Tag Archives: China

Civilian Shipping: Ferrying the People’s Liberation Army Ashore

By Michael Dahm and Conor M. Kennedy

The Peoples Liberation Army (PLA) has been increasing its ability to use civilian roll-on/roll-off (RO-RO) ferries to move troops and equipment ashore in amphibious landing operations. In August 2020, the PLA conducted a cross-sea mobility evolution using RO-RO ferries. Exercise Eastern Transportation-Projection 2020A (东部运投—2020A) was unique in that it discharged military vehicles from RO-RO ferries directly onto a beach using a modular floating pier. Commercial satellite imagery of a PLA amphibious exercise area in late-summer 2021 revealed that the PLA may have developed an improved floating pier system to support amphibious operations.  These capabilities, components of what the U.S. Navy calls “joint logistics over-the-shore (JLOTS),” allows the PLA to use civilian vessels to move large amounts of military equipment into unimproved amphibious landing areas without port infrastructure. A Chinese mobile pier system like those observed in these exercises may have particular application for the PLA in an invasion of Taiwan. 

The PLA has been using civilian transportation capabilities for military mobility for many years, moving military forces and equipment up and down the Chinese coast. RO-RO ferries provide significant capacity to move armor and other rolling stock. Recent PLA innovations are enabling greater roles for civilian ferries to move forces ashore. For example, some Chinese civilian ferries have been retrofitted with capabilities to deploy amphibious armored vehicles at-sea, essentially making them auxiliary amphibious landing ships. This is likely meant to compensate for the apparent shortage in PLA amphibious lift required to conduct a cross-strait landing. The PLA appear to be learning from their American counterparts with solutions for moving forces and supplies ashore in the absence of port infrastructure. This article explores a novel floating pier system that may provide a solution to some of the PLA’s amphibious lift shortcomings.

What the Chinese call an “offshore mobile debarkation platform” (海上机动卸载平台) was spotted in commercial satellite imagery along the fishing wharves of the Lanshan District in Rizhao City, China in September 2020. A PLA 2007 patent application for a similar system indicates sections include “square” or intermediate pontoon modules (方形模块), bow-stern modules (首尾模块), ramp modules (坡道模块), powered modules (推进模块), cargo ferries (货运渡船) and lighters (驳船) as well as warping tugs (绞滩拖船) to maneuver the different sections. The floating pier system was developed by engineers at the PLA Military Transportation University in Tianjin.

Chinese modular floating pier system in port Lanshan, China, September 27, 2020 (Google Earth, Image © Maxar Technologies 2021)

The Chinese system looks very similar to the U.S. Navy’s Improved Navy Lighterage System (INLS), produced by the Fincantieri Marine Group.  The INLS is used principally by U.S. Navy Maritime Prepositioning Force (MPF) ships. The system appears to have the same types of interchangeable modules as the U.S. floating causeway system. The U.S. system is used for off-loading MPF ships miles off-shore and then floating equipment and cargo to the beach. Alternatively, the INLS can be employed as a floating pier as shown in the images below from Exercise JLOTS 2008 off Camp Pendleton, California.

 USNS Pililaau (T-AKR 304) with INLS in U.S. Exercise JLOTS 2008 (U.S. Navy Photo, MC2 Caracci)
 INLS employed as temporary pier in U.S. Exercise JLOTS 2008 (U.S. Navy Photo, MC3 Morales)

China’s National Defense Mobilization Committee ordered development of an offshore mobile debarkation platform for the PLA in 2001. The system was one of the major focus areas under “Project 019” (019工程), an effort to resolve issues of vehicle and materiel lightering when port infrastructure is unavailable or degraded by “blue forces.” A team of engineers at the PLA’s Military Transportation University worked for over a decade to overcome the engineering challenges associated with the system, especially as they related to connections between the modules and shallow water propulsion. Chinese media reports indicate the system has been used in exercises since 2012, but trials likely began earlier.

The offshore mobile debarkation system was featured in news coverage of a 2014 Guangzhou Military Region (GZMR) exercise. This was reportedly the first time the PLA used a civilian, militia-operated RO-RO ferry to embark and offload a PLA unit using the system.  The 2014 exercise took place in the southern port city of Zhanjiang where an unidentified PLA mechanized infantry company (机械化步兵连) was loaded onto the Nan Fang 6, a commercial RO-RO ferry that normally provides service between the mainland and Hainan Island.  As part of the exercise scenario, the ferry was told its destination terminal had been damaged and was ordered to offload over the beach. According to the news report, the PLA dispatched and assembled a “sectional causeway” (拼装式栈桥) system to a beach landing area. Warping tugs were shown assembling five pontoon units, extending the floating causeway approximately 600 feet from the shore.

Chinese offshore mobile debarkation system assembled in 2014 exercise in Zhanjiang, China (CCTV)

Interestingly, a semi-submersible barge, often used in port construction projects, was placed at the end of the causeway to act as the pier head. With a ramp leading to the causeway, the semi-submersible barge could raise or lower its height above the water to accommodate different size RO-RO vessels.

Semi-submersible barge used with offshore mobile debarkation system in 2014 exercise (CCTV)

After the RO-RO ferry docked with the semi-submersible barge, PLA equipment and troops immediately began to stream out of the ship. Reporters stated that the sectional causeway was assembled in just under an hour, a boast that seems somewhat implausible. The GZMR military transportation department director told reporters the floating causeway fixed “a number of bottlenecks in carrying out maritime projection with civilian ships.” There have been few other publicized training events using this system since the 2014 exercise. Prototypes of this system may have seen improvements by PLA engineers over the years, but its basic concept of operation appears to have remained the same.

Civilian ferry off-loading armored vehicles to beach in 2014 exercise (CCTV)

A Chinese television report on the August 2020 PLA exercise Eastern Transportation-Projection 2020A shows army equipment being loaded onto civilian ships in the port of Lianyungang. Footage showed the port’s container cranes loading trucks and other military cargo into the 322 foot general cargo ship Sheng Tai. At the nearby ferry terminal, PLA armored and wheeled vehicles were loaded aboard the Sheng Sheng 1, a 394 foot, 10,000 ton RO-RO ferry as well as the much larger Bohai Baozhu (Bohai Pearl) a 535 foot, 24,000 ton RO-RO ferry. Like most newer Chinese-flagged ferries, the Bohai Baozhu was built to national defense specifications for carrying military equipment.  The Bohai Baozhu is owned by the Bohai Ferry Group (渤海轮渡股份有限公司), which operates eleven RO-RO ferries in the Bohai Gulf. The company’s ships have been organized into the “Eighth Transport Dadui” (海运八大队), part of the PLA’s strategic projection support ship fleet (战略投送支援船队). The Sheng Sheng 1 is seen briefly at the end of the television report offloading tanks onto the semi-submersible barge and onto the offshore mobile debarkation system.  The Sheng Sheng 1 was also seen in the July 14, 2020 high-resolution Planet Labs SkySat image, below, preparing to back into the same semi-submersible barge attached to the floating pier.

Civilian ferry Sheng Sheng 1 off-loading tanks onto semi-submersible barge and offshore mobile debarkation system in the 2020 exercise (CCTV)
Sheng Sheng 1 maneuvering for a stern docking with the semi-submersible barge and floating pier (Includes content sourced via SkyWatch Space Applications Inc., Powered by Planet – SkySat Image © Planet Labs 2021)

A soon-to-be published paper presented at a recent conference on PLA amphibious operations hosted by the U.S. Naval War College’s China Maritime Studies Institute provides a comprehensive account of the 2020 exercise. Two dozen commercial ships, tugs, and military landing craft took part in the large-scale operation led by the PLA’s Joint Logistics Support Force. According to ship automatic identification system (AIS) tracks, RO-RO ferries and cargo vessels sailed from the embarkation port of Lianyungang 24 nautical miles north to Lanshan. According to Chinese media reports, just as in the 2014 Zhanjiang exercise, a major component of the exercise involved ferries off-loading using a semi-submersible barge and a floating pier.  Civilian ferries like the Bohai Baozhu and the Sheng Sheng 1 made several trips between Lianyungang and Lanshan, apparently transporting military equipment in each run before then returning to civilian ferry service across the Bohai Gulf. 

Typical tracks of exercise ships during Eastern Transportation-Projection 2020A (Supported with AIS data from MarineTraffic – Global Ship Tracking Intelligence, www.marinetraffic.com)

The Chinese offshore mobile debarkation system is large enough to be seen in lower resolution Planet Labs commercial satellite imagery acquired between June and August 2020.  The Lanshan beach area imaged is just north of the fishing wharf where the pier modules were imaged in September 2020.  The floating pier was set up and taken down several times over two months, each time with the semi-submersible barge attached or close by off-shore. The temporary piers in the Planet Labs images correspond to the lengths of the system seen in the much higher-resolution Google Earth/Maxar image – approximately 1200 feet for the green pontoon sections and 720 feet for the grey pontoon sections. The shorter floating pier was used throughout the course of the exercise for landing craft that were off-loading cargo ships and other ferries farther off-shore. Planet Labs imagery indicates the modular system remained in Lanshan until November 2020. Its current location is unknown.

Offshore mobile debarkation system moved to several locations during the 2020 exercise (Powered by Planet – PlanetScope Image © Planet Labs 2021)

In late-August and early-September 2021, a new modular pier system was spotted in commercial satellite imagery at a known PLA amphibious training area in Dacheng Bay, China near the southern end of the Taiwan Strait.  This improved system bears a closer resemblance to the U.S. Navy INLS.  It is much more substantial and longer than the older floating pier, extending approximately 1475 feet from the shore. According to AIS tracks, two Bohai Ferry Group ships, the Boahai Mazhu and the Bohai Cuizhu visited the Dacheng Bay amphibious training area on September 4, 2021, probably to off-load dozens of ten-man assault boats in support of an amphibious raid. One significant indicator of floating pier operations in the exercise area was the presence of the same semi-submersible barge that was used in the summer 2020 exercise, the Sanhanggong 8, operated by the state-owned China Communications Construction Company (CCCC).  The new floating pier system, the semi-submersible barge and an unidentified temporary pier may be seen in the low-resolution satellite image, below. Analysis of this exercise and its use of civilian shipping is on-going.

New-type modular floating pier observed at PLA’s Dacheng Bay amphibious training area in September 2021 (Powered by Planet – PlanetScope Image © Planet Labs 2021)

Beyond the media reports of the 2014 exercise and the 2020/2021 exercises, there is little open-source reporting available on the PLA’s use of these sectional causeways. It is interesting to note that in each example, the system was deployed in relatively sheltered areas with calm waters. The original Chinese patent for the system indicates it can operate in sea state 3 (wave heights up to 4 feet), which is identical to the advertised operating limit of the U.S. Navy INLS.

The Chinese offshore mobile debarkation system, while not as striking as the Chinese Navy’s newest amphibious assault ships, may have greater implications for how the PLA projects power over-the-shore, especially in a cross-strait amphibious invasion of Taiwan. Any large-scale landing by PLA Navy amphibious assault ships will require significant maritime lift for second echelon forces and logistics. This modular pier system may allow China’s substantial fleet of large civilian RO-RO ships to offload combat troops and equipment directly onto Taiwan’s beaches. Proficiency with this system and other JLOTS capabilities will be a critical capability in a cross-strait invasion if the PLA is unable seize Taiwan’s port infrastructure intact.      

Michael Dahm is a senior researcher at the Johns Hopkins University Applied Physics Laboratory (APL) and retired U.S. Navy intelligence officer. His research focuses on foreign military technologies and operational concepts.

Conor Kennedy is a research associate at the U.S. Naval War College, China Maritime Studies Institute. His research focuses on Chinese military development and maritime strategy.

The analyses and opinions expressed in this paper are those of the authors and do not necessarily reflect those of the U.S. Navy, the U.S. Naval War College, the Johns Hopkins University Applied Physics Laboratory (APL) or APL sponsors. Commercial satellite images are sourced via SkyWatch Space Applications Inc. and Planet Labs, Inc. and are published under license from Planet Labs, which retains copyrights to the original, underlying images. This work has also been supported with AIS data from MarineTraffic – Global Ship Tracking Intelligence (www.marinetraffic.com).

Featured Image: An amphibious infantry fighting vehicle attached to a brigade of the PLA Navy Marine Corps launches anti-tank missiles during a maritime live-fire training exercise in mid July, 2021. (eng.chinamil.com.cn/Photo by Liu Yuxiang)

Leviathan Wakes: China’s Growing Fleet of Autonomous Undersea Vehicles

Emerging Technologies Topic Week

By Ryan Fedasiuk

Since 2018, Indonesian fishermen have regularly reeled in autonomous, glider-like vehicles operating as far south as the Java Sea—part of China’s longstanding undersea vehicle research program first declassified in 2021. Over the past decade, details have sporadically emerged about China’s unmanned (UUV) and autonomous undersea vehicle (AUV) projects, but questions linger about which kinds of vessels the Chinese defense industry may be developing, and how the People’s Liberation Army (PLA) might use them in a future conflict.

This article draws on a wide array of primary sources—including advertisements from defense companies, PLA writings and research papers, and information released by state-run research institutes—to illuminate China’s growing fleet of autonomous undersea vehicles. After profiling three major AUV research institutes, the article identifies potential applications of China’s growing fleet of AUVs and continued barriers to development.

China’s Big Three Undersea Vehicle Developers

As in many other Chinese technology industries, the state plays a leading role in undersea vehicle development. In 1986, Chinese Premier Zhao Ziyang initiated the State High-Tech Development Plan (863 Plan) to fund billions of dollars in applied technology development. In 1996, marine technologies were added to the program, adding further fuel to China’s emerging undersea vehicle industry. In particular, three government-sponsored research institutions form the backbone of AUV development in China. Each began undersea vehicle research in the 1980s, and has gone on to pioneer lines of AUVs still in use today:

Shenyang Institute of Automation. Part of the Chinese Academy of Sciences, SIA’s Computer Vision Group (机器人视觉组) is at the forefront of state-backed unmanned technology and autonomy research in China. In 1981, SIA developed the HR-01, China’s first remotely-piloted undersea vehicle. The institute went on to develop the “Explorer” (探索者) series of fully autonomous undersea vehicles in the 1990s and 2000s, with later variants capable of diving to 6,000 meters. Today, SIA specializes in developing prototypes of medium and large undersea vessels, including the Sea-Whale 2000 (海鲸2000) and Qianlong (潜龙; “Hidden Dragon”) series of AUVs.

China Shipbuilding Industry Corporation. As the world’s largest shipbuilding conglomerate, CSIC’s myriad research institutes have made significant contributions to China’s AUV research and development, particularly the 701, 702, 710, and 714 Research Institutes. Since 2000, CSIC has been responsible for developing the Haishen (海神; “Poseidon”) series of AUVs, in addition to a new line of autonomous undersea gliders, such as the Haiyi 1 (海翼一号; “Sea Wing”).

Harbin Engineering University. Originally called the Harbin Institute of Shipbuilding, HEU began developing a “Smart Water” (智水) series of AUVs in 1991, and has gradually expanded AUV testing in the South China Sea. The Smart Water series today comprises five variants of different sizes, but HEU has developed additional AUV models for undersea surveying and mapping, such as the Weilong (微龙; Microdragon) 1, 2, and 3. HEU is also home to China’s State Key Laboratory of Underwater Vehicle Technology (水下航行器信息技术重点实验室), which specializes in developing human-occupied, remotely-operated, and autonomous surface and deep-sea vehicles.

New Players in AUV Development

Beyond China’s big three AUV design centers, a growing number of research institutes and private enterprises are entering the Chinese AUV market. A document published in 2019 by the Chinese Society of Naval Architecture lists 159 undersea vehicle research projects under development at more than 40 Chinese universities—a significant increase over the 15 major universities that had constructed undersea vehicle research teams just four years prior. Another document prepared by Dr. Wu Jianguo, a professor at Hebei University of Science and Technology, shows that more than 48 universities and 45 enterprises in China host major UUV and AUV projects.

The CCP’s military-civil fusion (军民融合) development strategy is also facilitating a boom in China’s private-sector AUV industry. By promoting resource and information sharing between the military and private technology companies, China has seen some success in its efforts to accelerate AUV research, as several enterprises are developing new lines of AUVs independent of the big three research institutes. While it is too early to say whether they may become globally competitive with companies like the U.S.-based Bluefin Robotics or Norway’s Kongsberg, Chinese enterprises such as Xi’an Tianhe Haiphong Intelligent Technology (西安天和海防智能科技) and Startest Marine (星天海洋) seem to be emerging as China’s national champions of AUV systems and equipment. In 2017, China’s International Ocean Technology Exhibition in Qingdao attracted representatives from more than 500 enterprises working on AUV systems and components.

How the PLA Navy Might Use Autonomous Undersea Vehicles

While China’s AUV fleet still primarily consists of early-stage research experiments and prototypes, scientific research papers and theoretical writings by the PLA Navy (PLAN) indicate that it is primarily interested in using AUVs for marine surveying and reconnaissance, mine warfare and countermeasures, undersea cable inspection, and anti-submarine warfare. Each of these applications rely on different AUV models, and carry distinct implications and risks for the U.S. Navy and its partners in the Indo-Pacific.

Marine Surveying and Reconnaissance

The PLAN’s most mature application of AUVs is in marine surveying and reconnaissance. Chinese and American analysts have long assessed that the United States would retain a significant undersea advantage in a Taiwan Strait contingency, and the PLAN has rapidly expanded its manned diesel submarine force to compensate for this disadvantage. As early as 2013, the PLA commissioned construction of the Great Underwater Wall (水下长城), a network of hydrosonic sensors deployed at depths of 2,000 meters, which are designed to detect adversary undersea vehicles operating in the South China Sea. More recent research papers indicate that the PLAN may field groups of small and medium-sized AUVs for a similar purpose.

Portable and light models have so far formed the backbone of the PLAN’s emerging AUV fleet—in part due to battery constraints. Early AUV prototypes, such as CSIC’s Haishen 100 (海神100; “Poseidon 100”) and SIA’s Explorer (探索者), could dive to less than 1000 meters each; but modern variants have grown both in size and capability. Undersea gliders are a particularly promising innovation, and it is no surprise that so many have been found across the Indo-Pacific: Because of their improved range and endurance, gliders can more reliably detect undersea objects and periodically surface to transmit that information to ground stations and surface vessels. In the event of a crisis, analysts warn that autonomous gliders could be used to overcome China’s significant disadvantage in undersea warfare by detecting and tracking the locations of U.S. submarines even beyond the first island chain. Examples of such vehicles include SIA’s Haiyi (海翼; Sea Wing); Tianjin University’s Haiyan (海燕; Sea Swallow); and the Hai Xiang (海翔; Sea Flyer) developed by CSIC’s 702 Research Institute. Still, that gliders must surface in order to transmit information to one of three intelligence processing centers offers a point of vulnerability, and Chinese experts still believe the United States has an advantage in undersea surveying and mapping.

Figure 1. “Marine Environment Detection by Underwater Glider” Source: CSIC 714 Research Institute.

Mine Warfare and Countermeasures

Sea mines are a core tenet of Chinese naval doctrine and planning. As early as 2013, researchers at the China Engineering Science and Technology Forum publicly acknowledged the significance of UUVs in deploying mines and mine countermeasures (MCM); and military analysts have commented on the potential mine-laying capabilities of China’s HSU001 large-displacement UUV first unveiled in 2019. Today, the PLA may choose from more than 26 variants of floating and submerged mines designed to attack all manner of enemy ships and submarines.

Many of the PLA’s undersea mines are produced by CSIC’s 710 Research Institute—which also produces UUVs. Research published by the 710 Institute recommends developing AUVs and UUVs for minelaying and reconnaissance, but public information about the PLA’s current AUV models is scarce. One research paper published in August 2020 concludes that, “With the transformation of our navy’s strategy, the scope of anti-mine operations will extend to waters beyond the first island chain.” Some scholars believe that the PLAN could field more than 50 mines for each manned submersible—a feat that may eventually be possible for unmanned vehicles, too, as the Chinese AUV industry develops larger and larger vehicles. Examples of mid- and large-sized platforms include SIA’s Qianlong 1 and 2, and the Haishen series of UUVs developed by CSIC’s 701 Research Institute.

Figure 2. Haishen Series of AUVs. Source: Hebei University of Science and Technology.

Undersea Cable Inspection

Advances in unmanned vehicle research may also permit the PLAN to use AUVs to tap or sever undersea fiber-optic cables in a conflict, which concentrate near northern Taiwan. These cables are crucial not just for information dissemination in Taiwan, but also the trans-Pacific data exchanges that facilitate global internet access—including in some parts of the United States. HEU, for example, advertises AUVs for “underwater engineering investigation and maintenance,” including pipeline inspection and repair. Research papers and procurement records published by the PLA indicate that it may outfit undersea vehicles with robotic arms and sensors to interact with undersea cables. Some units have expressed an interest in procuring “SPICE,” a UUV produced by Kawasaki, which comes equipped with a robotic arm to repair undersea cables and pipelines.

Seabed Operations and Anti-Submarine Warfare

In the future, the Chinese military may use large AUV models for anti-submarine warfare (ASW) and operations near the seabed. Trends among PLAN research publications suggest that it is building signature libraries for undersea target detection and recognition, and several PLA units have awarded research contracts related to deep learning-based image recognition and target identification systems for undersea vehicles. In particular, students and researchers at HEU have pioneered an AI-based “seabed image mosaic system” for sonar image processing. Undersea target recognition systems like this could prove useful in autonomously identifying and interacting with sea floor infrastructure and other submarine vehicles.

Large AUVs may also be outfitted with weapons to engage adversary submarines. To date, the Chinese defense industry has produced few large AUV models suitable for ASW, although the number is growing. One notable example is the HSU-001, a large-displacement vehicle that sports side-scanning sonar arrays and a magnetic anomaly detector. Other medium and large AUV prototypes set records for depth and distance in 2020, including SIA’s Haidou 1 (海斗一号) and Sea-Whale 2000. Weighing in at more than 3.5 tons, China’s largest AUV so far is the Haishen 6000 (海神6000; “Poseidon 6000”), a 25 foot-long prototype developed by CSIC’s 701 Research Institute. The system is apparently capable of diving to depths of 6,000 meters, and comes equipped with “multiple detection devices such as an ultra-short baseline positioning system, an aircraft black box search sonar array, deep-sea side scanning sonar, an underwater camera, and forward-looking sonar.” Neither the HSU001 nor the Haishen 6000 appear to be outfitted with mine-laying rails or other weapon systems, but further advances in large AUV models and battery life could permit them to carry such payloads.

Figure 3. Haishen 6000, China’s Largest Known AUV. Source: CSIC 710 Research Institute.

Barriers to Chinese AUV Development

Despite its demonstrable progress in undersea detection and navigation, the Chinese AUV industry still faces significant technical and bureaucratic barriers to developing undersea platforms for military use.

The largest barriers are technical—particularly battery life. Among the small, medium, and large AUV models catalogued in this paper, most cannot operate for more than 24 hours before they require refueling or recharging, and PLA officers expect U.S. military AUVs to suffer from similar limitations. Moreover, artificial intelligence is still an emerging technology, and the target recognition systems used in modern autonomous vehicles are not robust enough to reliably detect undersea targets, let alone engage them in combat. Despite the PLA’s progress in testing AUVs, research from the Center for Security and Emerging Technology (CSET) concludes that “the state of the current technology, the complexity of antisubmarine warfare, and the sheer scale and physics-based challenges of undersea sensing and communications all suggest these systems have a long way to go.”

Bureaucratic inertia and a culture of central planning also constrain China’s progress in undersea vehicle development. On the one hand, the CCP’s continued focus on military-civil fusion does seem to be alleviating some barriers to AI development in the public sector. For example, a catalogue of ocean engineering projects published by the Tianjin Municipal Government advertises dozens of AUV and UUV models for both civilian and military use. But the fact remains that the big three state-backed research institutes—SIA, CSIC, and HEU—still dominate AUV development, and private-sector innovation in China has not yet reached its full potential.

Ryan Fedasiuk is a Research Analyst at Georgetown University’s Center for Security and Emerging Technology (CSET). His work focuses on military applications of emerging technologies, and on China’s efforts to acquire foreign technical information.

Featured Image: PLA HSU001 large-displacement UUV at Chinese Military Parade, October 2019. (Public domain)

For America and Japan, Peace and Security Through Technology, Pt. 2

By Capt. Tuan N. Pham, USN

Part one of this two-part series calls for a bilateral technology roadmap to field and sustain a lethal, resilient, and rapidly adapting technology-enabled Joint Force (Multi-Domain Defense Force) that can seamlessly conduct high-end maritime operations in the Indo-Pacific.

Part two underscores the imperatives to do so, and provides geostrategic context by framing the growing technology competition within the region through the lens of Great Power Competition (GPC) in the 21st century. China, Russia, America, and Japan are intertwined in GPC, with all four nations fully committed to national security innovation for competitive advantages.

China – Seeking Global Technological Dominance (Technological Revisionism)

China has embarked on a whole-of-nation effort to achieve civil-military development and integration of emerging technologies, seeking to become a Science and Technology (S&T) superpower with a strong economy, a powerful military, and a harmonious society – able to fight and win global conflicts across every domain of strategic competition (economic, political, ideological, and military). Using national tools – government, industry, and academia – to promote domestic technological innovation and access foreign technology, Beijing hopes to leapfrog the United States and the other industrialized nations in technological prowess en route to global preeminence and the Chinese Dream of national rejuvenation. China invests heavily in advanced dual-use technologies, hoping that they will improve the People’s Liberation Army’s (PLA) capabilities and increase its capacities to achieve battlefield dominance across contested and interconnected warfighting domains.

The Military-Civil Fusion (MCF) strategy’s ultimate goal is the “gradual build-up of China’s unified military-civil system of strategies and strategic capabilities.” The strategy is not an addition to China’s other national strategic priorities, but rather a “supporting strategy whose parts integrate into China’s system of national strategies to form a broad national strategic system” that advances the Chinese Communist Party’s (CCP) overarching security and development goals and realizes its strategic aspirations (Chinese Dream). General Secretary of the CCP Xi Jinping described the MCF strategy as a “major policy decision designed to balance security and development, and is a major measure in response to complex security threats and a means of gaining strategic advantages.”

As the name suggests, the strategy seeks to synchronize and integrate civil and military operations, activities, and investments. The civil aspects encompass the economic and social systems that relate to national security as well as the contested domains and competitive technologies such as maritime, space, cyberspace, autonomy, and artificial intelligence (AI) that are intricately linked to the development and sustainment of “New Type Combat Capabilities.” The military aspects cover every aspect of national security to include the PLA and enabling national defense technologies and infrastructures. The MCF strategy gives the PLA unfettered access into civil entities developing and acquiring advanced technologies, to include state-owned and private firms, universities, and research programs such as the Thousand Talents Program. All in all, the strategy’s core goals are the optimization of national resource allocation, generation of combat readiness, and manifestation of economic prosperity.

The drive for technological dominance is not a new policy. The fixation with advanced technology dates back to the founding of the country and the founder Mao Zedong. Mao envisioned the “socialist world’s overwhelming superiority in S&T and came to see technological strength as central to economic, ideological, and geopolitical power for China” – a view that CCP leaders still hold today. Xi characterized the national pursuit of technology as “ganchao” (catch up and surpass). The strategic objective is one of the CCP’s most defining and enduring goals, and provides an essential policy framework to understand “China’s ambition to become a technological superpower, bringing together the legacies of Marxism, Maoism, and the relentless drive toward modernization [realization of the Chinese Dream] by the CCP.”    

Xi embraced “ganchao” and made it his own. In January of 2013, shortly after assuming power, Xi laid out his vision for China’s future through the lens of national rejuvenation and reinvigorated national efforts to “catch up and surpass,” reinforcing the legacy linkage of technological advancements to the ideology and identity of the CCP. Four years later, at the 19th National Congress of the CCP, Xi reaffirmed the strategic roadmap for the Chinese Dream. Xi moved China forward from Mao’s revolutionary legacy and Deng’s iconic policy dictum – “observe calmly, secure our position, cope with affairs calmly, hide our capacities and bide our time, be good at maintaining a low profile, and never claim leadership” – and heralded a new era in Chinese national development. To Xi, technological innovation, by all means, is necessary to surpass the West, and technological dominance is the path to realize global preeminence by 2049.             

Beijing’s Made in China 2025 and Internet Plus policies are two key components of China’s strategic plan to achieve technological dominance by the end of the decade and global preeminence by 2049. The former aims to push the economy towards higher value-added manufacturing and services through digital technology and automation. It is a blueprint to upgrade the manufacturing capabilities of Chinese industries into a more technology-intensive dynamo. The latter aims to capitalize on China’s massive online consumer market by building up the country’s domestic mobile Internet, cloud computing, big data, and Internet of Things (IoT) sectors. It is a roadmap to integrate information technology with the key industries of manufacturing, commerce, banking, and agriculture. Both policies have been characterized as an innovation mercantilism that leverages the power of the state to “alter competitive dynamics in global markets from industries core to economic competitiveness.” 

In the maritime domain, Xi called for accelerating innovation in marine technologies to increase capacity and improve naval development capability, fostering the development of domestic marine industries in support of both PLA modernization and reform efforts and national civilian projects like the Made in China 2025 and Digital Belt and Road Initiative. He promoted marine connectivity and practical collaboration to develop “blue partnerships” among like-minded maritime nations under the One Belt and One Road framework at last year’s China Marine Economy Expo.

Russia – Rebuilding Technology Base for National Greatness (Technological Revanchism)

In 2017, Russian President Vladimir Putin presciently declared that “whoever becomes the leader in this sphere [explicitly AI and implicitly technology at large] will become the ruler of the world.” The bold statement summarizes the purpose and intent behind the 2017 Strategy for the Development of an Information Society for 2017–2030, one of Putin’s key policy initiatives to restore Russia to its former glory. The strategy prioritizes areas deemed essential for the successful development of Russian information and communication technologies, specifically:

  • New generation of electronic networks
  • Processing of large volumes of data
  • AI
  • Electronic identification and authentication
  • Cloud computing
  • Post-industrial Internet
  • Robotics
  • Biotechnologies Information security

The strategy also devotes considerable attention to “ideological concerns, including the prioritization of Russian traditional spiritual and cultural values, popularization of Russian culture and science abroad, and proliferation of steady cultural and educational contacts with Russian compatriots living abroad.” The intent relates to the “Russian World” concept that aims to propagate Russian soft power abroad.

The 2017 Strategy for the Development of an Information Society supplements and complements the greater 2015 National Security Strategy (NSS) that codifies Russia’s strategic interests and national priorities. The strategic document identifies Russian national interests as “strengthening the country’s defense, ensuring political and social stability, raising the living standard, preserving and developing culture, improving the economy, and enhancing Russia’s status as a leading world power.” The strategy reflects a Russia more confident in its ability to defend its sovereignty, resist Western pressure and influence, and realize its great power aspirations.

The Russian military remains essential to Putin’s ambitious and expansive strategic plan to restore Russia to its former Soviet greatness. The incremental modernization of Russia’s military depends on the future viability and sustainability of the Russian defense industry. Moscow funds or subsidizes its defense industry primarily through four state-supported investment approaches that provide insights into current defense priorities and future defense developments: “In certain areas, the Kremlin invested significant resources in recapitalizing key defense corporations indicating its prioritization of the systems they produce and the technologies they develop. In other areas, Russia engaged in enduring support of critical defense corporations demonstrating its long-term commitment to key technologies. Another approach reflects the incorporation of its defense corporations into state-owned enterprises. The last approach is speculative investment in dual-use technologies through means such as venture capital.”

America – Maintaining Global Technology Leadership (Technological Superiority)

The 2017 NSS charges the National Security Enterprise to promote American prosperity by leading in research, technology, invention, and innovation to sustain and expand competitive advantages in today’s strategic environment of GPC. The tasked priority actions include understanding worldwide S&T trends, attracting and retaining inventors and innovators, leveraging private capital and expertise to build and innovate, and rapidly fielding inventions and innovations. The NSS also charges the Department of Defense (DOD) to preserve the peace through strength by renewing military capabilities to retain military overmatch for competitive advantages. Overmatch strengthens diplomacy and shapes the international environment to protect and advance U.S. national interests. To maintain military overmatch, the United States must restore the ability to build innovative defense capabilities, force readiness for major conflict and strategic competition, and size of the force so that it is capable of operating at a sufficient scale and for a duration to win across a range of contingencies and interconnected domains. Lastly, the NSS calls on key allies and partners to modernize, acquire the necessary joint warfighting capabilities, improve force readiness, expand the size of their forces, and affirm the political will to compete and win.     

Within the DOD, the 2018 National Defense Strategy, 2018 National Military Strategy, and Defense Planning Guidance collectively highlight the need for competitive technological innovation in national security to sustain and expand the U.S. military competitive advantages, and direct greater partnerships between the DOD and commercial enterprises to out-innovate global competitors. Nowhere is the need for commercial technological innovation more compelling than in the DOD. The 2019 Digital Modernization Strategy states that “technological innovation is a key element of future readiness and essential to preserving and expanding U.S. military competitive advantage in the face of near-peer competition and asymmetric threats.” The strategy calls for the ability, flexibility, and agility to innovatively and rapidly field technology-enabled warfighting capability to the warfighter faster than potential adversaries. The guiding principles for DOD’s acquisition of commercial technology capabilities underscore that “preserving and expanding our military advantage depends on our ability to deliver technology faster than our adversaries and the agility of our enterprise to adapt our way of fighting to the potential advantages of innovative technology.”   

Within the Department of Navy, Chief of Naval Operations Admiral Michael Gilday emphasizes the role of allies and partners in enforcing international maritime norms and operating together as a technology-enabled Joint Force. He declared his intention to bring key U.S. allies and partners along with the U.S. Navy (USN) as it moves into high-end maritime operations at last year’s 12th Regional Sea Power Symposium. He told his contemporaries from more than 30 foreign navies that “today, the very nature of our operating environment requires shared common values and a collective approach to maritime security…and that makes steady, enduring Navy-to-Navy relationships more important than ever”. He concluded his remarks by addressing the fluid technological environment and how emerging disruptive technologies affect the character of naval operations and warfare (warfighting). He underscored tactical cloud computing, AI, and machine learning as technological drivers of change for the USN and by extension allied and partnered navies. 

Admiral Gilday expounded on these points when he promulgated his initial guidance to the Fleet a few months later. The directive, in the form of a fragmentary order (FRAGO), simplified, prioritized, and built on the foundation of “A Design for Maintaining Maritime Superiority 2.0” issued by his predecessor. The FRAGO directs dedicated efforts across three critical areas – warfighting, warfighters, and the future Navy – and focuses on building alliances and partnerships to broaden and strengthen global maritime awareness, access, capabilities, and capacities. 

The FRAGO aligns well with the Secretary of Navy’s (SECNAV) guidance to mitigate the unpredictability of the future by building and maintaining a “robust constellation of partners and allies to work with us to solve common security challenges which are beyond our ability to predict, or defeat alone.” The SECNAV underscored two key initiatives. First, cooperative international agreements jointly produce, procure, and sustain naval armaments to reduce U.S. and partner costs, improve bilateral interoperability, and forge closer ties between U.S. and partner nation operating forces and acquisition and logistics communities. Second, S&T and data exchange agreements facilitate Research and Development (R&D) and information exchanges with allied or friendly nations, and marshal the technological capabilities of the United States and our key allies and partners to accelerate R&D and fielding of equipment for the common defense.  

The FRAGO also aligns well with the newly released Tri-Service Maritime Strategy (Advantage at Sea, Prevailing with All-Domain Naval Power). The joint strategy focuses on China and Russia and guides the Naval Service (USN, U.S. Marine Corps, and U.S. Coast Guard) for the next decade to prevail across the continuum of competition. The strategy has two main components. First, it articulates the employment of integrated all-domain naval power across the competition continuum. Second, it guides the development of an integrated all-domain naval force.

Japan – Advancing Toward Society 5.0 (Technological Evolution)

Japan takes a broader societal perspective of the Fourth Industrial Revolution (4IR). In 2017, Japanese Prime Minister Shinzo Abe unveiled Society 5.0, a future society that leverages technology in the key pillars of infrastructure, finance technology, healthcare, logistics, and AI to achieve economic advancement and solve societal problems. The super-smart society (Society 5.0) is the fifth step in the evolution of human development. It follows the information society (Society 4.0), industrial society (Society 3.0), agricultural society (Society 2.0), and hunting and gathering society (Society 1.0). The vision is to liberate people from routine tasks and to meet the needs of every person while not surrendering all control to technology. Society 5.0 boldly creates a social contract and economic model by fully integrating the technological innovations of the 4IR throughout every facet of Japanese society. The dual-use nature of these developing civil technologies also has national security applications and implications. 

Like in the United States, GPC influences Japan’s national security perspectives as outlined in its NSS. The NSS shapes Japanese defense priorities through the lens of enduring regional threats like China, North Korea, and Russia; emerging contested and interconnected domains of space, cyberspace, and the electromagnetic spectrum (EMS); the U.S.-Japan Alliance; and the Free and Open Indo-Pacific. Within the Ministry of Defense (MOD), the National Defense Planning Guidelines for FY2019 and Beyond, Mid-Term Defense Program FY2019-2023, and 2019 R&D Vision call for the development of a Multi-Domain Defense Force (Joint Force) that can conduct seamless and integrated cross-domain operations to preserve the security, prosperity, and independence of Japan. These operations fuse the new domains of space, cyberspace, and the EMS with the traditional domains of maritime, air, and land. The challenge for the MOD is how best to leverage the pervasive technological innovation happenings in the government, private industry, and academia within Japan and collaborate with the U.S. DOD on technological innovation.

Japan Maritime Self-Defense Force (JMSDF), in coordination with the other services, continues to make prudent targeted investments to develop a Multi-Domain Defense Force, strengthen the U.S.-Japan Alliance, take better care of its personnel, and hedge for the future. The FY2019,  FY2020, and FY2021 defense budgets (JMSDF allocation) focus on building capabilities and increasing capacities in command, control, communications, computers, ISR, and targeting (C4ISRT), information warfare, cyberspace network operations and defense, space warfare, undersea warfare, and ballistic missile defense. The JMSDF also makes investments in four enabling organizational areas. Firstly, enhance function in all phases through continuous enhancement of necessary capabilities. Secondly, better develop concepts necessary for defending the country by utilizing the JMSDF capabilities to their full potential. Thirdly, further strengthen cooperation through deepening relationships with other navies with the U.S.-Japan Alliance as its core, and through making full use of joint and comprehensive relationships with various partners. Lastly, improve personnel programs, the foundation of the JMSDF, both in quality and in quantity.

Technology Competition

GPC is alive and well in the Indo-Pacific, particularly in the contested technology domain. Russia, China, America, and Japan are entangled in a competitive technology race for economic prosperity and national security. Although allied Washington and Tokyo are fully committed to national security technological innovation as evidenced by their respective national defense strategies and mutual pursuit of a technology-enabled Joint Force (Multi-Domain Defense Force), the broader DOD (USN) and MOD (JMSDF) must better leverage emerging technologies and developing concomitant warfare concepts (doctrines) to adapt to the new way of fighting. Otherwise, the United States and Japan risk ceding the technology domain and consequently military superiority in the Indo-Pacific to revisionist China and revanchist Russia.

CAPT Pham is a maritime strategist, strategic planner, naval researcher, and China Hand with 20 years of experience in the Indo-Pacific. He completed a research paper with the Office of Naval Research (ONR) at the U.S. Naval War College (USNWC) in 2020. The articles are derived from the aforesaid paper. The views expressed here are personal and do not reflect the positions of the U.S. Government, USN, ONR or USNWC.

Featured Image: SAN DIEGO (Feb. 23, 2017) Cmdr. Mark Stefanik, commanding officer of the littoral combat ship USS Montgomery (LCS 8), discusses the ship’s engineering capabilities with Japan Maritime Self Defense Force Director of Ships and Weapons Division, Capt. Shinichi Imayoshi. (U.S. Navy photo by Fire Controlman 1st Class Nathaniel J. Wells/Released)

A Tale of Two Seas: The Caribbean and South China Sea in Great Power Perspective

By Akshat Patel

The South China Sea is to China as the Caribbean Sea is to the United States. Just as the United States repeatedly thwarted European powers from the Caribbean throughout the nineteenth and twentieth centuries, China intends to thwart an American presence in the South China Sea in this century.1 In 1962, the ambitions of two superpowers reached a crescendo in the form of the Cuban Missile Crisis. Along the same lines, the ambitions of two of today’s great powers are resulting in skirmishes across the South China Sea. In the same way that the clash in the Caribbean was a deciding factor in who the victor of the Cold War would be, American maritime superiority will be decided in large part by who the reigning power in the South China Sea will be.

The parallels between Soviet-U.S. relations vis-à-vis the Caribbean and China-U.S. relations vis-à-vis the South China Sea are as striking as they are instructive. The Red Navy’s mistakes in its transatlantic ventures serve as salutary course corrections for the U.S. Navy’s transpacific undertakings today.

Then, as Now

By the twentieth century, the United States had established itself as the dominant power in the Americas. Politically stable and economically vibrant, the United States overshadowed the smaller republics of the Caribbean. Blessed with two adjacent oceans and two peaceful neighbors, the United States was virtually immune to a land-based invasion. The only way for a foreign power to establish a foothold in the American hemisphere was through the Caribbean. While “the Caribbean was the natural maritime extension of the continental United States, it was also the part of America’s security environment most vulnerable to European attack,” notes Robert Kaplan, senior fellow at the Center for a New American Security.2

In October of 1962, the Soviet Union attempted to exploit this potential American vulnerability through Cuba. The Soviets wanted to establish a naval base and station land-based nuclear missiles on the island nation. President Kennedy ordered an embargo around Cuba to expunge Soviet ambitions from the Caribbean and compelled Khrushchev to blink in the ultimate staring contest. In exchange for withdrawing nuclear missiles from Cuba, the Soviets extracted a public promise to not invade Cuba and a private promise to withdraw American nuclear missiles from Turkey.3 Both sides avoided direct conflict by reaching an agreement that neither desired. The Soviets surrendered their Caribbean aspirations and the United States surrendered its Cuban advances. 

China enjoys many of the same benefits of geography as the United States. Surrounded by natural barriers to aggression such as frigid Siberia, the Gobi Desert, the impenetrable Himalayas, and the lush forests of Vietnam and Laos, China is largely shielded from terrestrial attack. Just like the United States, China’s vulnerability is to the southeast. Not only do most Chinese live near the coast, but the South China Sea serves as their primary economic lifeline.4 The straits of Malacca, Makassar, Sunda, and Luzon all pour into the South China Basin and control both China’s energy supplies from the Middle East and its exports to the West.5 Just as the Caribbean is littered with small island nations eclipsed by a colossal United States, the South China Sea is peppered with littoral states over which China casts a large shadow.

The fallout over control of an American sea of 1.5 million square miles foreshadowed the rest of that great-power competition – the Cold War. Similarly, the contest for an Asian sea of comparable proportions will act as a bellwether for the great-power competition taking place today. Five claimants occupy almost 70 different atolls and have built more than 90 different outposts in the South China Sea.6 With 20 outposts in the Paracel Islands, 7 in the Spratly Islands, and 3,200 acres of newly constructed land, China is by far the most aggressive player in the area.7 Malaysian, Philippine, Taiwanese, and Vietnamese maritime claims have been brushed to the wayside while China charges forward to secure its “blue national soil.”8 China is aware of its vulnerability to the southeast and stands to gain immensely by shielding against it. By turning the South China Sea into a Chinese enclave, Beijing would not only safeguard the lives and livelihood of its citizens, but would also create a strategic disadvantage for the United States. The South China Sea is a conduit linking the Western Pacific to the Indian Ocean and Chinese control of that critical juncture would jeopardize American maritime dominance. Lucrative global trade routes would cease to be international common grounds and the redoubts of allied nations would fall under a Chinese penumbra. American merchants would be subject to harassment by the Chinese coast guard and the U.S. Navy would no longer be able to crisscross the Indo-Pacific theater with impunity.

To circumvent China’s efforts to dominate the South China Sea, American naval policy is rightly learning from Soviet efforts. By maintaining naval bases in South Korea, Japan, and Guam while simultaneously encouraging a naval buildup in Singapore, Taiwan, and the Philippines, the United States is building a multilateral coalition to check Chinese forays into the Pacific.9 As the Soviet Union attempted to tamp down American influence in the Americas through Cuba, the United States is curbing Chinese influence in Asia through Association of Southeast Asian Nations (ASEAN) nations.

Empowering the Right Platform

When Che Guevara expressed concern at the Soviet gambit in the Caribbean, Soviet Minister of Defense Rodion Malinovsky replied, “There will be no big reaction from the U.S. side.”10 The Soviet defense minister expected little retaliation from the United States because, as he viewed it, he was exercising soft power by bringing Cuba into the fold. As the term “Cold War” reminds us, neither side was ever interested in a full-fledged, direct, violent conflict; instead, the Cold War was a great-power competition in which both sides tried to undermine the other through maximum power projection while suffering minimal losses. To project this power, the Soviets wanted to permanently station an entire fleet in the Caribbean: two cruisers, four destroyers, eleven diesel electric submarines, and two submarine tenders.11 But, at the last minute, the Soviets changed their plans. Instead, they sent forth four covert Foxtrot-class diesel submarines as the vanguard of the Red Fleet.12

The reigning Soviet naval doctrine prioritized submarines over surface ships. In 1956, Khrushchev stated that “submarines were the most suitable naval weapon and they would receive emphasis in the future development of the Soviet Navy.”13 As a result, new construction of major surface vessels was virtually terminated under his premiership.14 According to a 2017 CIA analysis of the Soviet Navy, “Khrushchev declared surface naval forces…no longer useful and predicted they would soon become obsolete.”15 Motivated by advances in technology, the Soviets wanted to reduce overall military manpower and costs by replacing a large surface fleet with a more effective, smaller submarine fleet.16 In other words, they prioritized a denser more capable force over a more numerous, less capable one.

By attempting a transatlantic overture to the Caribbean, the Soviets made the right geopolitical decision. By sending submarines, they made the wrong tactical decision. Submarines are mobile, undersea intelligence gatherers packed with brutish lethality. They are about “sheer aggression,” not power projection.17 They are best suited to spy and wreak havoc, not as conspicuous icons of power. By deploying covert submarines to the Caribbean, the Soviets were guaranteed to alarm Americans and provoke a strong response. President Kennedy ordered a maximum Anti-Submarine Warfare (ASW) effort to track and surface the submarines.18 The Soviets were not harmlessly posturing by deploying submarines within sailing distance of Florida while simultaneously stationing land based nuclear missiles at America’s doorstep. They were committing an act of belligerence that the Unites States met with force. The Atlantic Fleet mobilized to detect and ferret out the furtive aggressors. As Defense Minister Malinovsky’s comment suggests, the bold step to Cuba was never supposed to culminate into the hair-raising crisis that it did. His intention was to assert Soviet dominance without causing an international scene. This is exactly the United States’ objective in the South China Sea today.

To maintain American primacy in the South China Sea, Chinese maritime ambitions must be curtailed without devolving into the grand standoff that occurred in the Caribbean. Submarines should not be the U.S. Navy’s primary tools in this great-power competition. Because of the raw aggression that submarines communicate, they are ill-suited for missions that display military power and best suited for missions that exercise military power. The surface fleet’s strengths are altogether opposite.

Aircraft carriers, simultaneously symbols of national power and of national prestige, are excellent tools for communicating power, but a ruinously costly platform to lose.19 Losing a symbol of national pride would deal irreparable damage to the national psyche. The U.S. Navy must look to its destroyers and cruisers as the primary combatants of this great-power competition. While not as awe-inspiring as an aircraft carrier, they are still an excellent form of communication. The U.S. Navy has rightly increased destroyer and cruiser freedom of navigation operations (FONOPs) in the South China Sea, and it must continue this upward trajectory.20 By regularly challenging expansive Chinese claims, Washington must continue to signal Beijing that the South China Sea is not a Chinese lake. Frequent FONOPs through contested sea lanes go much farther in projecting maritime strength, communicating intentions, and deterring aggression than stealthy submarine deployments. To do this effectively, and not repeat Soviet mistakes, the United States needs a larger surface fleet.

The battle of ‘capability vs. numbers’ is a perennial struggle that has haunted the minds of American naval policy wonks for decades. Examined holistically, there is a clear winner. “The trend towards fewer, more capable ships is both unarguable and . . . inexorable,” notes Admiral John Ellis, former Commander of United States Strategic Command.21 Over the past twenty-five years, the number of ships in the U.S. Navy has decreased by nearly half while the demands placed on the American fleet remain the same.22 “Today, that means twice the percentage of the fleet is deployed than was at the height of the Cold War,” notes ex-Chief of Naval Operations Admiral Gary Roughead.23 At the same time, the Congressional Budget Office recently determined that the Navy is only able to fulfill 60 percent of deployments requested by combatant commanders.24 In short, at some point, numbers do matter. Simple math dictates that if the U.S. Navy has fewer ships, either they need to be deployed more often or they must be asked to execute fewer missions. The Navy must stem its unrelenting pursuit of a leaner, cutting-edge fleet. Naval budgeteers must be willing to substitute a pricey aircraft carrier for a dozen more destroyers or cruisers. Vulnerable aircraft-carriers and stealthy submarines will not be the heroes that secure American maritime superiority, it will be destroyers and cruisers.

Together, not Alone

The Cuban missile crisis of 58 years ago stands as the most studied event of the nuclear era—so much so that there are essays about why we should stop writing essays about it.25 Yet, until fall 2002, American national security experts were not aware that the four Foxtrot-class diesel submarines deployed to Cuba had been armed with nuclear-tipped torpedoes.26 The CIA’s four intelligence reports on Soviet arms buildup leading up to the Cuban Missile Crisis categorically ruled out the presence of nuclear weapons in the Caribbean.27 Instead of preparing Americans for the possibility of nuclear catastrophe, intelligence reports based on complacent assumptions made the discovery of this fact all the more shocking. In short, the Soviet Union caught the United States flat-footed.

Handicapped by the technology of the time and oblivious to the presence of tactical nuclear weapons, the U.S. Navy decided to release a Notice to Mariners (NTM) detailing how depth charges would be used to peacefully signal the submarines to surface. Moscow never sent an acknowledgement of receiving the NTM.29 Upon detecting the nuclear torpedo laden B-59, American naval forces started dropping depth charges in accordance with the NTM. Unaware of American intentions, suffering from inhospitable conditions and agitated by the subsurface explosions, Captain Savitsky gave the order to ready the nuclear torpedo: “We’re gonna blast them now! We will die, but we will sink them all—we will not become the shame of the fleet.”30 It is because cooler heads prevailed on the B-59 that day that the Caribbean was not subject to a nuclear explosion. Second Captain Vasily Arkhipov overruled Captain Savitsky and prevented the opening shot of a nuclear war.

Now as then, complacency continues to surprise and compel the United States into ad hoc, reactive measures. In 2012, both China and the Philippines swarmed a collection of rocks and reefs known as Scarborough Shoal. Up until then, both countries claimed the Shoal as theirs, but it was under de facto Philippine control. 550 nautical miles from the closest Chinese land mass and 124 nautical miles from the main Philippine island of Luzon, the Scarborough Shoal episode exemplifies China’s ambitions in the South China Sea.31 To mediate their dispute, the United States hastily brokered a bilateral agreement for both sides to retreat and, in effect, return control to the Philippines. Only one side held to its word. China used the agreement to deceive the Philippines into retreating while maintaining its presence. Without American reprisal or condemnation, China has since then controlled Scarborough Shoal.

The United States must not let the People’s Liberation Army (Navy) bully China’s neighbors. Unlike Khrushchev’s about-face with Castro, the United States must stand steadfast beside its allies. Despite increased FONOPs in the South China Sea, a recent public opinion poll of ASEAN citizens indicated that almost two-thirds of respondents believed U.S. engagement with ASEAN nations had declined. Another one-third said they had little to no confidence in the U.S. as a strategic partner and provider of regional security.32 The United States must reaffirm its commitment to the South China region through military sales, combined exercises, and economic empowerment. It is much harder to reverse a change in the status quo than to maintain it through deterrence. By turning the cause of American maritime dominance into a multilateral quest, China’s unilateral offensives will be rendered moot. 

One More Time

The Soviet Union was not defeated through armed conflict; it was defeated through persistent coercion. As the United States negotiates its presence in the South China Sea, and by extension its maritime dominance, it must rely on the same strategy that overwhelmed the Soviet Union while not resurrecting Soviet mistakes. The Soviet decision to forsake their surface fleet and their allies precipitated their withdrawal from the Caribbean, which in turn forecasted their global retreat and eventual downfall. The United States must simultaneously lean on its surface fleet and its ASEAN allies to maintain its position as the bailiff of the world’s saltwater commons.

Sun Tzu pithily remarked that the supreme art of war is to subdue the enemy without fighting. We have done it once before, now we must do it again.

LT Akshat Patel is a Submarine Warfare Officer in the U.S. Navy. The views expressed here are those of the author alone and do not represent those of the Department of Defense. 


1. John J. Mearsheimer, The Tragedy of Great Power Politics, (W. W. Norton, New York, 2001), 401.

2. Robert D. Kaplan, Asia’s Cauldron: the South China Sea and the End of a Stable Pacific (New York: Random House, 2015), 278.

3. Noam Chomsky, “Cuban Missile Crisis: How the US Played Russian Roulette with Nuclear War,” The Guardian, Guardian News and Media, October 15, 2012, https://www.theguardian.com/commentisfree/2012/oct/15/cuban-missile-crisis-russian-roulette.

4. George Friedman, The Next 100 Years: A Forecast for the 21st Century (New York: Random House, 2009), 153.

5. Ibid.

6. “Occupation and Island Building,” Asia Maritime Transparency Initiative (Center for Strategic and International Studies), accessed April 25, 2020, https://amti.csis.org/island-tracker/

7. “China Island Tracker,” Asia Maritime Transparency Initiative (Center for Strategic and International Studies), accessed April 25, 2020, https://amti.csis.org/island-tracker/china/

8. Kaplan, Asia’s Cauldron, 60.

9. Ibid., 75.

10. Svetlana V Savranskaya, “New Sources on the Role of Soviet Submarines in the Cuban Missile Crisis,” Journal of Strategic Studies 28:2 (April 2005): 236, doi: 10.1080/01402390500088312.

11. Raymond Garthoff, “New Evidence on the Cuban Missile Crisis: Khrushchev, Nuclear Weapons, and the Cuban Missile Crisis,” Cold War International History Bulletin 11 (Winter 1998): 253.

12. Ryurik A Ketov, Captain 1st Rank, Russian Navy (retired), “The Cuban Missile Crisis as Seen Through a Periscope,” Journal of Strategic Studies 28:2 (April 2005): 218, doi: 10.1080/01402390500088304.

13. Soviet Navy: Intelligence and Analysis During the Cold War (Central Intelligence Agency, 2017), 12.

14. Ibid., 7.

15. Ibid., 12.

16. Ibid., 8.

17. Kaplan, Asia’s Cauldron, 71.

18. Svetlana V Savranskaya, “New Sources on the Role of Soviet Submarines in the Cuban Missile Crisis,” 249.

19. “Aircraft-carriers are big, expensive, vulnerable – and popular,” The Economist, November 2019; Jeff Vandenengel, “Too Big to Sink,” Proceedings, May 2017.

20. Zack Cooper et al. “America’s Freedom of Navigation Operations Are Lost at Sea,” Foreign Policy, January 2019.

21. James O. Ellis, Admiral, U.S. Navy (retired), “Rightsize the Navy,” Hoover Digest (Summer 2018): 49.

22. Gary Roughead, Admiral, U.S. Navy (retired), “A Stretched Navy and A Fiscal Disconnect” Strategika 47 (January 2018).

23. Ibid.

24. Ellis, “Rightsize the Navy,” 51.

25. Eliot A. Cohen, “Why We Should Stop Studying the Cuban Missile Crisis,” National Interest, Winter 1985/86.

26. Svetlana V Savranskaya, “New Sources on the Role of Soviet Submarines in the Cuban Missile Crisis.”

27. Amy B. Zegart, “October Surprises,” Hoover Digest (Fall 2013): 50.

28. Svetlana V Savranskaya, “New Sources on the Role of Soviet Submarines in the Cuban Missile Crisis,” 249.

29. Ibid., 250.

30. Ibid., 246.

31. Gordon G. Chang, “A China Policy That Works – For America” Strategika 41 (May 2017).

32. Jack Kim et al. “Southeast Asia wary of China’s Belt and Road project, skeptical of U.S.: survey,” last modified January 6, 2019, https://www.reuters.com/article/us-asean-singapore-idUSKCN1P00GP.

Featured Image: A P2V Neptune U.S. patrol plane flies over a Soviet freighter during the Cuban missile crisis in 1962. (Photo via Wikimedia Commons)