Tag Archives: U.S. Navy

Closing Remarks on Changing Naval Force Structure

Alternative Naval Force Structure Topic Week

By CAPT Wayne P. Hughes Jr., USN (Ret.)

The biggest deficiencies in reformulating the U. S. Navy’s force structure are (1) a failure to take the shrinking defense budget into account which (2) allows every critic or proponent to be like the blind men who formulated their description of an elephant by touching only his trunk, tail, leg, or tusk. To get an appreciation of the size of the problem you have to describe the whole beast, and what is even harder, to get him to change direction by hitting him over the head repeatedly.

A good thesis to make the point is by LT Juan L. Carrasco, published in 2009. It explores the number of fleet billets in (1) the then current 285 ship fleet (2) the proposed, now defunct, 313 ship Navy, and (3) a new fleet of over 650 vessels designed by nine members of the NPS faculty that included more than 260 smaller coastal warships. Carrasco showed, remarkably enough, the NPS-designed fleet required the fewest afloat billets. Looking at the details reveal why. One major reason was that the then-current Navy’s eleven CVNs took 46% of all fleet billets in 285 ship navy, so when the NPS-designed fleet cut the number of CVNs to six and added more than a dozen small sea-based air platforms, then they were more distributable 100,000 ton carriers. The smaller ones, more like a CVL in size, can operate in littoral waters where a CVN wing is more than is needed for long term littoral operations. Thus, there were enough billets to more widely distribute across the NPS fleet.

A Manpower Comparison of Three U. S. Navies: The Current Fleet, a Projected 313 Ship Fleet, and a More Distributed Bimodal Alternative by Juan L. Carrasco.

Those who haven’t thought about all the elements of a 600-ship navy will have a lot of questions about logistics, flying off smaller carriers, new tactics to accompany the new technologies, procedures to deal with warships damaged from missile attacks, and so forth. The Navy must confront its budget crunch while needing to buy more expensive missiles in greater numbers, restoring the SSBN fleet, sustaining the APN dollars to buy ever-more expensive aircraft, supporting Marine expeditionary operations, structuring an offensively capable surface ship fleet, building up—or merely sustaining—our increasingly valuable submarine forces, and maintaining enough CLF ships to take some losses and continue to maintain the fleet forward. This will take a lot more original thinking about the role of unmanned and robotic vehicles of many kinds, more teaming with partner nations, forward bases that support our friends in East Asia and Europe, applications of offensive cyber warfare, achieving more stealthy C2 ways to attack effectively first, all to achieve the end of building a more distributable, combat ready 21st Century U. S. Navy.

Captain Hughes is a designated professor in the Department of Operations Research at the Naval Postgraduate School, Monterey, California. He is a graduate of the U.S. Naval Academy and holds a master of science degree in operations research from the Naval Postgraduate School. On active duty he commanded a minesweeper and a destroyer, directed a large training command, served as deputy director of Systems Analysis (OP-96), and was aide to Under Secretary of the Navy R. James Woolsey. At the Naval Postgraduate School for twenty-six years, he has served in the Chair of Applied Systems Analysis, as the first incumbent of the Chair of Tactical Analysis, and as dean of the Graduate School of Operational and Information Sciences. Captain Hughes is author of Fleet Tactics and Coastal Combat (2000), Fleet Tactics: Theory and Practice (1986), and Military Modeling (1984), and he is a coauthor of A Concise Theory of Combat (1997). He served as a member of the Naval War College Press Advisory Board for over twenty-five years, until 2012.

Featured Image: PHILIPPINE SEA (Sept. 23, 2016) The forward-deployed Arleigh Burke-class guided-missile destroyer USS Barry (DDG 52) steams in formation with, from left to right, the amphibious transport dock ship USS Green Bay (LPD 20), the amphibious assault ship USS Bonhomme Richard (LHD 6), the amphibious dock landing ship USS Germantown (LSD 42), USS Ronald Reagan (CVN 76), the Arleigh Burke-class guided-missile destroyer USS Benfold (DDG 65), the Ticonderoga-class guided-missile cruiser USS Chancellorsville (CG 62), and the Arleigh Burke-class guided-missile destroyer USS Stethem (DDG 63) during a photo exercise during Valiant Shield 2016. (U.S. Navy photo by Mass Communication Specialist 2nd Class Kevin V. Cunningham/Released)

Enhancing Existing Force Structure by Optimizing Maritime Service Specialization

Alternative Naval Force Structure Topic Week

By Eric Beaty

The factors which color our view of the world have changed significantly since the end of the Cold War. That overarching conflict polarized the world’s politics and drove the United States to build a naval force focused on blue-water combat against a peer competitor, but the demise of the Soviet Union left a much more complex world where the United States must be prepared to simultaneously counter myriad threats at multiple levels. There is not a uniform solution to every problem and there is not a uniform fleet for every theater. Luckily, the United States has three maritime services—the Navy, Coast Guard, and Marine Corps—with different core competencies covering a broad range of naval missions. Current investments in force structure can be maximized by focusing the maritime services on their preferred missions.

Some missions have historically been assigned according to service and platform, rather than warfare areas, which has led to small, orphaned communities in some services. These communities are too small to have many high-ranking alumni in overall service leadership. The resulting consequences include them being often misunderstood and undervalued, poor funding, poor career opportunities, few if any champions in service leadership, and so on. Even when they are appreciated and funded, niche communities lack economies of scale. Therefore, the way to ensure missions are properly funded and manned is to task an interested party to advocate for them, and each of the maritime services has missions they are most passionate about.

The naval force of the future would see a Navy endorsement of the territorial patrol missions of the Coast Guard and expanding the role of the Navy-Marine Corps amphibious team, but there would be no radical course corrections. Instead, naval missions would be assigned to “centers of excellence” within the services to manage the organization, training, and tactics of the joint forces which would execute such missions.

Navy – Combat on the High Seas

The U.S. Navy would manage the missions of blue-water combat: submarine and antisubmarine warfare, carrier aviation, surface warfare, air defense, and sealift. These missions are already clearly within the Navy aegis, so there would be no major change in their execution. By focusing on these core mission sets, and shedding the remainder which the Navy has been unenthusiastic about, the leadership would be refocused on areas where Navy doctrine, tactics, and procurement have been most refined. As such, the platforms of the blue-water Navy would not deviate much from their present and planned configurations.

Coast Guard – Patrolling Offshore

The U.S. Coast Guard would be the mission manager for coastal and offshore patrol operations, for both law enforcement and maritime safety. Under the umbrella of muscular law enforcement, the Coast Guard would manage not only patrols of the American coast, but also patrols off South America and Africa as well. Most of these vessels would be frigates, both U.S. Navy and allied, rather than white-hull Coast Guard cutters, but all would be dedicated to low-intensity constabulary missions. By keeping the peace along much of the world’s coastline, the Coast Guard-led maritime patrol enterprise would free up high-capability vessels to deter peer competitors.

The worldwide maritime patrol enterprise would be led by the United States, with the nonjudgmental aim of maintaining the world’s seaways under the control of accepted and functional governments, because even reticent governments make easier negotiating partners than ungoverned chaos. The simplest way to lead such an enterprise is to help equip and train it, so the United States Navy and Coast Guard would have extensive foreign military sales, partnership programs, and personnel exchange programs with allied maritime nations.

7372192376_bc43368102_k
MAPUTO:: Mozambique (June 11:: 2012) Marine 1st Lt. Joseph McHugh Jr.:: officer-in-charge of Special Purpose Marine Air Ground Task Force (SPMAGTF) 12.2 Security Team Six speaks with U.S. Coast Guard Auxiliary Lt. Ricardo Moreno:: who is translating fire team training tactics to Mozambique marine Sub Lt. Jorge A. Julius. Service members assigned to High Speed Vessel Swift (HSV 2) are conducting classroom engagements with local military members for Africa Partnership Station. APS is an international security cooperation initiative:: facilitated by Commander U.S. Naval Forces Europe-Africa aimed at strengthening global maritime partnerships through training and collaborative activities in order to improve maritime safety and security in Africa. (U.S. Navy photo by Ensign Joe Keiley/Released)

To make such a broad endeavor more practical, the Coast Guard’s offshore cutters, the Navy’s patrol frigates, and allied nations’ warships would need to be common. The principal requirements would be low cost, ease of maintenance, and margins for growth. The basic warship would have a simple power plant, enough systems to operate as a minimalist patrol ship, and substantial space and weight left available for additions. Buyers could add additional fuel tanks and provisions storage, a variety of weapons, helicopter or boat facilities, or a host of other standardized modifications. While these frigates would be too small to add all options to every vessel, they would also be inexpensive enough that customers of modest means could still purchase them, and customers like the United States could purchase lots of them.

Built cheaply and in large numbers, flotillas of these semi-modular ships would patrol for pirates off Africa, drug smugglers in the Gulf of Mexico, or vessels in distress off North America. For patrol locations far from suitable ports, the Navy would reawaken the concept of tender vessels; using replenishment ships to establish at-sea bases to extend the on-station time of frigates and cutters. These tenders would provide fuel, provisions, spare parts, and a base for the flotilla’s command element. By performing lower-threat missions economically, these frigates would free up the destroyers, cruisers, and carriers to concentrate in high-threat theaters, thereby maximizing combat power.

Marine Corps – Seizing the Littorals

While the Navy prepares to fight wars on the high seas and the Coast Guard leads patrol efforts in more stable theaters, the Marine Corps would manage naval missions across coastal seas and coastal lands. As the service tasked with crossing from sea to land, the Marine Corps is concerned with anything which could affect or impede an amphibious action, including the obvious amphibious tasks, but should now focus on missions like mine countermeasures and small boat operations. Afloat Marine forces are carried to battle by Navy amphibious assault ships and delivered to the beach by Navy landing craft, so there would remain a substantial Navy influence in certain elements, but the Marines would be the lead advocates for coastal mission capabilities.

29725539032_509ee748ae_b
APRA HARBOR, Guam (Sept. 20, 2016) – Marines assigned to the 31st Marine Expeditionary Unit embark amphibious assault vehicles in the well deck of the Whidbey Island-class amphibious dock landing ship USS Germantown (LSD 42) during Valiant Shield 2016. Valiant Shield 16 is a biennial, U.S.-only, field training exercise (FTX) with a focus on integration of joint training among U.S. forces. Germantown, part of the Bonhomme Richard Expeditionary Strike Group with embarked 31st Marine Expeditionary Unit, is participating in Valiant Shield in an effort to increase naval integration and joint capabilities in the event of conflict, contingency, or disaster relief. (U.S. Navy photo by Mass Communication Specialist 2nd Class Raymond D. Diaz III/Released)

Navy destroyers, cruisers, and carrier battle groups would be responsible for clearing a path to the coastal area for the amphibious train, but the amphibious ships and their direct escorts would be responsible for fighting their way to the beach and enabling the landing force to cross it. To defeat small boat threats and provide fire support until the Marine landing force could establish artillery ashore, the amphibious train would be escorted by frigates (based on the common hull introduced above) specialized with the maximum number of naval guns possible. With these frigates, the amphibious force would be able to defeat enemy forces in waters too constricted for the blue-water warships to operate effectively.

Closer to the beach, mines would be the next threat to an amphibious landing. Rather than operate a separate fleet of minesweepers and mine countermeasures support ships, the Marine Corps-centered littoral force would base countermine detachments aboard the same amphibious assault ships carrying the landing force. Assault ships are designed with large well decks, copious storage, and substantial berthing space, making them best-suited to operate divers and unmanned countermine vehicles of all sizes. Furthermore, they have the flight decks to operate the CH-53K King Stallions that would take the airborne minesweeping mission from the Navy’s MH-53E Sea Dragons as these aging helicopters are retired. Saving the Navy the purchase of new mine countermeasures ships would pay off in funding for extra amphibious landing ships and CH-53Ks, a doubly effective reorganization for the amphibious mission.

The Marine Corps would also take overall responsibility for the related riverine mission set. Outside of port security missions (which would fall under Coast Guard leadership), all coastal and riverine boat operations would become part of the permanent Navy-Marine Corps amphibious enterprise. Effective riverine operations include the same elements as amphibious landings—afloat mobility, fire support, and power projection ashore—so consolidation of the riverine and amphibious communities would create a deeper and more diverse base of experience for both missions. Integration with Marine Corps infantry, aviation, and artillery would make the riverine squadrons more effective in combat than they could be alone. Also, increased small-boat landing and raiding capability would increase the Marines’ naval presence and take advantage of their unique maritime capabilities.

The Joint Naval Force in Action

This joint naval force of the future would perform in a very similar fashion to the present-day and historical naval forces, insofar as the various forces have capabilities available. Where the future naval force would excel is in peacetime administration and presence: more efficient management of missions would reduce redundancy and increase the number of forces available when and where they were needed for combat and deterrence. Transitory advantages like technology or brilliant leadership would come and go, but the future naval force would be organized to make the most efficient use of these advantages on the seas to achieve America’s long-term goals.

LT Eric Beaty is an E-2C/D Hawkeye Naval Flight Officer, presently working ashore in D.C. The views express herein are solely those of the author and are presented in a personal capacity on his own initiative. They do not reflect the official positions of the Department of Defense.

Featured Image: PACIFIC OCEAN (July 18, 2016) – Cpl. Ryan Dills communicates with other assault amphibious vehicles while traveling from amphibious assault ship USS America (LHA 6) to Royal Australian Navy Canberra class amphibious ship HMAS Canberra (L02).  (U.S. Marine Corps photo by SSgt. Christopher Giannetti/Released)

Distributed Lethality Week Concludes on CIMSEC

By Dmitry Filipoff

This week CIMSEC featured a series of articles submitted in response to the Distributed Lethality Task Force’s Call for Articles issued at the beginning of this month. The Task Force challenged authors to contribute creative thinking and solutions that can help refine the distributed lethality concept. Authors proposed various ideas such as specializing warships and commanders within a surface action group, mitigating logistical challenges through creative basing constructs, conceiving a long-term plan for unmanned-centric distributed operations, and other topics of relevance to distributed lethality. We thank our authors for their contributions and the Distributed Lethality Task Force for its partnership in executing this topic week. 

Beans, Bullets, and Benzene: A Proposal for Distributing Logistics by Elee Wakim

“One possible solution harkens back to the late 19th century, when nations desiring to project naval power around the world were confronted with a need for coaling stations to support their relatively short legged ships. The 21st century Navy, borrowing from this concept, could build a series of logistics hubs throughout the Western Pacific.”

Tactical Information Warfare and Distributed Lethality by Richard Mosier

“The Navy strategy is for these SAGs to transit to positions to attack enemy ISR, command and control, and defending forces; and deny them sea control. The success of distributed operations ultimately depends on Information Warfare (IW) operations to deny the enemy the data required to target and attack Surface Action Groups.”

Roles for Up-gunned LCACs in Adaptive Force Packages by Megan McCulloch

“In the event of a conflict within the littorals, operating a group of distributed small crafts may be a better option than sending an Aegis ship or CVN into the fray. One option for adaptive force packages (AFP) might be to employ “up-gunned” LCACs, possibly pairing them with a San Antonio-class LPD or a pair of Platform Supply Vessels (PSV), and an LCS.”

Which Player Are You? Warfare Specialization in Distributed Lethality by Jon Hill

“As easily as a coach can substitute a player, the Navy, too must be ready and flexible. With each ship’s warfare focus clearly defined, commanders will have the ability to add or subtract specific vessels in support of various mission sets and theaters of operation.”

After Distributed Lethality – Unmanned Netted Lethality by Javier Gonzalez

“The real challenge for the Navy then is to continue finding ways to innovate and rapidly incorporate new technologies such as unmanned systems to ensure that distributed lethality does not yield to distributed attrition. The best way to prevent distributed attrition is to fully integrate unmanned technologies into the fleet to ultimately transform distributed lethality into a new concept, hereby referred to as Unmanned Netted Lethality.”

Dmitry Filipoff is CIMSEC’s Director of Online Content. He may be contacted at Nextwar@cimsec.org

Featured Image: PACIFIC OCEAN (Nov. 19, 2014) U.S. Navy and Japan Maritime Self-Defense Force ships are underway in formation at the conclusion of Keen Sword 15. Keen Sword is a joint-bilateral training exercise involving the U.S. military and the Japan Self-Defense Force to increase combat readiness and interoperability of U.S. forces and the Japan Self-Defense Force. (U.S. Navy photo by Mass Communication Specialist 3rd Class Chris Cavagnaro)

After Distributed Lethality – Unmanned Netted Lethality

Distributed Lethality Topic Week

By Javier Gonzalez

Distributed lethality was introduced to the fleet in January 2015 as a response to the development of very capable anti-access area-denial (A2/AD) weapons and sensors specifically designed to deny access to a contested area. The main goal is to complicate the environment for our adversaries by increasing surface-force lethality—particularly with our offensive weapons—and transform the concept of operations for surface action groups (SAGs), thus shifting the enemy’s focus from capital ships to every ship in the fleet. Rear Admiral Fanta said it best: “If it floats, it fights.” The real challenge is to accomplish this with no major funding increase, no increase in the number of ships, and no major technology introductions. The Navy has successfully implemented this concept by repurposing existing technology and actively pursuing long-range anti-ship weapons for every platform. An illustrative example of the results of these efforts is the current initiative to once again repurpose Tomahawk missiles, currently used for land strikes, as anti-ship missiles. The next step in the evolution of distributed lethality will be to deploy similar force packages and introduce new technology. The introduction of  Naval Integrated Fire Control-Counter Air (NIFC-CA) technology is the kind of technological advancement that enhances distributed lethality. NIFC-CA combines multiple kill chains into a single kill web agnostic of sensors or platforms. In the near future, hunter-killer SAGs will deploy with these very capable networks and bring powerful and credible capability into the A2/AD environment

The first hunter-killer SAG deployed earlier this year. It was comprised of three destroyers and a command element. This recent SAG mirrors the World War II “wolf pack” concept—not just a disaggregated group of destroyers in theater under a different fleet commander, but a group of ships sailing together with an embarked command element. The embarked command element is key because, coupled with the concept of “mission command,” it allows the hunter-killer SAG the autonomy required to fully realize effects in a command and control denied environment.

While there is no argument that distributed lethality is a sound short-term strategy, the enemy has a vote and will adjust. The real challenge for the Navy then is to continue finding ways to innovate and rapidly incorporate new technologies such as unmanned systems to ensure that distributed lethality does not yield to distributed attrition. The best way to prevent distributed attrition is to fully integrate unmanned technologies into the fleet to ultimately transform distributed lethality into a new concept, hereby referred to as Unmanned Netted Lethality. 

Evolving Distributed Lethality

In the near future, a hunter-killer SAG will bring a more powerful and lethal force package into the fight with the partial integration of unmanned systems. A near-future force package could include a NIFC-CA capable DDG with an MH-60R detachment, littoral combat ships with scan eagle unmanned aerial vehicles (UAVs), and an anti-submarine warfare continuous trail unmanned vessel (ACTUV)- DARPA’s latest unmanned vessel built with a sensor package optimized to track submarines. These new capabilities bring  unprecedented flexibility to  warfighters, and commanders in theater will have additional options to tailor adaptive force packages based on the perceived threat or mission.

The next step in the evolution of distributed lethality will be to add more advanced weapons to every ship—from energy weapons to the rail gun—and fully incorporate unmanned systems into  future force packages. The ultimate vision is hunter-killer SAGs comprised of unmanned underwater vehicles, unmanned surface vehicles, and UAVs under the command of a single manned ship. These unmanned platforms will create a massive constellation of sensors and weapons that will transform every ship in the Navy into a lethal, flexible, and fully distributed force to reckon with—the Unmanned Netted Lethality concept.

It is evident that the Unmanned Netted Lethality concept relies on the aggressive development and integration of unmanned, and eventually fully autonomous, systems into the fleet..  Controlled autonomy is fundamental for the Unmanned Netted Lethality concept to be effective.  While autonomy brings many benefits, there are concerns as well—unintended loss of control, compromise by adversaries, accountability, liability, and trust, to name a few. The solution to mitigate these concerns is to manage the level of autonomy with a manned ship as an extension of the commanding officer’s combat system. Employing various levels of autonomy control, from completely manual to completely autonomous, gives the power to the decision makers to set the level of autonomy based on the prevailing circumstance and allows unmanned system utilization in any environment.   

16440189798_ddd0fc7a5f_b
SOUTH CHINA SEA (Feb. 19, 2015) – Sailors assigned to Helicopter Maritime Strike Squadron (HSM) 35, Detachment 2, prepare an MQ-8B Fire Scout unmanned autonomous helicopter for flight operations aboard the littoral combat ship USS Fort Worth (LCS 3). (U.S. Navy photo by Mass Communication Specialist 2nd Class Conor Minto) 

The mission will drive the level of autonomy. For instance, 20 years from now, during the first Unmanned Netted Lethality hunter-killer SAG deployment and while transiting in safe waters, the command ship will control the operations of an unmanned vessel until it is in restricted waters. Then, the commanding officer will change the level of autonomy into a cooperative mode in which the unmanned systems quickly create a constellation of passive and active sensors to increase overall maritime awareness. Once a crisis transitions into combat operations, the commanding officer will place the unmanned systems into a fully autonomous status with two primary missions: sense and destroy  enemy forces while protecting the manned ship by creating a lethal cluster around it. This layered approach to autonomy increases overall trust in unmanned systems in a responsible and palatable way for decision makers who are unquestionably accountable for the performance of these unmanned systems.

Cooperative independence is also an important feature, in which unmanned systems will perform complex tasks, both individually and in groups under the supervision of a commanding officer. Not one unmanned system should rely on another; if a system is destroyed or is taken off-line, each system should be able to continue with the mission independently but cooperatively with remaining systems.

Without a doubt and due in great part to the proliferation of unmanned systems, interoperability remains the hardest challenge to overcome. The bottom line is that these systems need to be developed with common and open software architecture to minimize interoperability challenges and maximize employment opportunities. The need to convey these requirements early in the acquisition process is fundamental so that new unmanned systems are designed with three primary characteristics: controlled autonomy, cooperative but independent functionality, and complete interoperability.

A Roadmap to Guide Change

Distributed lethality’s initial charter was to increase performance with no technology leaps, significant funding increase, or number of ship increases while having immediate to near-future effects. In the short term, this goal is achievable. However, in the near to long-term future, the Navy should continue to follow former General Electric’s CEO Jack Welch’s advice “Change before you have to.” The Unmanned Netted Lethality concept provides the Navy with a vision and a roadmap to guide the evolution of distributed lethality into the future. Incorporating unmanned systems into an Unmanned Netted Lethality concept will transform every manned ship in the Navy into a force package with a credible conflict changing capability.

Commander Javier Gonzalez is a Navy Federal Executive Fellow at the John Hopkins University Applied Physics Laboratory and a career Surface Warfare Officer. These are his personal views and do not reflect those of John Hopkins University or the Department of the Navy.

Featured Image: ATLANTIC OCEAN (Feb. 6, 2012) Scan Eagle, an unmanned aerial vehicle (UAV), sits on the flight deck after a successful test aboard the Whidbey Island-class amphibious dock-landing ship USS Gunston Hall (LSD 44) during a certification exercise (CERTEX).  (U.S. Navy photo by Mass Communication Specialist 3rd Class Lauren G. Randall/ Released)