Tag Archives: UUV’s

Unmanned Underwater Vehicles: A Conversation with Chris Rawley

To start our UUV Week, we’re talking with Chris Rawley, owner of the website Naval Drones: Unmanned Naval Systems and author of Unconventional Warfare 2.0. Chris is a surface warfare officer in the US Navy Reserve.

Penguins: They Love UUVs. NSF-funded SeaBED shown.
Penguins: they love UUVs. NSF-funded SeaBED shown.

SD: Thanks for talking with us today, Chris. Let’s get right to it with some initial broad strokes. There’s clearly a great deal of potential out there for UUV platforms, but in a very general sense, what mission areas of those set out by the US Navy’s UUV Master Plan show the most promise in terms of cost effectiveness and practicality?

CR: Thanks Sally. Before I start, I have to provide the disclaimer that I am speaking here in my personal capacity and my comments and opinions do not reflect U.S. Navy or DoD policy. Also, I am by no means an expert in this field, though I have picked up some knowledge the past few of years writing for “Naval Drones,” which was initially established as a marketing tool for a UUV concept I developed. After some fits and starts, my company is currently working on this UUV design with a prototyping firm.

From my perspective, mine countermeasures is the mission area ripest for disruption by unmanned undersea vehicles. As CIMSEC’s readers know, mine clearance involves a painstaking, methodical process of hunting to rule out false positives detected by various sensors or using sweeping gear to activate the mines. Dedicated mine countermeasures ships, though still in service, will eventually be replaced multi-mission platforms embarking UUVs. Most readers know about the Littoral Combat Ship’s dedicated mine countermeasures payload, but pretty much any naval combatant or auxiliary with a margin of payload capacity such as the JHSV can launch UUVs or carry boats or unmanned surface vessels (USVs) that can launch UUVs directly into a mine field at a safe stand-off distance from the mother ship . Multiple UUVs operating together will eventually become faster at mine hunting than dedicated surface ships with sweeping gear or mine-detection sonars. ROVs and UUVs such as the SeaFox can also localize, identify, and neutralize the mines. Though I think the UUV Master plan specifically mentions nine mission areas, besides MCM, at some point UUVs will play a part in pretty much any kind of naval operation one could imagine.

While we continue to wait for the silver bullet of long-endurance propulsion systems, the three areas of UUV development with the most potential I see are payload miniaturization, payload modularity, and swarming algorithms.

USN sailors load a SeaFox MCM UUV (U.S. Navy photo by Lt. Colby Drake/Released)
USN sailors load a SeaFox MCM UUV (U.S. Navy photo by Lt. Colby Drake/Released)

SD: Let’s talk specifically about UUVs in an ASW capacity. A lot of readers (okay, especially me) are interested in what UUVs can bring to anti-submarine warfare (ASW). In all likelihood, such a platform would need to detect low-frequency signals, demanding a large array and a vehicle to support it. Will there have to be a trade off between the reasonable size of a notional platform (to support such an array) and such a platform’s detection capabilities? Are leave-behind arrays delivered as part of a UUV payload a more desirable option?

CR: Autonomous underwater vehicles such as gliders are already helping to characterize the water column, which as you know is one of the most important foundations of ASW. As far as sub-hunting goes, a large UUV towing a passive array might be one way to do it, though I’m not sure that is feasible for a variety of reasons. Or as you’ve alluded to, a larger UUV could basically become a means to more precisely deploy sonobuoys or emplace arrays on the bottom. What about smaller, more numerous UUVs each carrying a single hydrophone and operating at different depths? Or UUVs able to surface and act as non-acoustic data relays between bottom arrays and ASW aircraft? I think there is certainly room for some R&D and experimentation in this area.

SD: The idea of an UUV with the capacity to surface and communicate as a non-acoustic data relay with an MPRA asset is particularly promising and offers a solution to some of the major complexities of airborne prosecutions. Further, the idea of employing UUVs to deploy hydrophones or arrays at specific depths is a novel turn on a well-established technique. But perhaps getting those assets on-station at the appropriate times would present a difficulty; after all, one of MPRA/airborne ASW’s major advantages is speed and flexibility relative to the target. On to another ASW question: in an increasingly crowded underwater environment, do you think that submarine-launched UUVs will offer more or less stealth to launching platforms? Do you see any applicability for UUVs as a decoy, or would maintaining acoustic superiority for existing and future subs prove a more worthwhile, cost-effective pursuit?

CR: Unlike a sub-fired missile, I’m not sure a UUV will make a launching submarine any less stealthy. To my knowledge, most of the UUVs that have been tested have been “swim out,” so they wouldn’t add much extra acoustic signature to the launch platform. Some sort of acoustic or magnetic decoy UUV does seem like a viable and useful payload for a submarine.

SD: U.S. Submarine-launched UUVs may have somewhat of a compatibility crisis in the coming decades. SSGNs are uniquely suited for UUV operations, but as modified-Ohio class platforms reach the end of their service life in the coming decades, how do you think UUV platforms will fit into the Virginia Payload Module program?

A Naval Sea Systems Command illustration depicting the VPM concept.
A Naval Sea Systems Command illustration depicting the VPM concept.

CR: Though launching and recovering a UUV from a submarine certainly adds an element of “stealthiness” for the UUVs themselves, it also comes with several complications. There are trade-offs in a submarine’s limited tube space – be it torpedo tubes or the VPM – between UUVs and other payloads such as torpedoes and missiles. Moreover, as you note, more submersible vehicles will result in an increasingly crowded operating environment. A manned submarine operating in conjunction with a large number of friendly (and potentially, enemy) UUVs makes waterspace deconfliction challenging and puts a capital ship at risk for a collision, especially as the size and speed of UUVs grows.

But here’s the thing: a UUV is inherently stealthy. Why do we need to launch it from another low signature platform (a submarine) when it can be launched more cheaply and across wider areas (such as shallow water littorals) by more numerous surface vessels or even air platforms?   Where there is no other way to get a shorter ranged UUV into the water column, a submarine may be the answer. To answer your question, we should save limited submarine payload capacity for offensive weapons and insert the majority of UUVs into the battlespace using more affordable means.

SD: Interesting points. I hadn’t considered the idea of mutual interference, and it certainly makes sense to deploy UUV assets from surface or air assets, where space would not be as much of a premium. This is another broad question, but what role do you see for UUVs in developing a cogent strategy to counter A2AD?

CR: UUVs could potentially serve as fire control sensors, decoys, and deception tools during a counter-A2AD campaign. I’ll leave it at that.

SD: Fair enough. One of the most frequently cited criticisms of developing UUV platforms is the inherent difficulty of communication and navigation in an underwater environment, as well as limitations on data links and processing. What is your answer to these criticisms?

CR: The easiest solution is the surface the UUV every now and then to transmit its data and get its bearings. But advances in underwater data modems (both acoustic and non-acoustic), along with autonomy will mitigate some of these challenges

SD: If operating covertly in a denied area, surfacing might be detrimental to the UUVs mission, but no more so than other subsurface assets that might be required to surface to receive or transmit data. But, admittedly, this is a pretty narrow scope to view a very broad potential mission set, and such a concern would not apply to all those potential applications. Let’s talk autonomous vehicles. AUVs operating at a distance will undoubtedly carry the potential for loss or interception. Is there an acceptable level of platform loss or risk operators of UUVs will have to accept?

CR: Sure. I think we will need a variety of UUV types. Some, like Large Displacement Unmanned Underwater Vehicle (LDUUV), will be large, expensive, and multipurpose. Others will be designed to be single-purpose, affordable, and expendable, while some others will be somewhere in the middle.

SD: Specifically though, do you think that there might be inherent risks to doing business via UUVs that do not exist for manned counterparts? Not necessarily that these risks outweigh the benefits, but, if there are any, they’re worth discussing.

CR: Signal interception is a problem faced with pretty much any platform these days. Even manned aircraft are going to be hard pressed to operate without emissions given how networked everything is.  Many UUV atmospheric signals will be on commercial channels, so hard to differentiate from civilian traffic. As to the technology being recovered by an enemy, that is certainly possible too, and a much higher risk for unmanned vehicles. We’ve learned lessons from UAVs that are applicable in this area.

SD: Great point; the risk for signal interception would likely not be any greater for unmanned platforms, and could be mitigated in similar ways. Let’s scale down a bit. On your blog, you recently discussed possible applications of small-scale UUVs, such as those fielded by the University of Graz’s Collective Cognitive Robots project. What applications do you envision for small-scale UUVs like these operationally?

CR: Search and recovery, especially in inshore waters or the littorals, comes to mind. But also acoustic decoys, and maybe even small, mobile sonobuoys for ASW. I’d love to get some reader feedback on this one actually.

SD: I really look forward to reading what others have to say on this issue as well. I think the MPRA ASW applications are especially promising. Last but certainly not least, let’s discuss the LDUUV program. What is your take on pier-launched or even surface-ship based systems with longer endurance and on-station capabilities?

The U.S. Navy's LDUUV
The U.S. Navy’s LDUUV

CR: For some applications, a pier-launched UUV might be viable. But a Navy’s strength is based on its mobility. So yes, as we seem to agree, surface ships are a pretty viable launch platform for large UUVs. The Naval Special Warfare Command’s Swimmer Delivery Vehicle is an analogy. Of course, they are most stealthy when operated from a submarine, but can also be launched from ships and smaller combatant craft. And depending on the operational range of the LDUUV, surface ships would be fine for many mission profiles. And if you are looking for stealth, the stealthiest platform is the one that hides in plain sight, so not every launch platform has to be a naval vessel.

SD: This has been tremendously interesting discussion! Thank you, Chris, for your time; congratulations on your progress with your own UUV design. We look forward to following its development! Thanks as well to the CIMSEC readers who have followed along. Let’s continue this discussion in the comments section.

Sally DeBoer is an Associate Editor for CIMSEC.

Visit Chris Rawley’s blog at: blog.navaldrones.com

 

 

 

Call for Articles: Unmanned Underwater Vehicle (UUV) Week, June 1-5

By Sally DeBoer

Unmanned Aerial Vehicles (UAVs) have consistently proven their considerable utility since their operational debut. Unmanned Underwater Vehicles (UUVs) may be ripe for similar operational success. Despite the command and control challenges inherent in conducting underwater operations, the sophistication and proliferation of UUVs has accelerated rapidly over the last decade.

From Boston Engineering’s hyper-realistic BIOswimmer, which mimics the swimming motion of a tuna to maintain position while conducting inspections of hulls and other underwater infrastructure, to Boeing’s mini-sub sized Echo Ranger AUV, UUV platforms run the gamut in size, endurance, and capability. UUV’s actual and notional applications are similarly diverse. Suited for ISR operations in contested environments, port security, special operations, and mine clearance/countermeasures as well as more mundane tasks like maintenance and mapping, UUVs offer tremendous utility for maritime forces’ rapidly evolving mission set, maximizing the benefits of underwater stealth while minimizing risk and, eventually, cost. Critics of UUVs, however, cite substantial development costs and technological hurdles (like the aforementioned communications difficulties). Indeed, just because UUVs can accomplish a mission may not mean they should…particularly when other assets can accomplish the job equally well.

th-1
BIOswimmer Pictured in Action

During the first week of June, CIMSEC will host a series focused on the development, application, and unique challenges of Unmanned Underwater Vehicles (UUV). As such, this is a general call for articles concerning UUVs. Articles should be between 500-1500 words in length and must be submitted no later than 25 May. Contributions may address the utility of UUV platforms to address the Navy’s evolving needs, the challenges of their application, their contributions to a particular mission or strategy, or some other facet of UUVs. Publication reviews will also be accepted.

Send articles to: Nextwar@cimsec.org
Length: 500-1500 words
Due by: 25 May 2015

Sea Control 30 – Australian Submarines

seacontrolemblemNatalie Sambhi, of the Australian Strategic Policy Institute,  brings us our first monthly ASPI partnership podcast, Sea Control: Asia-Pacific. This week, she discusses Australian submarine choices and strategy with ASPI members Rosslyn Turner and Dr.Mark Thompson.

DOWNLOAD: Sea Control 30 – ASPI Sub Conference

Remember, subscribe on iTunes or Stitcher Stream Radio. Leave a comment and five stars!

Unmanned Systems and Distributed Operations: Out of One, Many

Let’s face facts: it appears the U.S. Navy is incapable of building surface combatants, even small ones, for less than about a billion dollars apiece.  Consequently, it is likely the fleet will continue to shrink for the foreseeable future.  Yet it appears that the global demand for surface ship presence remains high for both peacetime operations and as an on-call force for contingency response.  So how can the Navy continue to meet worldwide operational commitments given fewer ships?  The key to maximizing the effectiveness of a declining surface force lies in combining suitable motherships with the latest unmanned warfighting technology.

Unmanned naval systems are rapidly proliferating internationally because they are increasingly capable and cheaper than manned alternatives for certain missions.  To date, sea-based unmanned systems have primarily conducted intelligence, surveillance, reconnaissance and mine countermeasures operations.  But within the next decade or so, we’ll see naval drones supporting a much wider spectrum of warfighting; including anti-submarine warfare, anti-surface warfare, electronic warfare, vertical replenishment, and even anti-air warfare. 

Fundamentally, naval warfare is about deploying payloads (sensors, weapons, and people) into different domains (water, air, land, and electromagnetic/cyber) from or against sea-based platforms.  These payloads have historically been delivered from ships, submarines, and aircraft.  Ships deploy offensive and defensive weapons, or those of their embarked aircraft, out to the limit of their organic sensors.  Sometimes they can be delivered over-the-horizon when cued by the sensors of another platform.  A guided missile destroyer fires its magazines of anti-aircraft weapons at targets it can detect and track.  A frigate deploys a single towed array sonar and perhaps a helicopter with sonobuoys and torpedoes that extend the reach of its ASW reach. A corvette can engage a surface threat within the range of its guns and surface search radar or electro-optical fire control system.  The point is that current naval operations are generally designed around weapons and systems hosted from surface combatants, so the number of primary platforms available limits the span of a Navy’s operations.

The Venus is an unmanned surface vehicle built by Singapore Technologies Electronics Limited (ST Electronics) and based on a hull developed by US company Navatek Ltd.
The Venus is an unmanned surface vehicle built by Singapore Technologies Electronics Limited (ST Electronics) and based on a hull developed by US company Navatek Ltd.

By employing distributed maritime operations, a single surface platform with embarked unmanned vehicles can operate over a wider area than one without.  Using a multi-tiered hub-and-spoke concept, a large surface ship should be capable of simultaneously operating dozens of air, surface, and sub-surface vessels.  Some of these would be launched from an intermediate staging craft carried on the mothership such as a RHIB or Unmanned Surface Vehicle, while others will launch directly from the main ship.  Currently, many of these intermediate platforms are manned, but in the future, large volume unmanned underwater vehicles and unmanned surface vehicles will operate for several days or more independently from a larger mothership which transports them into an operational theater.  The persistent over-the-horizon UUVs and USVs will deploy their own smaller drone counterparts to transport sensors or weapons the last dozens of miles to a target. 

Despite more than a few hiccups in her development, this distributed operations model is roughly the construct that the Littoral Combat Ship (LCS) will follow.  The off-board MIW and ASW mission packages will consist of a variety of UUVs, USVs, and the MQ-8B Firescout UAV.  The LCS was designed to shift out entire mission packages to use the same “sea frame” for surface, anti-surface, or mine counter-measures operations, although not at the same time.  The intent of this modularity was additional flexibility with fewer platforms; however, that concept of operations has not panned out because the ships will not be capable of shifting warfare areas as quickly as originally envisioned.  Rather than focusing on the LCS’ modularity and ability to transfer wholesale mission packages, it would be wiser to shift attention to finalizing the actual vehicles and interfaces that will support these warfare mission areas.  Moreover, LCS unmanned payloads that are not compatible with other vessels should be scrapped immediately.  With the future of the LCS program uncertain at best, unmanned vehicle integration lessons learned should be leveraged for other platforms. Flexibility and compatibility with multiple platforms are the key to ensuring a distributed operations model is successful.

Ships that feature spare volume for additional payloads and “interfaces” – flight decks, well decks, ramps, davits, and cranes – will be in highest demand for distributed operations involving drones.  So in addition to LCS, amphibious ships, the Joint High Speed Vessel (JHSV), Mobile Landing Platform (MLP), and other Military Sealift Command ships are included in this category.  In tune with the CNO’s “payload over platform” theme, given these attributes, ships that might otherwise not be considered state of the art warfighting vessels can have a new lease on life as unmanned motherships.  And ships that have generally been considered auxiliaries will now play a role in supporting offensive naval warfare by deploying sensors and weapons systems to complement the main batteries of high end surface combatants.  The end result of these drone motherships will be more sensors and weapons deployed across a wider ocean area with the same, if not smaller number of surface combatants.

The venerable Ponce’s recent conversion into an Afloat Forward Staging Base and its ongoing Arabian Gulf deployment is telling.  Ponce flew the ScanEagle UAV from her own flight deck, but also demonstrated the ability embark several Riverine Command Boats (RCBs) which can operate the PUMA UAV.  In a wartime scenario, each of these UAVs could support targeting for surface engagement (whether from a VBSS team or anti-surface missile).  During International Mine Countermeasures Exercises, Ponce deployed RHIBs with multiple mine-hunting UUVs.  So while a traditional surface ship might operate a boat or two and the same number of helicopters, using unmanned vehicles, that same platform can deploy numerous sensors and weapons at a considerable distance from the ship across all maritime domains.  

Distributed unmanned operations will require new concepts in afloat logistics.  Moored undersea docking stations to recharge the batteries of long range UUVs should be designed for air or surface deployment.  Unmanned air vehicles flying from surface ships will also support vertical resupply of distributed sea and ground elements operating hundreds of miles from their motherships.  This concept has been demonstrated successfully ashore with the K-MAX rotary wing vehicle which has flown 17,000+ sorties in Afghanistan since 2011, delivering over four million pounds of supplies to Marines in remote forward operating bases. 

The critical path to operational success will be tying all these systems together. Common technology standards and protocols must be developed sooner rather than later as discussed in detail here by Captain Lundquist.  Rather than relying on 40 year old legacy data-links, the architecture that connects manned and unmanned systems, regardless of domain, should be secure, light-weight, high-bandwidth, and affordable.  With today’s technology, those attributes need not be mutually exclusive.

The challenges and limitations to deploying these distributed unmanned concepts are non-trivial.  In addition to the issues with standards discussed above, autonomous algorithms need improvement, electrical storage capacity (especially for UUVs) must be increased, and cultural apprehension to offensive unmanned vessels need to be overcome.  But shrinking operational reach need not be a foregone conclusion with declining fleet size if the next wave in operating unmanned vehicles distributively is embraced.

CDR Chris Rawley is a surface warfare officer.  The opinions expressed are his own.