Tag Archives: shipbuilding

Chinese Shipbuilding and Seapower: Full Steam Ahead, Destination Uncharted

By Andrew S. Erickson

In recent years, China has been building ships rapidly across the waterfront. Chinese sources liken this to “dumping dumplings into soup broth.” Now, Beijing is really getting its ships together in both quantity and quality. The world’s largest commercial shipbuilder, it also constructs increasingly sophisticated models of all types of naval ships and weapons systems. What made this possible, and what does it mean?

History and Drivers

China’s shipbuilding industry enjoyed early and inherent advantages that its aircraft industry, for example, notably lacked. Unlike most other sectors, its infrastructure could not be physically relocated far inland as part of Mao’s disastrously inefficient Third Front campaign. When Deng began reforms at the end of the 1970s, he prioritized shipbuilding to support the shipping industry, which helped carry foreign trade, underwriting several decades of rapid growth that has changed China, the United States, and the world significantly.

In 1982, China State Shipbuilding Corporation was formed from the Sixth Ministry of Machine Building. That same year, the Middle Kingdom made its first delivery to the international ship market. Abundant cheap labor and domestic demand buoyed Chinese shipwrights despite a ruthlessly competitive international market.

Shipbuilding’s commercial dual-use nature has long facilitated transfer and absorption of much foreign technology, standards, and design and production techniques. China’s shipbuilding industry has leapfrogged key steps, focusing less on research and more on development, thereby saving time and resources and enjoying the most rapid growth in modern history.

China’s current naval buildout dates to the mid-1990s, catalyzed and accelerated in part by a series of events that impressed its leaders with their inability to counter American military dominance. These include Operation Desert Storm in 1991, the Third Taiwan Strait Crisis in 1995-96, and the Belgrade Embassy Bombing in 1999.

Fleet Modernization

Ships are the physical embodiment of naval strategy—the most essential element through which a nation pursues its goals at sea. China has parlayed the world’s second-largest economy and second-largest defense budget into the world’s largest ongoing comprehensive naval buildup, which has already yielded the world’s largest navy by number of ships. It is making big waves, ever-farther from its shores.

After shrinking to replace many obsolescent vessels with fewer but more modern vessels in the 1990s and 2000s, the People’s Liberation Army Navy (PLAN) is now improving in both numbers and sophistication. As China’s maritime strategy has evolved, so have PLAN requirements. In response to this major growth in perceived needs, the PLAN has taken on more warfare areas, with significant improvements across the board. In the 1990s, the PLAN did not have significant strike or air defense capabilities; now it does. To meet high-end, multirole requirements—such as area and point defense in layers—with more missions and greater capabilities, PLAN vessels have grown more sophisticated, and generally expanded. The larger vessels of China’s navy increasingly resemble those of its American counterpart.

Shipbuilding Strengths

Regarding Chinese shipbuilding advantages, it is difficult to obtain specific data. Numbers related to budgeting and process efficiency in China’s relatively opaque defense industry unfortunately remain very difficult to investigate precisely using open sources. The official statistics Beijing releases still do not even include a reliable breakdown for China’s service budgets—such as that of the PLAN—within the overall official PLA budget (itself highly controversial). Because of the lack of precise information available, estimating Chinese ship production expenses logically involves making assumptions about relative costs in comparison to those known for other countries—not an exact science.

Still, the larger dynamics are clear. China has the world’s largest shipbuilding infrastructure, and its development enjoys top-level leadership support, starting with Xi Jinping himself. Commercial production is price-capped in part by China’s relatively stable business and vendor base. It helps subsidize military production, an option closed to the United States given its paucity of commercial shipbuilding. Chinese shipbuilding is greatly facilitated by an unparalleled organizational structure for collecting and disseminating technology, and integrating it into development and production processes at an industrial scale. Moving forward, an important variable is the extent to which China can use its familiar approach of moving up the value chain and parlaying exceptional cost-competitiveness into exceptional quantity at sufficient quality.

China’s effort to exploit civil-military synergies offers both opportunities and challenges. This was vigorously debated by the contributors to the Naval War College China Maritime Studies Institute (CMSI)’s Naval Institute Press volume on Chinese Naval Shipbuilding. “Not a good mix operationally—colocation and coproduction are challenging if not counterproductive” was one of the more pointed critiques. Potential civil-military incompatibilities cited include culture, security, standards, design, engineering, propulsion, construction, and timescales.

Nevertheless, dual-use construction is undeniably emphasized in many authoritative Chinese industry policies and publications, and also in the form of a central commission for integrated military and civilian development headed by none other than Xi himself. There is certainly some intermingling in practice, with the greatest manifestation visible in shipyard infrastructure. High-tech, high-value-added, and high reliability commercial shipbuilding—for example, of liquid natural gas (LNG) and liquid propane gas (LPG) tankers, very large crude carriers (VLCCs), high-capacity container ships carrying more than 10,000 twenty-foot equivalent units (TEU), and even cruise ships—can be directly relevant to warship production in a way that building simple ships like bulk carriers is not.

Beijing’s prioritized military sector generally enjoys better funding, infrastructure, and human capital in the form of advanced personnel—such as engineers with long-term experience, as opposed to rapid turnover. The proof is in the pudding: the PLAN is “not receiving junk” from China’s shipbuilding industry but rather increasingly sophisticated, capable vessels. Its growing satisfaction with them is indicated in part by longer production runs of fewer classes.

A more specific question remains: what limitations on high-end capabilities plague Chinese-produced warships? For now, China faces substantial difficulties in fielding the largest, most sophisticated surface combatants and submarines, as well as remaining weaknesses in propulsion and electronics. These all involve complex systems-of-systems in which China’s preferred second-mover piecemeal integration of foreign and domestic technologies cannot offer a “good enough” result. China’s aircraft carrier program offers a prime example.

Deck Aviation Challenges

With regard to aircraft carrier development, China has come a long way but has still has further to go. The appeal is clear: these apex predators of the sea are also the most modularized naval system, one of the few ships that are relatively easy to upgrade over a considerable lifespan. But given difficulties inherent in improving marine and aviation propulsion, power, and launch technologies, an evolutionary “crawl, walk, run” trajectory seems likely for China’s aircraft carrier program.

This remains very much a work in progress: the PLAN is still “crawling” and not even “walking” yet. China has already shown that it can build decent carrier hulls. But deck aviation platforms are primarily a conveyance for aircraft-delivered payloads. And there is “no such thing as a free launch.” Payload delivery is essential to a fleet’s performance; so too is having infrastructure sufficient to support and sustain it. China’s first carrier, Liaoning, is designed for air defense, not strike. It offers a very modest extension of air defense: getting a Flanker-type aircraft like the J-15 beyond its unrefueled range from a land-based airfield.

The PLAN faces formidable challenges in such areas as electronics, maritime monitoring, and command; control; communications; computers; intelligence, surveillance and reconnaissance (C4ISR). All are often underappreciated due to their subtlety and ubiquity of employment, but are nonetheless essential for robust deck aviation operations. They may be less amenable to China’s preferred approach of copying and emulation than are simpler structural systems. Chinese personnel are improving markedly in their training, but need to become still more proficient in the hard-to-steal “tribal knowledge” of coordinating operations and using equipment, including shipboard electronics.

China’s first aircraft carrier Liaoning is under restoration in a shipyard in Dalian. (AP Photo)

With far greater launching power than Liaoning’s ski jump, catapults will enable larger aircraft and payloads, delivering the PLAN to deck aviation’s “walking” stage. Deploying heavier airborne early warning aircraft will improve situational awareness. “Running,” as China perceives it, would require a nuclear-powered aircraft carrier with an electromagnetic launch system—the latter of which the United States is still struggling to perfect.

Carrier Group Assembly

China is gradually strengthening its ability to project significant power into distant waters by increasingly fielding the components of an aircraft carrier group. Sustaining a carrier group at sea requires replenishment vessels. Protecting a carrier group requires surface combatants with robust air defenses and offensive missiles as well as nuclear-powered submarines with potent anti-ship cruise missiles (ASCMs).

To improve at-sea replenishment, China is currently building the Type 901 integrated supply ship, which can furnish fuel, food, and some spare parts. It remains limited in ability to transfer ordnance, its biggest difference from the U.S. Supply class. It is already more than adequate for furnishing air-to-air missiles for Liaoning. It could be refitted with more dry transfer stations to increase ordnance transfer capability—a useful indicator to watch for, which would suggest intent to emulate the United States in long-distance power projection.

As for protection and coordination, the Type 055 cruiser, if it has the command and control facilities described in open sources, will be the centerpiece of future Chinese carrier groups—able to organize other ships somewhat like a U.S. Aegis cruiser does. With 112 vertical launch cells (VLS), this large multi-mission vessel has more than double the missile capacity of any previous PLAN surface combatant. Its VLS loadouts of HHQ-9 surface-to-air missiles suggest great capacity for area air defense, its loadouts of YJ-18 ASCMs offer a significant anti-surface warfare capability, its loadouts of CJ-10 land-attack cruise missiles suggest a nascent potential for projecting power ashore, and its Yu-8 rocket-assisted torpedoes offer an antisubmarine warfare (ASW) capability.

China launches two Type 055 guided-missile surface warships at a shipyard in Dalian, Liaoning province. (Liu Debin for China Daily)

Most navies with aircraft carriers do not protect them with robust submarines, but if China is to approach the American gold standard that it so clearly admires, and to which it apparently aspires, it will have to improve its nuclear-powered submarines, which are needed to allow for a full range of long-distance undersea operations. Even with a towed sonar array, China’s 093A nuclear-powered attack submarine remains at a significant disadvantage in being able to detect, and if necessary, attack enemy submarines while remaining undetected itself. It is still primarily an anti-surface ship platform with torpedo-tube-fireable YJ-18 ASCMs and a relatively noisy reactor, particularly in the secondary loop. Major work remains for China to project distant undersea power.

Near Seas Operational Scenarios

Closer to China’s shores, there is limited value for Chinese carrier operations, given their relative vulnerability and the potential for a highly-contested environment. But China’s shipbuilding industry has already produced a fleet of several hundred increasingly advanced warships capable of “flooding the zone” along the contested East Asian littoral, including increasingly large amphibious vessels well-suited to landing on disputed features, if they can be protected sufficiently. This is also where China’s large, conventionally-powered submarine fleet can be particularly deadly. When several hundred easy-and-cheap-to-build ships from China’s coast guard and its most advanced maritime militia units are factored in, Beijing’s numerical preponderance becomes formidable for the “home game” scenarios it cares about most. And that does not even include the land-based “anti-navy” of aircraft and missiles that backstops them. In this way, Beijing is already able to pose a formidable military-maritime challenge to the regional interests and security of the United States and its East Asian allies and partners.

Trends and Implications

China’s naval buildup is only part of an extraordinary maritime transformationmodern history’s sole example of a land power becoming a hybrid land-sea power and sustaining such an exceptional status. Underwriting this transition are a vast network of ports, shipping lines and financial systems, and—of course—increasingly advanced ships. All told, this raises the rare prospect of a top-tier non-Western sea power in peacetime, one of the few instances to occur since the Ming Dynasty developed cutting-edge nautical technologies and briefly projected unrivaled maritime power across the Indian Ocean. Now, for the first time in six centuries, commercial sea power development has flowed away from the Euro-Atlantic shipyards of the West, back toward an Asian land power that is going seaward to stay. Military sea power may be poised to follow.

Beijing is pursuing a requirements-based approach:

The PLAN’s transition from a “Near Seas” to a “Near and Far Seas” navy is dispersing its fleet over greater distances, making it more difficult to protect and support, as well as requiring enhanced logistics and facilities access.

Some of the most important and challenging requirements include:

  • long endurance propulsion—especially nuclear power, the ultimate “gold standard
  • area air defenses for surface combatants and emerging carrier groups
  • land-attack and strike warfare, including from deck aviation assets
  • ASW
  • acoustic quieting for submarines, to help them both survive being targeted in deeper blue-water environments, and search more effectively without limitation by self-generated noise
  • and, finally, broad-coverage C4ISR

China has started to pursue all these objectives, but it will take years before it fully accomplishes them.

 Already, however, Chinese ship-design and shipbuilding advances are increasing the PLAN’s ability to contest sea control in a widening arc of the Western Pacific. China is producing two to three surface combatants for every one the United States produces. If current trends continue, China will be able to deploy a combat fleet that in overall order of battle (meaning, hardware-specific terms) is quantitatively larger and qualitatively on par with that of the U.S. Navy by 2030.

Whether China can stay on this trajectory, given looming maintenance costs and downside risks to its economy as it faces an S-curved growth slowdown, is another question. It is a question that is linked to many other uncertainties about China’s future. China under Xi is becoming increasingly statist and militarized, thereby suggesting that naval shipbuilding will not suffer for lack of resources even as debt continues to spiral upward in state-owned enterprises. China’s very capable shipbuilding industry is closing remaining gaps with its Japanese and Korean rivals, even as Korean shipbuilders suffer unprofitability and rapidly-declining order books. However, China faces continued challenges in overcapacity and an aging workforce.

Moreover, a major mid-life maintenance bill for the overhauls of all new PLAN vessels will start coming due in the next 5-10 years. This will demand considerable resources—in money and shipyard space, with production and maintenance in potential competition. By then, China’s aging society may reorient resource allocation by stimulating “guns vs. butter,” and even “guns vs. canes” debates. The true long-term cost of sustaining top-tier sea power tends to eventually outpace economic growth by a substantial margin. For all its rapid rise at sea thus far, China is unlikely to avoid such challenging currents.

Dr. Andrew S. Erickson is a Professor of Strategy in the China Maritime Studies Institute and the recipient of the inaugural Civilian Faculty Research Excellence Award at the Naval War College. He serves on the Naval War College Review’s Editorial Board and is an Associate in Research at Harvard University’s John King Fairbank Center for Chinese Studies. In 2013, while deployed in the Pacific as a Regional Security Education Program scholar aboard USS Nimitz, he delivered twenty-five hours of presentations. Erickson is the author of Chinese Anti-Ship Ballistic Missile Development (Jamestown Foundation/Brookings Institution Press, 2013). He received his Ph.D. from Princeton University. Erickson blogs at www.andrewerickson.com. The views expressed here are his alone and do not represent the policies or estimates of the U.S. Navy or any other organization of the U.S. government.

This article elaborates on a podcast in which CSIS scholar Bonnie Glaser interviewed Dr. Erickson as part of the ChinaPower Project that she directs there.

Featured Image: China’s first domestically made aircraft carrier, the Shandong, pictured during construction in Dalian in December 2016. (Kyodo)

Why Peacetime Naval Buildups are Difficult

By Steven Wills

Introduction

There has been much gnashing of teeth and complaint in response to the U.S. Navy’s slow build toward a goal of 355 ships. Peacetime naval buildups by free societies have never been simple undertakings. Such governments usually retire large numbers of warships in search of “peace dividends,” from which recovery is often a challenge. If ill-timed, they can result in large numbers of warships that are out of date before they complete even a decade of service, or need to be retired before the end of the service lives to cut costs. Getting to the right numbers of ships, especially in a period of tight finance may mean holding onto old ships well past their expected service life. Past examples of peacetime buildups by the British Royal Navy and U.S. Navy suggest that while getting to larger numbers of ships is possible, the costs can be prohibitive; especially in an environment of rapid, technological advancement.

British Royal Navy Buildups

Representative governments have always been quick to reduce expensive naval armaments in peacetime. The British Royal Navy (RN) reduced its force structure in only modest terms in the wake of the victorious French and Indian War. End strength of the RN dropped from 365 commissioned warships of all types in 1763 at the conclusion of those hostilities to 270 vessels at the start of the American Revolution in 1775.1 While still formidable, British lawmakers questioned whether this force that still boasted over 130 “ships of the line” of 50 guns and greater was capable of dealing with the American rebellion. A debate in the House of Commons from 13 February 1775 featured one speaker who stated “Our present naval force was by no means adequate to our professed intentions; for the squadron that we designed for America would answer no purpose of stopping their commerce; or if we did send a sufficient one, our own coasts, comparatively speaking, must be left totally defenseless.”2 The speaker went on to state that Britain’s perpetual enemy France might dispatch 75 or more ships of the line to menace English seacoast communities if the bulk of the available RN went to the Americas to reduce colonial commerce.

The British increased their fleet to 478 warships by 1783, but at great cost with some estimates suggesting an increase from a low of £1,526,357 in 1765 to £8,063,206 in 1782, and where public net debt rose to over 150 percent of GDP. Peacetime naval buildups are not new, and are almost costly affairs. Britain was perhaps lucky in that the increase in the size and capability of the RN in response to the American Revolution served to also prepare it for a renewed period of war with France. The creation of a state bank (The Bank of England) in 1694, and growing public confidence in the solvency of the British Crown allowed Parliament to “Raise immense sums on short notice and at relatively low rates of interest.”3 Unlike its Continental rivals the British also did not have to spend large sums on ground forces to defend vulnerable land borders. This combination of factors allowed for a fairly quick transition from “rusty trident” in the early 1770s to the sharp instrument that soundly defeated the navies of Denmark, Spain, and France during the Napoleonic wars.

A lack of such an immediate conflict can serve to create whole generations of warships that are out of date before they ever fire a shot in anger. The Royal Navy again reached such a low point in the late 1880s as it struggled to deal with a resurgent France and a rising Russian naval threat that imperiled both the British isles and multiple, overseas British possessions such as the imperial “crown jewel” of India. The Industrial Revolution was also in full swing with new grades of steel armor and improved steam engines entering service as often as new smart devices and software builds do today. British warship construction in the previous two decades had been slow to keep up with technical advances and many newspapers suggested the Navy was in poor condition to take on France and Russia. A series of articles in September 1884 in the Pall Mall Gazette by the muckraking journalist W.T. Steed described the Royal Navy as unready for war against Russia and France based on shrinking budgets, a lack of protection for Britain’s global naval logistics hubs, and an antiquated fleet of small craft for the defense of the British Isles.4

The British response to these conditions was the Naval Defence Act of 1889; a £21,500,000, 5-year program designed to produce 10 battleships, 42 cruisers, and 18 torpedo gunboats.5 According to naval historian Jon Tetsuro Sumida, the program was a resounding success in terms of finance and construction in that most of the program was completed on schedule with little cost overrun. The 1889 program also marked the beginning of an official “two power standard,” where Britain officially declared that its sum of first class fighting vessels (namely battleships) would be superior to the combined fleets of the next two naval powers (France and Russia). While a firm declaration of the importance of British seapower, it was at best a political measure rather than an accurate estimation of British naval strength. Naval historian Nicholas Lambert asserts that many uniformed senior Royal Navy officers believed the two-power standard was not enough and that it best represented a minimum level of strength.6 Britain’s primary political parties in the late 19th century (Conservative and Liberal parties,) however accepted the two power standard as a benchmark.

This decision would have significant consequences in the following decade as Britain’s burgeoning economic growth slowed and with it the funding for a larger fleet. Political scientist Aaron Friedberg asserted that British naval spending in the 1890s was made by possible by three factors. A general increase in national prosperity and with it consumer spending, especially on tea, tobacco, and beer, provided additional tax revenue. The British income and estate (death) taxes also provided generous sources of spending for both defense and for a rising tide of British social spending.7 Unfortunately, British economic growth slowed dramatically over the last quarter of the 19th century as the economic output of Germany and the United States dramatically increased.8 This process of British relative decline served to offset its naval superiority as the cost of replacement battleships dramatically increased over the same period. The pioneering battleship (then known as an ironclad) HMS Devastation cost £360,000 in 1869, but by 1898 the battleship HMS Implacable was £1,100,000.9 These increasing costs would make replacement of the existing foundation of British naval supremacy a significant challenge.

To this financial setback was added the rising costs of new technology; first in the form of new armor, weapons, and steam-powered equipment, but later by the introduction of asymmetric warfare systems such as the side armored cruiser. This ship, with long range, medium-sized weapons and armor sufficient to withstand the shells of the British cruisers traditionally assigned to defend imperial trade routes, represented a direct threat to British finance from trade and key sea lines of communication to overseas possessions like India.10 The French Navy also financed submarine and torpedo development as additional countermeasures to traditional British maritime superiority.11 The very expensive ships of the Naval Defence Act of 1889 were, by contrast, too slow and short-ranged to overtake and destroy armored cruisers, despite being better armed. They were also poorly protected against the torpedo as employed by the submarine and the surface torpedo boat. Improvements in armor manufacture, especially the Krupp steel process that resulted in much lighter yet stronger protective plates, enabled much more armor to be used over a wider area of even cruiser-sized ships. This gave the armored cruiser class its edge over earlier ships that could not support side armor. The new armor was less expensive than past versions, but that improvement was lost in the rush of other expensive steam propulsion and gun systems that combined to double the cost of a modern battleship over the period from 1895 to 1905.12 In fact, technological advancements ensured that the ships from the Naval Defence Act of 1889, notably the eight Royal Sovereign class battleships that were state of the art in 18991, had at best 15 year effective service lives before being out of date.13

HMS Royal Sovereign in 1913. (Wikimedia Commons)

Finally, the international situation and unexpected war in South Africa added to the financial problems of relative decline and rapid technological advancement. The Second Anglo Boer War of 1899 to 1902 put further strain on British finance and with it plans to renew naval supremacy. While early estimates by the British government suggested that costs for the South African conflict might be maintained below £21 million, army-related spending rose quickly in the first two years of the conflict from £21 million to £44.1 million and, and overall British government spending finally grew to a figure of £205 million during the last two years of the war.14 The British national debt also rose from £14 million in 1899-1900, and later to £53 million in 1901 and 1902.15 It was inevitable that these figures would affect Royal Navy expenditures. Over roughly this same period (1897 to 1904,) the Royal Navy expended £29.6 million on new battleships and £26.9 million pounds for the new armored cruisers. Such expenditures could not be sustained without a major increase in taxes which neither British political party would countenance. By 1902 it was clear to the British political establishment that some economy was desperately required and the new Prime Minister Arthur Balfour created the Committee of Imperial Defence to seek joint (Army/Navy) solutions to Britain’s global defense posture. The First Lord of the Admiralty (roughly the equivalent of the U.S. Secretary of the Navy,) Lord Selborne advised his flag officers to “Cease to say ‘this is the ideal plan and how do we get enough money to carry it out,’ to ‘Here is a sovereign (UK coin,) how much can we squeeze out of it that will really count for victory in a naval war?’”16

Ultimately, despite significant expenditure, the Naval Defence Act of 1889 failed to deter continued naval expansion of France and Russia, and also later Germany, Japan, and the United States.17 Rapid technological advancement quickly made the fleet of the 1890s obsolete in the next decade. Britain’s own relative decline and the expenditures for the Boer War further weakened the Royal Navy’s efforts to keep pace with advancing technology and the rising fleets of other nations. The end result was the ascent of the eponymous Admiral Sir John Fisher and his radical program of what today would be called “transformation” where the battlecruiser would replace the battleship and the armored cruiser for high seas combat, and littoral combatants such as destroyers and submarines would be responsible for the United Kingdom’s homeland defense. The Fisher regime, while innovative and fiscally responsible, is seen by some as the beginning of the end of British naval supremacy as Fisher’s program required major reductions in presence forces scattered around the empire in favor of the combat-capable force to defeat rising European competitors. This reduction in direct imperial influence and dependence on other powers, notably the United States and Japan to secure British interests in North America and the Western Pacific, was seen as perhaps the beginning of the end of the British Empire and with it the need for an expanded Royal Navy in its defense.18 This decline might be traced back to the Naval Defence Act of 1889 and a desire to build a significant peacetime fleet in specific numbers over those of opponents.

U.S. Naval Buildup Challenges

The final example of difficult peacetime buildup also deals with the political calculus of fleet size. The U.S. Navy’s 600 ship fleet goal of the 1980s had its origins, like that of the Royal Navy of the 1880s and 1890s, in an enemy’s (Soviet) increased fleet size, rising welfare state expenditures, and a distant land conflict (Vietnam) sapping of funds that might have been used for modernization. The United States Navy of 1970 was a Vietnam War-focused fleet in dire need of recapitalization and modernization. The incoming Chief of Naval Operations (CNO) Admiral Elmo Zumwalt, Jr. set out to begin those processes, but at the cost of the retirement of significant numbers of ships; most of World War II vintage and diminished capability. The fleet had already undergone significant reductions during the tenure of Admiral Thomas Moorer as CNO, with the overall number of ships dropping from 932 to 731.19 Zumwalt had to impose further reductions in order to gather enough resources and potential crews for new construction. He later said:

“We were, on the average, technologically obsolescent. Our fleet was over 20 years of age, on the average. One of the things that impressed both Secretary Chafee and Secretary Laird in my preliminary meetings with them when, as it turns out, they were looking for who should be the next CNO, was that I said that given the budget limitations, we simply had to reduce the numbers of ships in order to begin the process of building new ships. We needed to reduce the expenditures for men and ships and start building ships.”20

Like Fisher in 1904, Zumwalt also needed to cut obsolescent ships before building new ones. While such processes delay growth and in fact result in reductions, they are necessary for subsequent fleet growth. Zumwalt worked hard to ensure existing, authorized classes like the Spruance-class destroyers were built and pushed to get what became the Oliver Hazard Perry-class frigates added to the fleet, but mass retirements of old ships further reduced the fleet size.21 Overall numbers of ships decreased to 530 by 1980.22

PACIFIC OCEAN (Nov. 17, 2011) The decommissioned Spruance-class destroyer ex-Paul F. Foster (EDD 964) conducts a successful demonstration of shipboard alternative fuel use while underway in the Pacific Ocean on a 50-50 blend of an algae-derived, hydro-processed algal oil and petroleum F-76. Paul F. Foster has been reconfigured as the Self-Defense Test Ship to provide the Navy an at-sea, remotely controlled, engineering test and evaluation platform without the risk to personnel or operational assets. (U.S. Navy photo by Charlie Houser/Released)

The Presidency of Jimmy Carter was an especially dark period for the Navy with the former naval officer president content with an objective force of only 400 ships.23 Carter and his land warfare-focused subordinates such as Defense Secretary Harold Brown and Deputy Secretary of Defense for Policy Bob Komer sought significant reductions in naval expenditures through most of his administration.24

Studies for rebuilding U.S. Navy force structure began during the Ford Presidency and gained maturation during the Carter administration thanks to the efforts of Carter’s own Navy Secretary Graham Claytor, a World War II naval officer who opposed the Defense Department’s naval reductions. Claytor sponsored a study known as SeaPlan 2000 that recommended a 585 ship fleet that could be purchased and maintained with regular, four percent growth in the Navy’s budget; a figure then within accepted spending limits of the Navy.25 Like the British “Two Power Standard,” this figure was also a political measurement in that multiple studies on 400, 600, 900 and 1200 ship fleets had been undertaken with the 600 ship version seen as most economical and that it represented a minimum rather than an ideal force structure to meet the global Soviet naval threat.26 

Jimmy Carter was defeated by Ronald Reagan in 1980 and the new administration both adopted and altered elements of SeaPlan 2000. Led by Navy Secretary John F. Lehman Jr, a new 600-ship Navy (an easy round-up from 585) figure was introduced as the benchmark for U.S. Fleet strength. An aggressive building program was introduced to meet the 600 ship figure by the close of a hypothetical 2-term Reagan presidency. The 600 ship Navy was paired with a new Maritime Strategy that justified and detailed the fleet’s use in combat with the Soviet Navy as well as routine presence and other operations. Navy Secretary Lehman also stated that 600 ships was the minimum fleet size to support the 15 carrier battle groups needed to provide the geographic, peacetime naval presence.27 The whole package of fleet size, strategy, and employment was offered at the same four percent rate of growth.

The weak point of the 600-ship navy buildup, however, was its retention of older, steam-powered surface warships in significant numbers in order to bridge the gap between existing and future force structure while maintaining the 600 ship number goal. The navy of the period had ships propelled by steam, diesel, nuclear, and most recently gas turbine engines. Of these types, nuclear power supported a growing portion of the Navy’s carrier strength and a dozen guided missile cruisers built as carrier escorts. Diesel engines were auxiliaries on many ships and propelled a growing number of mid-sized amphibious warfare ships. Gas turbine engines had become the new choice of propulsion for combatant ships including the Spruance-class destroyers, Ticonderoga-class cruisers, and Oliver Hazard Perry-class frigates. Steam power, however, still served the bulk of the existing surface combatant fleet, some of the aircraft carriers, and large number of auxiliary ships. Many of these ships were older units and they were not aging well; a condition that made their retention as part of the growing 600-ship force a challenge.

In terms of one warship category, guided missile destroyers (DDG,) the Congressional Budget Office (CBO) estimated in 1985 that only five of 67 such ships in 1989 would be classed as “modern,” which the CBO defined as constructed after 1970.28 The most numerous frigate/guided missile frigate (FF and FFG) category was better, but still saw 65 of a possible 111 ships as pre-1970 construction in 1989.29 The vast bulk of these older units were steam-powered units, whose manpower and maintenance-intensive 1200 psi, 950 degree steam plants became more challenging to maintain as they aged. Numerous oil leaks and fires plagued these aging units over the course of the late 1970s and 1980s. While the steam cruisers received significant combat systems upgrades in the form of the New Threat Upgrade (NTU) system, only a few of the steam destroyers received such improvements and the steam-powered frigate classes remained largely unaltered with the exception of the addition of the close in weapon system (CIWS) for some.

The modernization and retention of the steam-powered surface combatant force, and many other steam powered navy warships became a moot point at the end of the Cold War in 1991. As early as 1989 when it became evident that the Soviet Union was in a period of decline, 16 frigates of the Garcia and Brooke class frigates and guided missile frigates were decommissioned as a cost-savings measure.30 The manpower cuts determined by Chairman of the Joint Chiefs of Staff General Colin Powell in the creation of the post-Cold War “Base Force” further accelerated the retirement of the personnel-heavy steam warship fleet. The 34 units of the Adams and Farragut-class destroyers followed into retirement in 1990 and 1991, and the upgraded steam cruisers of the Leahy and Belknap followed in the early 1990s.31 The numerous Knox-class frigates were also decommissioned by the mid 1990s, with an abortive attempt to retain some as reserve frigates ended in 1994.

In all, 114 steam-powered cruisers, destroyers, frigates were retired in the period 1989-1995. It is open to debate how long these ships could have been retained had the Cold War continued, but given their age and maximum thirty year service life, it is improbable that enough could have remained in commissioned long enough to be steadily replaced by newly constructed Arleigh Burke-class destroyers in the 1990s and 2000s.32

Conclusion

Peacetime naval buildups are difficult and face uncertain sustainability if the force structures they create are not soon called to active combat. Like the British in 1889 and the U.S. in the 1980s, the U.S. Navy is attempting a significant peacetime naval buildup without an immediate conflict on the horizon (unlike the U.S. “Two Ocean Navy” buildup of 1938 to 1940 when World War 2 was already underway.) Like the Royal Navy of the middle and late 18th century, it now finds that even modest reductions can inhibit low-end presence and limited war operations. The U.S. Navy may also discover that rapid technological advances in data processing, artificial intelligence, hypersonic and directed energy weapons can render much of any fleet additions obsolete less than 10-15 years into a 30-40 year life span. Open architecture systems and the modular weight, space, and connectivity of the unfairly maligned littoral combat ship (LCS) might allow that ship type to deploy capabilities yet unplanned or conceived when they were constructed. Such ships can also be constructed in larger numbers than their larger, much more technically complex cousins. It may still be difficult to maintain a fleet of any relevant size given these challenges.

The U.S. Navy has however taken some positive steps to increase fleet size and simplify the process of maintaining that fleet longer and at best cost. The Cold War-era classification of surface warships (cruiser, destroyer, frigate, patrol,) is giving way to one of large and small surface combatant (LSC and SSC.)33 Historically, a reduction in the number of individual classes by merger has been a good way to reduce costs. The British Royal Navy combined the predreadnought battleship and fast armored cruiser into first the battle cruiser and then the fast battleship. The introduction of open architecture combat systems and vertical launch capability for weapons has made the process of updating much easier than in the past. The Navy has requested that the new FFG(X) class have as much commonality with current ships as possible.34 More reductions in the acquisition and test and evaluation bureaucracy can help this process as well. The LCS, for example, must undergo another round of operational testing every time one of its mission modules gets a new piece of equipment. This sort of endless testing only delays programs and results in cost increases as do the additional layers of “oversight” added to an already over-burdened Navy.

Peacetime naval buildups in periods when war is not imminent are historically difficult, and no one should expect immediate results in the absence of large budget deficits. As history shows, sometimes a reduction in overall numbers of ships is required in order to build new construction necessary to grow the fleet. Solutions for managing such efforts include not reducing the fleet to a point where even a modest increase is difficult; avoiding the pitfalls of rapidly advancing technology that can make today’s force structure rapidly out of date, combining classes of ships into fewer types of ships with more commonality, and avoiding politically-driven fleet sizes that cannot be retained without herculean efforts. The U.S. Navy can increase in size and capability, but it won’t happen overnight in what remains a peacetime environment.

Steve Wills is a retired surface warfare officer and a PhD candidate in military history at Ohio University. His focus areas are modern U.S. naval and military reorganization efforts and British naval strategy and policy from 1889-1941. These views are his own.

References

1. Jack Coggins, Ships and Seaman of the American Revolution, Harrisburg, PA, Promontory Press, 1969, p. 22.

2. Ibid, p. 19.

N.A.M Rodger, Command of the Sea, A Naval History of Britain, 1649-1845, New York, Norton, 2004, p. 644.

3. Jon Tetsuro Sumida, In Defence of Naval Supremacy, Finance, Technology, and British Naval Policy, 1889-1914, Annpolis, Md; The Naval Institute Press, 1993, p. 5.

4. W.T. Steed, “The Responsibility for the Navy,” The Pall Mall Gazette, 30 September, 1884, electronic resource, https://attackingthedevil.co.uk/pmg/responsibility.php, last accessed, 01 March 2018.

5. Sumida, p. 13.

6. Nicholas Lambert, Sir John Fisher’s Naval Revolution, Columbia, SC, The University of South Carolina Press, 1999, pp. 20, 21.

7. Aaron Friedberg, The Weary Titan, Britain and the Experience of Relative Decline, 1895-1905, Princeton , NJ, Princeton University Press, 1988, p. 98.

8. Ibid, p. 81.

9. David K. Brown, Warrior to Dreadnought, Warship Design and Development 1860-1905, Barnsley, UK; Seaforth Publishing, 2010, p. 203.

10. Lambert, p. 25.

11. Ibid, p. 27.

12. Sumida, pp. 19, 20.

13. Lambert, p. 105.

14. Friedberg, p. 106.

15. Ibid.

16. Lambert, p. 36.

17. Friedberg, p. 153.

18. Ibid, pp. 201-205.

19. “U.S. Ship Force Levels; 1886-Present,” Washington D.C.: The U.S. Navy History and Heritage Command, electronic resource, https://www.history.navy.mil/research/histories/ship-histories/us-ship-force-levels.html#1965, last accessed 10 April 2018.

20. Alfred Goldberg and Maurice Matloff, “Oral History Interview with Admiral Elmo R. Zumwalt Jr,” Washington D.C,; The Defense Department Historical Office, 22 October, 1991, pp 11, 12.

21. Ibid, p. 16.

22. John Hattendorf, U.S. Navy Strategy in the 1970’s, Selected Documents, Newport, RI, The United States Naval War College Press, 2007, p. xiii.

23. John Hattendorf, The Evolution of the Maritime Strategy, 1977-1986,Newport, R.I.; The U.S. Naval War College Press, 2003, p. 9.

24. Edward C. Keefer, Harold Brown, Offsetting the Soviet Military Challenge 1977-1981, Washington D.C.; The Office of the Secretary of Defense Historical Office, 2017, pp. 233-239, 425.

25. John Hattendorf, U.S. Navy Strategy in the 1970’s, Selected Documents, Newport, RI, The United States Naval War College Press, 200, p. 121.

26. John Hattendorf, The Evolution of the Maritime Strategy, 1977-1986,Newport, R.I.; The U.S. Naval War College Press, 2003, pp. 10-13.

27. Ibid, p. 50.

28. “Future Budget Requirements for the 600 Ship Navy,” Washington DC, The Congressional Budget Office (CBO,) September 1985, p. 15.

29. Ibid, p. 16.

30. “Navy to Place 6 Frigates Based in S.D. in Mothballs,” The Los Angeles Times, 24 June 1988.

31. Kit and Carolyn Bonner, Warship Boneyards, Osceola, WI; MBI Publishing, 2001, pp. 115, 116.

32. “Future Budget Requirements for the 600 Ship Navy,” p. 56.

33. Ron O’Rourke, Navy Force Structure and Shipbuilding Plans; Background and issues for Congress, Washington D.C.; The Congressional Research Service (CRS,) 08 December 2017, p. 3.

34. Ron O’Rouke, “Navy Frigate (FFG[X]) Program: Background and Issues for Congress,“ Washington D.C.; The Congressional Research Service (CRS,) 08 December 2017, p. 4.

Featured Image: CVN 76 under construction (Wikimedia Commons)

Assessing Colombia’s Recent Naval Platform Delivery to Honduras

The Southern Tide

Written by W. Alejandro Sanchez, The Southern Tide addresses maritime security issues throughout Latin America and the Caribbean. It discusses the challenges regional navies face including limited defense budgets, inter-state tensions, and transnational crimes. It also examines how these challenges influence current and future defense strategies, platform acquisitions, and relations with global powers.

“The security environment in Latin America and the Caribbean is characterized by complex, diverse, and non-traditional challenges to U.S. interests.” Admiral Kurt W. Tidd, Commander, U.S. Southern Command, before the 114th Congress Senate Armed Services Committee, 10 March 2016.

By W. Alejandro Sanchez

Colombia Delivers Vessel for Honduran Navy

On 4 November, the Honduran Navy (Fuerzas Naval de Honduras: FNH) received a brand new multipurpose vessel, FNH Gracias a Dios. What makes this delivery significant is that the platform was constructed by a Colombian company, Corporación de Ciencia y Tecnología para el Desarrollo de la Industria Naval Marítima y Fluvial (COTECMAR). Hence, this deal is important as it serves as an example of a Latin American military industry successfully selling platforms to another regional state.

This commentary is a continuation of an August 2016 essay by the author for CIMSEC, titled “The Rise of the Latin American Shipyard,” which discussed regional shipyards and their attempts to sell their platforms to international clients.

The Deal

Gracias a Dios was delivered fairly quickly, as the Honduran and Colombian governments signed a contract on 21 November 2016. The platform is a Short Range Logistic Support Ship (Buque de Apoyo Logístico – Cabotaje: BAL-C), it measures 49 meters, has a max speed of 9 kts and can transport up to 120 tons of cargo. The vessel has a ramp and a hydraulic crane so it does need a port to unload its cargo. Construction was carried out by the aforementioned Colombian company COTECMAR, in its facilities in Cartagena. Apart from assembling the vessel, COTECMAR trained 17 Honduran naval personnel, while three Honduran naval officers will study in the Colombian Navy’s institute of higher education, Escuela Naval Almirante Padilla, as part of the Tegucigalpa-Bogota deal, worth USD$ 13.5 million.

Gracias a Dios will be utilized by the Honduran naval force for coastal operations including relief support after natural disasters. The Honduran government and media in general have applauded the new asset; for example the daily La Tribuna explained that “this is a multipurpose vessel, its main missions will be to transport food, fuel and machinery to inaccessible areas in Honduras.” The newspaper also quoted the commander of Gracias a Dios, Lieutenant Israel Onil Sánchez, who explained that the vessel can be at sea up to 40-45 days. Meanwhile, President Juan Orlando Hernández  highlighted how the vessel can transport up to four speedboats, which will help combat drug trafficking across Honduras’ waters.

There are now five BAL-Cs in operation: Colombia operates four – two in its Pacific fleet and two for the Caribbean fleet – in addition to one for the Honduran Navy.

The Significance

The significance of the Colombia-Honduras deal should not be understated. As a general rule, Latin American or Caribbean navies acquire new naval platforms from extra-regional suppliers, be them governments (e.g. the U.S) or shipyards (e.g. Damen Group). Hence, this deal is a sort of modern milestone since it is between two regional nations with a Latin American company being the supplier. (It is worth noting that COTECMAR has previously sold riverine patrol boats to Brazil.)

The successful delivery of Gracias a Dios has encouraged COTECMAR to be more aggressive in order to acquire new foreign clients. A recent report by IHS Jane’s explains that the company is now looking at countries like Peru, the United Arab Emirates, and landlocked Paraguay as potential customers – and according to Jane’s negotiations with Lima and Asuncion are advanced. Lima’s interest in these platforms is understandable, as Peruvian ships, like the BAP Eten, were involved in support operations recently, when torrential rains affected the country’s northern regions earlier this year.

BAP Eten (La Republica)

Additionally, it will be important to monitor other Latin American shipyards, like Argentina’s Rio Santiago, Chile’s ASMAR, Ecuador’s ASTINAVE, or Peru’s SIMA as these entities are also constructing platforms for their respective navies, but could also attempt to export them. When it comes to Mexico for example, ASTIMAR has constructed 10 Tenochtitlan-class coastal patrol vessels for the Mexican Navy.

Nevertheless, this is unlikely to occur. In an interview with the author, Christian J. Ehrlich, Director of Intelligence at Riskop and Non-Resident Fellow at the Mexican Navy Institute for Strategic Research, explained that,

“Currently, there are no concrete plans to build OPVs or Coastal Patrol Vessels for any country in the region. Some years ago, some Central American Navies showed interest in acquiring the Mexican-made Oaxaca-class OPVs. But let’s be honest, given the Mexican Navy’s small budget, our shipyards can only concentrate on fulfilling the MX Navy’s operational requirements. That is certainly a shame, since the Oaxaca Class OPVs are well-proven, highly capable vessels for maritime security-oriented navies.”

It is important to mention the geopolitical ramifications of the Gracias a Dios deal. The vessel and other initiatives as part of the agreement will inevitably bring the Honduran and Colombian navies closer, and joint naval exercises will probably occur in the near future.  This is important because of one factor: Nicaragua. The Central American nation has taken Colombia to the International Court of Justice (ICJ) due to a maritime border dispute over Bogota-controlled islands and territory in the Caribbean. ICJ rulings in 2016 were generally regarded as very favorable towards Managua, but the two sides have returned to the Court for subsequent demands.

From this perspective, it makes sense that Bogota is approaching Tegucigalpa via defense-related initiatives, as this will serve to counterbalance Managua’s Caribbean ambitions. While armed conflict between Colombia and Nicaragua is extremely unlikely, Bogota can always benefit from having additional allies among states that border the Caribbean and Nicaragua itself.

Final Thoughts

It would be far-fetched to suggest that the recent Colombia-Honduras deal for a logistics vessel will dramatically change the dynamics of Latin American and Caribbean sales regarding naval platforms. Without a doubt, regional navies will continue to look to extra-regional suppliers, including more experienced shipyards, for new (or refurbished) vessels. This is particularly true for more complex platforms such as submarines (Brazil’s submarine program notwithstanding). Moreover, as Mr. Ehrlich mentions, apart from competition, the other main obstacle for these shipyards to grow is lack of political support for these entities.

With that said, the COTECMAR-FNH deal does set an important precedent, as navies with limited defense budgets in Latin America and the Caribbean may start turning to their immediate neighbors regarding the acquisition of new platforms instead of investing in more expensive assets from more distant suppliers.

W. Alejandro Sanchez is a researcher who focuses on geopolitical, military, and cyber security issues in the Western Hemisphere. Follow him on Twitter: @W_Alex_Sanchez.

The views presented in this essay are the sole responsibility of the author and do not necessarily reflect those of any institutions with which the author is associated.

Featured Image: Gracias a Dios logistics ship. (Cotecmar)

Call for Articles: What Should the U.S. Navy’s Next Future Surface Combatant Be?

By Dmitry Filipoff

Articles Due: July 5, 2017
Week Dates: July 10-July 14, 2017

Article Length: 1000-3000 words 
Submit to: [email protected]

The U.S. Navy is in the conceptual phases of determining what the next Future Surface Combatant (FSC) family of warships could be. The FSC will include “a large, small and unmanned surface combatant that will go through the acquisition process with each other and an ‘integrated combat system’ to tie them together.” These ship classes will provide an opportunity to field systems that reflect a vision of future war at sea and decide what the surface force will contribute to the fight.

The challenges are myriad and complex. Emerging technology has opened up numerous avenues of latent capability, from unmanned systems to directed energy, from integrated power to adaptive electronic warfare. New technology could result in evolving tactics and concepts of operation that change the way ships fight individually and within the joint force. Additionally, ships expected to serve for decades must have attributes that facilitate the iterative fielding of greater lethality over the course of their service life. All of these factors lend competing pressures toward defining requirements. 

These ships are critical to the surface Navy’s future, especially because of the challenges and setbacks faced by the two major surface combatant programs of the current generation. The Littoral Combat Ships and Zumwalt-class destroyers are now poised to shape the conversation of what tomorrow’s warships will and will not be and how to go about procuring them. Authors are encouraged to not only envision future roles and capabilities for the FSC family of warships, but to also contemplate the major lessons learned from recent ship design challenges and how to better field the next generation of surface combatants. 

Dmitry Filipoff is CIMSEC’s Director of Online Content. Contact him at [email protected]

Featured Image: Deck house lifted onto USS Michael Monsoor , trhe 2nd Zumwalt class destroyer, on November 14, 2014. (General Dynamics Bath Iron Works)