like the Made in China 2025 and Digital Belt and Road Initiative. He promoted marine connectivity and practical collaboration to develop “blue partnerships” among like-minded maritime nations under the One Belt and One Road framework at last year’s China Marine Economy Expo.

Russia – Rebuilding Technology Base for National Greatness (Technological Revanchism)

In 2017, Russian President Vladimir Putin presciently declared that “whoever becomes the leader in this sphere [explicitly AI and implicitly technology at large] will become the ruler of the world.” The bold statement summarizes the purpose and intent behind the 2017 Strategy for the Development of an Information Society for 2017–2030, one of Putin’s key policy initiatives to restore Russia to its former glory. The strategy prioritizes areas deemed essential for the successful development of Russian information and communication technologies, specifically:

  • New generation of electronic networks
  • Processing of large volumes of data
  • AI
  • Electronic identification and authentication
  • Cloud computing
  • Post-industrial Internet
  • Robotics
  • Biotechnologies Information security

The strategy also devotes considerable attention to “ideological concerns, including the prioritization of Russian traditional spiritual and cultural values, popularization of Russian culture and science abroad, and proliferation of steady cultural and educational contacts with Russian compatriots living abroad.” The intent relates to the “Russian World” concept that aims to propagate Russian soft power abroad.

The 2017 Strategy for the Development of an Information Society supplements and complements the greater 2015 National Security Strategy (NSS) that codifies Russia’s strategic interests and national priorities. The strategic document identifies Russian national interests as “strengthening the country’s defense, ensuring political and social stability, raising the living standard, preserving and developing culture, improving the economy, and enhancing Russia’s status as a leading world power.” The strategy reflects a Russia more confident in its ability to defend its sovereignty, resist Western pressure and influence, and realize its great power aspirations.

The Russian military remains essential to Putin’s ambitious and expansive strategic plan to restore Russia to its former Soviet greatness. The incremental modernization of Russia’s military depends on the future viability and sustainability of the Russian defense industry. Moscow funds or subsidizes its defense industry primarily through four state-supported investment approaches that provide insights into current defense priorities and future defense developments: “In certain areas, the Kremlin invested significant resources in recapitalizing key defense corporations indicating its prioritization of the systems they produce and the technologies they develop. In other areas, Russia engaged in enduring support of critical defense corporations demonstrating its long-term commitment to key technologies. Another approach reflects the incorporation of its defense corporations into state-owned enterprises. The last approach is speculative investment in dual-use technologies through means such as venture capital.”

America – Maintaining Global Technology Leadership (Technological Superiority)

The 2017 NSS charges the National Security Enterprise to promote American prosperity by leading in research, technology, invention, and innovation to sustain and expand competitive advantages in today’s strategic environment of GPC. The tasked priority actions include understanding worldwide S&T trends, attracting and retaining inventors and innovators, leveraging private capital and expertise to build and innovate, and rapidly fielding inventions and innovations. The NSS also charges the Department of Defense (DOD) to preserve the peace through strength by renewing military capabilities to retain military overmatch for competitive advantages. Overmatch strengthens diplomacy and shapes the international environment to protect and advance U.S. national interests. To maintain military overmatch, the United States must restore the ability to build innovative defense capabilities, force readiness for major conflict and strategic competition, and size of the force so that it is capable of operating at a sufficient scale and for a duration to win across a range of contingencies and interconnected domains. Lastly, the NSS calls on key allies and partners to modernize, acquire the necessary joint warfighting capabilities, improve force readiness, expand the size of their forces, and affirm the political will to compete and win.     

Within the DOD, the 2018 National Defense Strategy, 2018 National Military Strategy, and Defense Planning Guidance collectively highlight the need for competitive technological innovation in national security to sustain and expand the U.S. military competitive advantages, and direct greater partnerships between the DOD and commercial enterprises to out-innovate global competitors. Nowhere is the need for commercial technological innovation more compelling than in the DOD. The 2019 Digital Modernization Strategy states that “technological innovation is a key element of future readiness and essential to preserving and expanding U.S. military competitive advantage in the face of near-peer competition and asymmetric threats.” The strategy calls for the ability, flexibility, and agility to innovatively and rapidly field technology-enabled warfighting capability to the warfighter faster than potential adversaries. The guiding principles for DOD’s acquisition of commercial technology capabilities underscore that “preserving and expanding our military advantage depends on our ability to deliver technology faster than our adversaries and the agility of our enterprise to adapt our way of fighting to the potential advantages of innovative technology.”   

Within the Department of Navy, Chief of Naval Operations Admiral Michael Gilday emphasizes the role of allies and partners in enforcing international maritime norms and operating together as a technology-enabled Joint Force. He declared his intention to bring key U.S. allies and partners along with the U.S. Navy (USN) as it moves into high-end maritime operations at last year’s 12th Regional Sea Power Symposium. He told his contemporaries from more than 30 foreign navies that “today, the very nature of our operating environment requires shared common values and a collective approach to maritime security…and that makes steady, enduring Navy-to-Navy relationships more important than ever”. He concluded his remarks by addressing the fluid technological environment and how emerging disruptive technologies affect the character of naval operations and warfare (warfighting). He underscored tactical cloud computing, AI, and machine learning as technological drivers of change for the USN and by extension allied and partnered navies. 

Admiral Gilday expounded on these points when he promulgated his initial guidance to the Fleet a few months later. The directive, in the form of a fragmentary order (FRAGO), simplified, prioritized, and built on the foundation of “A Design for Maintaining Maritime Superiority 2.0” issued by his predecessor. The FRAGO directs dedicated efforts across three critical areas – warfighting, warfighters, and the future Navy – and focuses on building alliances and partnerships to broaden and strengthen global maritime awareness, access, capabilities, and capacities. 

The FRAGO aligns well with the Secretary of Navy’s (SECNAV) guidance to mitigate the unpredictability of the future by building and maintaining a “robust constellation of partners and allies to work with us to solve common security challenges which are beyond our ability to predict, or defeat alone.” The SECNAV underscored two key initiatives. First, cooperative international agreements jointly produce, procure, and sustain naval armaments to reduce U.S. and partner costs, improve bilateral interoperability, and forge closer ties between U.S. and partner nation operating forces and acquisition and logistics communities. Second, S&T and data exchange agreements facilitate Research and Development (R&D) and information exchanges with allied or friendly nations, and marshal the technological capabilities of the United States and our key allies and partners to accelerate R&D and fielding of equipment for the common defense.  

The FRAGO also aligns well with the newly released Tri-Service Maritime Strategy (Advantage at Sea, Prevailing with All-Domain Naval Power). The joint strategy focuses on China and Russia and guides the Naval Service (USN, U.S. Marine Corps, and U.S. Coast Guard) for the next decade to prevail across the continuum of competition. The strategy has two main components. First, it articulates the employment of integrated all-domain naval power across the competition continuum. Second, it guides the development of an integrated all-domain naval force.

Japan – Advancing Toward Society 5.0 (Technological Evolution)

Japan takes a broader societal perspective of the Fourth Industrial Revolution (4IR). In 2017, Japanese Prime Minister Shinzo Abe unveiled Society 5.0, a future society that leverages technology in the key pillars of infrastructure, finance technology, healthcare, logistics, and AI to achieve economic advancement and solve societal problems. The super-smart society (Society 5.0) is the fifth step in the evolution of human development. It follows the information society (Society 4.0), industrial society (Society 3.0), agricultural society (Society 2.0), and hunting and gathering society (Society 1.0). The vision is to liberate people from routine tasks and to meet the needs of every person while not surrendering all control to technology. Society 5.0 boldly creates a social contract and economic model by fully integrating the technological innovations of the 4IR throughout every facet of Japanese society. The dual-use nature of these developing civil technologies also has national security applications and implications. 

Like in the United States, GPC influences Japan’s national security perspectives as outlined in its NSS. The NSS shapes Japanese defense priorities through the lens of enduring regional threats like China, North Korea, and Russia; emerging contested and interconnected domains of space, cyberspace, and the electromagnetic spectrum (EMS); the U.S.-Japan Alliance; and the Free and Open Indo-Pacific. Within the Ministry of Defense (MOD), the National Defense Planning Guidelines for FY2019 and Beyond, Mid-Term Defense Program FY2019-2023, and 2019 R&D Vision call for the development of a Multi-Domain Defense Force (Joint Force) that can conduct seamless and integrated cross-domain operations to preserve the security, prosperity, and independence of Japan. These operations fuse the new domains of space, cyberspace, and the EMS with the traditional domains of maritime, air, and land. The challenge for the MOD is how best to leverage the pervasive technological innovation happenings in the government, private industry, and academia within Japan and collaborate with the U.S. DOD on technological innovation.

Japan Maritime Self-Defense Force (JMSDF), in coordination with the other services, continues to make prudent targeted investments to develop a Multi-Domain Defense Force, strengthen the U.S.-Japan Alliance, take better care of its personnel, and hedge for the future. The FY2019,  FY2020, and FY2021 defense budgets (JMSDF allocation) focus on building capabilities and increasing capacities in command, control, communications, computers, ISR, and targeting (C4ISRT), information warfare, cyberspace network operations and defense, space warfare, undersea warfare, and ballistic missile defense. The JMSDF also makes investments in four enabling organizational areas. Firstly, enhance function in all phases through continuous enhancement of necessary capabilities. Secondly, better develop concepts necessary for defending the country by utilizing the JMSDF capabilities to their full potential. Thirdly, further strengthen cooperation through deepening relationships with other navies with the U.S.-Japan Alliance as its core, and through making full use of joint and comprehensive relationships with various partners. Lastly, improve personnel programs, the foundation of the JMSDF, both in quality and in quantity.

Technology Competition

GPC is alive and well in the Indo-Pacific, particularly in the contested technology domain. Russia, China, America, and Japan are entangled in a competitive technology race for economic prosperity and national security. Although allied Washington and Tokyo are fully committed to national security technological innovation as evidenced by their respective national defense strategies and mutual pursuit of a technology-enabled Joint Force (Multi-Domain Defense Force), the broader DOD (USN) and MOD (JMSDF) must better leverage emerging technologies and developing concomitant warfare concepts (doctrines) to adapt to the new way of fighting. Otherwise, the United States and Japan risk ceding the technology domain and consequently military superiority in the Indo-Pacific to revisionist China and revanchist Russia.

CAPT Pham is a maritime strategist, strategic planner, naval researcher, and China Hand with 20 years of experience in the Indo-Pacific. He completed a research paper with the Office of Naval Research (ONR) at the U.S. Naval War College (USNWC) in 2020. The articles are derived from the aforesaid paper. The views expressed here are personal and do not reflect the positions of the U.S. Government, USN, ONR or USNWC.

Featured Image: SAN DIEGO (Feb. 23, 2017) Cmdr. Mark Stefanik, commanding officer of the littoral combat ship USS Montgomery (LCS 8), discusses the ship’s engineering capabilities with Japan Maritime Self Defense Force Director of Ships and Weapons Division, Capt. Shinichi Imayoshi. (U.S. Navy photo by Fire Controlman 1st Class Nathaniel J. Wells/Released)