Tag Archives: UUV

The Battle of Locust Point: An Oral History of the First Autonomous Combat Engagement

Fiction Topic Week

By David R. Strachan


TOP SECRET/NOFORN

The following classified interview is being conducted per the joint NHHC/USNI Oral History Project on Autonomous Warfare. This is the first of an eight-part series with Admiral Jeremy B. Lacy, USN (Ret), considered by many to be the father of autonomous undersea warfare, where we discuss the development of the Atom-class microsubmarine, and its role in the first combat engagement of the autonomous era, the Battle of Locust Point.

November 17, 2033

Annapolis, Maryland

Interviewer: Lt. Cmdr. Hailey J. Dowd, USN


The last twenty-five years have witnessed extraordinary developments in naval warfare. Ever smaller, smarter, more lethal vehicles have revolutionized the way navies fight, and the way nations project power beyond their borders. Historians agree that the genesis of this “micronaval revolution” can be traced to the year 2016, when a disabled Russian Istina-class microsubmarine was recovered off the coast of Cape Charles, Virginia. The Chesapeake Bay Incident, as it became known, was a harbinger of things to come, for just ten weeks later, as crowds descended on Baltimore Harbor for Fleet Week and the commissioning of the U.S. Navy’s newest destroyer, USS Zumwalt (DDG 1000), Russian and U.S. microsubmarines would square off just beneath the surface in what would be the first combat engagement of the autonomous era, the Battle of Locust Point.

Historians also agree that the micronaval revolution can be traced to a single individual, an individual whose name, like Hyman Rickover, is virtually synonymous with the bold thinking that has come to define the modern U.S. Navy.

Admiral Jeremy Baynes Lacy, USN (ret.) graduated from the United States Naval Academy in 1989, earning a Bachelor of Science in Mechanical Engineering. He served at sea aboard the USS Pennsylvania (SSBN 735), USS Henry M. Jackson (SSBN 730), USS Springfield (SSN 761), and the USS Pogy (SSN 647), deploying to the North Atlantic, Arctic, and Western Pacific, as well as conducting numerous strategic patrols. Ashore, Lacy earned a Masters Degree from the Naval Postgraduate School in Naval/Mechanical Engineering, and served as Major Program Manager for Undersea Project 7, the Atom-class microsubmarine program. Following his work on the Atom-class, he established and commanded Strikepod Group (COMPODGRU) 1, eventually serving as Commander, Strikepod Forces, Atlantic (COMPODLANT). His personal decorations include the Distinguished Service Medal, the Legion of Merit (three awards), the Meritorious Service Medal (two awards), the Joint Service Commendation Medal, the Navy and Marine Corps Commendation Medal (five awards), and Navy and Marine Corps Achievement Medal (two awards), in addition to numerous unit and campaign awards.

Admiral Lacy is currently enjoying his “retirement” as the Corbin A. McNeill Endowed Chair in Naval Engineering at the United States Naval Academy. He was interviewed at his home in Annapolis, Maryland.

Would you tell us a little of your background? How did you end up in the Navy?

I was born and raised in the rural New Jersey hamlet of Port Murray, nestled among cornfields and cow pastures many people can’t believe exist the Garden State. My mother was a secretary at the local elementary school, and my father managed a printing plant just outside New York City. He grew up dirt poor on a farm in New Hampshire without a whole lot of options, so he enlisted in the Navy the day after he graduated from high school. After basic, he ended up in crypto school in California, then a Naval Security Group detachment in Turkey where he eavesdropped on Soviet communications. When I was little he used to make these veiled references here and there to his time in the service, but he never elaborated on anything. He took his secrecy oath very seriously, and it wasn’t until the mid 80s, when I was a curious teenager, that he felt comfortable opening up about what he did. I was totally captivated by the stories he would tell, and the meaning that the work gave him. As luck would have it, I was a pretty good student, and managed to get accepted to the Academy. Fast forward four years and I’ve got a degree in mechanical engineering, and five years of submarine service waiting for me.

Why did you choose submarines?

Never in a million years did I expect to end up choosing submarines. It was the time of Top Gun, and boy I was gonna fly jets! But during my summer service orientation I went for a cruise on the Nebraska, and that was it. I was hooked, and fifteen months later I’m on the Pennsylvania for my junior tour.

Would you say it was the submarine service that spurred your interest in unmanned vehicles?

Oh, definitely. When I was on the Pogy we worked with some very early prototypes sent up from [Naval Undersea Warfare Center] Newport for arctic testing. Nothing too sexy – ocean survey, bathymetry. But I guess at that time I was intrigued with the idea, and started imagining the possibilities, the implications. What if these things could think for themselves? What if they were weaponized?  And what if the bad guys had them? After my tour on Pogy, I ended up at the Naval Postgraduate School working on my masters, and actually wrote my thesis on UUVs – a survey of current architecture, an examination of future technologies and how these could be leveraged for unmanned systems, and how UUVs could be integrated into fleet operations.

Legend has it DOD wanted to classify it.

[Laughs] Well, not really. It was nothing more than a skillful integration of open sources, some analysis, and extrapolation. It did manage to attract some interest, though.

From ONR? DARPA?

Well, actually it was the folks at Newport who reached out to me initially. My advisor at NPS was friendly with the CO there, and at the time – around early 1999 – they were working with APL, SPAWAR, and some other folks on crafting the Navy’s UUV master plan. So they called me up, asked if I’d like to come aboard, and next thing I know I’m on a plane to Rhode Island.

What was your contribution to the 2000 UUV Master Plan?

Well, by the time I entered on duty, the bulk of the heavy lifting was pretty much complete. But I did manage to contribute some perspective on the vision, CONOPS (especially in ASW), as well as technology and engineering issues. But where I think I added the most value was regarding the feasibility of the SWARM [Shallow Water Autonomous Reconnaissance Modules] concept – the idea of utilizing large numbers of small AUVs to create a dynamic, autonomous sensor grid for wide area mine countermeasures.

Was the SWARM concept a precursor to the Strikepod?

Conceptually, yes. It was an early articulation of an undersea battle group, the idea of numerous autonomous vehicles cooperating together to complete a mission. But while the idea was entirely feasible, I felt that SWARM was rather narrow in its scope. As an MCM platform, I suppose it made sense, with scores of small, relatively inexpensive nodes spread across hundreds of square miles, air dropped from B-2s or Hornets. But what we needed was an entirely new class of vehicle that was flexible, adaptive, and capable of carrying out multiple missions, whether in networks of two or two thousand. So, then, I guess you could say that SWARM inspired both Strikepods and the Atom-class submarine, but for different reasons.

Can you talk about how the Atom-class program originated, and how the Strikepod concept evolved?

I’d been having discussions with some of the Newport and MIT folks while working on the Master Plan, and we were all pretty much in agreement on the core elements of a UUV pod structure – connectivity, redundancy and expendability. We were also in agreement that small is beautiful, if you will, but all of the work on miniaturization was being done in the universities. Long story short, not only did ONR find the funding, but agreed to bring the university people on board, and next thing we have a lovely, windowless compartment in the basement of the Navy Lab. And we had a nice, nondescript name: Undersea Project 7.

It was an exciting time, and it was a genuine privilege working with some of the brightest minds around, people who could have easily been making five times their salaries at Google, or JP Morgan. 

The technology was complex, and the work could be pretty tedious. Lots of highs and lows – two steps forward one step back. For some of the top brass it was hard to justify the expense, pouring all that money into a system that seemed unnecessarily complicated, and, for them, pure science fiction. Do we really need roaming schools of killer fish? Don’t forget, these were guys who came from the era of SOSUS. But that’s what we were offering – and more. A smart SOSUS that could be deployed anywhere, at any time.

We envisioned three variants – one for command & control, or what we called the Rogue, one for navigation and communications, which we called the Relay, and a third that could physically attach itself to vessels, mines, infrastructure. This we called the Remora. Together they could be organized in networks of any size, undersea strike groups capable of communicating with each other and, via the Relay, surface assets and ashore bases.

The Atom-class was under development for nearly fifteen years. Were you at all aware of what was happening with adversary developments, and did that play a role in the design?

Absolutely, and somewhat.  Over time, I became increasingly involved with the intelligence side of things – collection guidance, and analysis. There came a point where I was ping-ponging pretty regularly between Carderock and Suitland, especially by the late 2000s when we were really stepping up our efforts. We were well aware of Chinese interest in unmanned systems, and around 2010 we started receiving reports about the Shāyú program. We were also keeping close tabs on some tech transfer between North Korea and Iran, something reminiscent of their Yono and Ghadir cooperation. There was a real sense of urgency, that we needed to be out-innovating and out-classing our adversaries if we were going to stay ahead of the curve. But we believed strongly in the Atom and Strikepods, and while it was important to know what the other guys were up to, we didn’t let it distract us from our own vision.

The most intriguing stuff was the HUMINT coming out of Rubin [Central Design Bureau for Marine Engineering] – concerning a Project S3, or “Istina” – references to unmanned systems, miniaturization, and a breakthrough in energy production. And then there were reports of Russian vessels showing up unexpectedly during our boomer patrols. They seemed to just know where we were. The counterintelligence guys were in overdrive – this was eerily familiar to the red flag that plagued Richard Haver before the Walker ring was exposed. So we couldn’t just stand there and scratch our heads. But everything checked out internally. So, if there was no security breach, then, how could they know?

So, I started compiling data, and mapped it all out. CIA and DIA both believed it could be evidence of a non-acoustic sensor of some kind, and while this was certainly plausible, the evidence was mostly hearsay. We had imagery of SOKS sensors, and journal articles, and public statements by high ranking officials, but no hard data to substantiate the existence of a viable, working platform. We were, however, receiving quality product on the Istina program that suggested the Russians had developed some kind of miniaturized naval platform capable of lurking silently off Groton or King’s Bay, then trailing our boats to expose their positions to the Russian Fleet.

But you couldn’t sell it?

[Laughs] Well, no, which, admittedly, was pretty frustrating. But something that gets lost in all the scandals and the slanted reporting is the commitment to analytic rigor that permeates the intelligence community. These folks understand that their work has a direct impact not only on U.S. policy, but ultimately on human lives. The difference between right and wrong can mean the difference between life and death, and they carry that burden every day. So, no, I couldn’t sell it. And it was back to the drawing board.

And then Cape Charles happened.

And then Cape Charles happened.

Can you tell us about that day?

I remember it like it was yesterday. It was a Saturday morning, one of those heavy, dewy August mornings in D.C. I was out getting in my run before the heat of the day, when I get a call from Chandra [Reddy, the ONI liaison for Undersea Project 7]. He tells me I need to come in to the office. We were working weekends pretty regularly, but I’d blocked out that day for a round of golf with my dad. I kindly remind him of this, and all he says is, “Jay – we’ve got something.” An hour later I’m on an SH-60 out of Andrews with Chandra and four engineers from S&T, tracking the Potomac out to the Bay. 

They briefed me enroute. Apparently the Coast Guard in Cape Charles, Virginia got a call around 7:30 that morning from a fisherman about a mile off the coast who said he came across something that “looked military.” They send out an RB-M, and bring back what they believe is a U.S. Navy prototype submersible. They phone it in, and ninety minutes later we’re putting down on a grassy airfield in the middle of nowhere, where we’re greeted by an earnest seaman recruit who proceeds to leadfoot it all the way to the station.

It was being kept in a back room, sitting on a table under a blue tarp. When I first saw it, I thought it was just a radio-controlled sub, like someone’s weekend garage project had gone astray. It was basically a miniaturized Oscar II, maybe six or seven feet long, which I suppose shouldn’t be surprising, since the Oscar was built for capacity, and why go to the trouble of designing and developing a whole new hull form when you can just miniaturize one that’s already in the inventory? 

We didn’t know how long it had been disabled, or if the Russians were even aware. We did know that the [Vishnya-class intelligence ship] Leonov had been lurking offshore, and there were a couple of fishing boats we were keeping an eye on near Norfolk, but for all we knew the handlers were right nearby, somewhere on shore. We had to assume they would come looking, so we had to act quickly.

We cracked it open and took a look right there on the table. The guys from S&T were like pathologists, very careful and thorough. One of them had a video camera, which I eventually realized was patched in to the White House Situation Room. 

I don’t think I need to tell you that the intelligence value was immeasurable, a holy grail. It confirmed, of course, what I’d been speculating all along, but it also showed us just how far along the Russians were. The propulsion system alone was a quantum leap for them, and was very similar to what we had been developing for the Atom.

Too similar?

I’d say strikingly similar. Maybe alarmingly so. But there was so much information floating around in the public domain – academia, scientific journals – so much private sector R&D going on, the design could have originated anywhere. For sure there was plenty for the counterintelligence guys to lose sleep over, but at that moment we had bigger fish to fry.

Did you bring it back to Washington for further analysis?

Well, actually, no.

You see, during the autopsy, one of the tech guys notices something – a small explosive charge right against the hull, wired to the CPU. The damn thing had an autodestruct! It was right out of Mission Impossible, but it obviously had failed to activate. We’d been toying with just such an idea for the Atom-class – a small blast to punch a hole in the hull and allow it to disappear into the depths, then ping like a black box for eventual retrieval.

Chandra’s on the secure phone, presumably with the Situation Room, when he turns to me, pointing at the Istina. “They want us to blow it,” he says. “They want us to put it back.” Immediately I think – are they crazy? This is the biggest intelligence haul since K-129, and they want to just dump it?  But then I realize – of course!  The Bay is shallow enough that if the Russians come calling, they will expect to find it, and if they can’t, they’ll have to assume we did. We needed them to believe we were clueless, so we had to let them find it. That way they’d never know what we knew.

So we closed it up, drove it back out into the Bay, and scuttled it.

Was it then that the President authorized Operation Robust Probe?

The biggest question on everyone’s mind was: Is this an isolated penetration, or is it part of a larger operation? Prudence required that we take action to sanitize the Bay, so yes, Robust Probe was ordered, and the Navy immediately mobilized.

But as urgent as the situation was, there was also a need for discretion. We couldn’t exactly fill the Chesapeake Bay with destroyers. Even an increased presence of Coast Guard or small patrol craft would likely not go unnoticed, at least by the Russians. So, within hours the Navy had cobbled together a flotilla of private watercraft manned by cleared contractors and sailors in civies. They fanned out across the Bay, banging away with dipping sonar, fish finders, and whatever they could use.

Fortunately, we’d been putting Alpha, the first operational Strikepod, through its paces, and had been having a lot of success. So we fast-tracked sea trials, put a crew together, rigged up a mobile command post – the very first Strikepod Command – in what looks like a plain T.V. news van, and we’re in business. 

Within twenty-four hours Alpha had detected another Istina lurking just off Thomas Point Light. It was an odd mixture jubilation – knowing that the Atom-class was a success – and dread, the weight of knowing of what was at hand, that the Russians had not only designed, developed and deployed a sophisticated micro AUV, but they were using it to brazenly violate our territorial waters.

Was there any other reaction from the White House?

The President immediately convened the National Security Council, and, yes, yours truly was ordered to attend and provide the briefing. He was not happy. How did we not see this coming? I explained how we were aware of Russian efforts, but that our coverage had been spotty. And there were no indications that the Russians were on the brink of deploying a new vehicle to the fleet, much less inserting it into U.S. territorial waters. 

I remember how surreal it felt, sitting there in the Situation Room, the looks on the faces around me. 

Fear?

Not fear. More like a mixture of deep concern and disbelief as if no one could wrap his head around the fact that this was actually happening. And I think everyone in that room knew that things were about to change, that all of our theorizing, prognosticating, and preparing for the future of naval warfare was coming to a head. The future had arrived, right in our back yard. 

The prevailing opinion in the room was that we should move immediately to destroy it and contact the Russian government. The guys from CIA made a compelling argument for restraint – one with which I concurred – that this was more an opportunity than a threat. There was no reason to believe this was Russia’s opening move against the United States, and that if anything it was the latest example of resurgent Russian bravado and Putin’s longing for the Cold War days. This was an opportunity to gather as much intelligence as possible on a new foreign weapons platform. But there was also concern that, if weaponized, the Istinas could be used to stage a terror attack and sow further insecurity and political unrest in the United States. In the end, though, we managed to convince the President to hold off, but if at any point it was determined that there existed a threat to life or property, we would have to destroy it.

Did you personally have any theories as to its intentions?

Not many. There was Aberdeen [Proving Ground]. Theoretically an Istina could get in close enough to extract some SIGINT or MASINT, depending on the vehicle’s sensor capabilities. But who really knew? Maybe the Russians were just interested in ship spotting, or counting crabs.

And then it just kind of hit me. It was September – the following month was Fleet Week in Baltimore. The Navy would be showcasing its wares –warships, the Blues – which normally wouldn’t be such a big deal, except there was something else that year.

Zumwalt? 

Exactly. Zumwalt was on the agenda that year for commissioning. She’d be sailing up the Bay, and then docked for several days at Locust Point. We weren’t concerned with an Istina attacking Zumwalt, per se, but we knew that there was much to be had intelligence-wise. And while we had no desire to enable a Russian intelligence operation, we also wanted to collect as much as possible of our own.

When we examined the Istina in Cape Charles, we didn’t discover a warhead of any kind, so we assumed any others wouldn’t be weaponized either. And even if they were, it was unlikely that a single Istina could inflict any meaningful damage on an armored warship, unless the Russians had managed to develop a super compact, high yielding explosive, but there was no intelligence indicating such. Perhaps a group of Istinas detonating simultaneously could cause a problem, enough to raise some eyebrows or even provoke a crisis, but it would take dozens to equal the yield of even a single torpedo.

It was a delicate, rapidly unfolding situation that was unlike anything we’d ever experienced in the modern era. Of course, we’d ventured into Soviet waters in manned submarines during the Cold War, at great risk to both human life and the delicate balance that defined the Cold War. But had Parche or Halibut been detected or attacked and sunk during Ivy Bells, it would have provoked a political crisis that may well have triggered World War III. Were the stakes just as high now? It was anyone’s guess.

Were you able to deploy additional Strikepods?

Yes. Alpha had been working like a charm, but then abruptly it loses contact with the Istina as it moves under a passing tanker, which was of course disappointing, but not entirely unexpected. In the meantime, we’d deployed two more six-ship Strikepods – Beta to cover the central Bay, and Gamma the southern region. It was a lot of territory to cover, but that constituted the sum total of our Atom-class fleet at the time. There were eight currently in various stages of production, but it would be at least a day or two before we could deploy them.

Pretty soon we get word that Gamma has detected something down near Bloodworth Island.  At first we figured we’d reacquired the original, but an analysis of the acoustic data revealed that it was actually a new vehicle. It was alarming, for sure, knowing that there were now at least two Russian microsubmarines lurking in the Chesapeake Bay.

We tracked it for about two days, and then Beta manages to reacquire Istina number one. About twelve hours later, Alpha detects not one, but two more right at the mouth of the Patapsco River. That’s when everyone’s hackles went up. This was no longer a counterintelligence operation. 

Operation Robust Probe becomes Robust Purge?

Correct. Once we realized that we were dealing with at least four Istinas in the Bay, and they were lingering in Zumwalt’s path, the time for just being sneaky was over. We needed to at the very least disrupt, if not outright destroy them. 

By now the eight new Atoms have come off the line, so we fit them each with a makeshift warhead of C4, designate them Remoras, and deploy them immediately – four for Alpha, which was now tracking two separate targets, and two each for Beta and Gamma. They would only be employed if we felt that there was an immediate threat to life or property.

In the meantime, Zumwalt, Leyte Gulf, and Jason Dunham, and the other ships arrive, and as they transit the Bay, the Istinas take up position about 500 meters astern. Once the ships turn into the Patapsco, though, they back off and assume a position just outside the mouth of the river. They linger there for about twelve hours, until we get a burst from Alpha: One of the Istinas is headed up river.

So now we have a decision to make. Alpha is tracking two separate vehicles. Do we order Alpha to pursue, and break off contact with one of them? Turns out Sea Rays and Boston Whalers aren’t particularly effective ASW platforms, and Strikepods Beta and Gamma were both busy with their own tracks, well to the south, too far away to assist Alpha in time.

Then one of our brilliant engineers suggests splitting Alpha pod. We could repurpose one of the Remoras as a Rogue, and assign it an armed Remora and a Relay for coms. The engineers get on it, and in about fifteen minutes a small splinter pod breaks off and starts trailing the Istina up the Patapsco.  Things get increasingly tense as it nears the Key Bridge, and we decide that if the Istina begins moving toward the bridge supports, we would have no choice but to destroy it.

After a few anxious moments it passes under the bridge without incident, and continues on a path toward Locust Point, where the warships are docked. Word comes down from the Sit Room: The Istinas now present a clear and present danger, so immediately we order the splinter pod to attack. A minute later a Remora detonates about five meters below the surface, and we watch as it and the Istina disappear from the tactical display. Beta and Gamma attack as well, sending their respective contacts, as well as two Remoras, to the bottom of the Bay.

And just like that it was over?

It was over.

The Strikepods and surface vessels continued to prosecute Robust Purge until Zumwalt and the other ships made it safely to the Atlantic. By all accounts, Baltimore Fleet Week, including the commissioning of the Navy’s newest destroyer, came off without a hitch. No one had any idea that the first decisive battle of a new era in naval warfare had just occurred within throwing distance of Fort McHenry.

What were the takeaways?

Well, we had terabytes of data to analyze, of course, but perhaps even more importantly, there were myriad political, security, and even philosophical questions to consider. What exactly were AUVs? Were they vessels? Weapons? In a way they were like spies, but rather than round them up and expel them, or put them in jail, we’d have to disrupt them, or even kill them.

Perhaps the biggest takeaway, though, was the realization that a new form of conflict was dawning. Submarines had of course always been characterized by stealth and secrecy, and had engaged in high risk cat-and-mouse games in order to stay ahead of the adversary. But now that submarines were unmanned, and, like their stealthy manned cousins, operated far from the prying eyes of the public, a kind of limited war was now possible, a war with little or no risk of escalation, or political fallout, and most importantly, no loss of human life. A war characterized by secrecy, anonymity, and non-attribution.

In other words, as we sit here today in my living room, in the year 2033, with the benefit of hindsight, our vision of AUVs as merely an extension of the Fleet’s eyes and ears was really rather primitive.

And only the beginning of the story.

[End Part I]

David R. Strachan is a writer living in Silver Spring, MD. His website, Strikepod Systems, explores the emergence of unmanned undersea warfare via real-time speculative fiction. Contact him at [email protected].

Featured Image: Arctic Sub Base by Jon Gibbons (via Deviant Art)

Chinese UAV Development and Implications for Joint Operations

By Brandon Hughes

Drone Diplomacy

On December 15, 2016, a United States Navy (USN) unmanned underwater vehicle (UUV) was seized by the Chinese People’s Liberation Army Navy (PLAN) about 80 miles from Subic Bay, Philippines (Global Times, December 17, 2016). This was met with quick negotiations and the agreed return of the $150,000 research drone following complaints to Beijing. The then President-elect, Donald Trump, condemned the action from his twitter feed and responded, “Keep it!”, further escalating the situation and casting an unknown shadow on the future of the U.S.-China relationship (Reuters, December 18, 2016). Almost immediately, the seemingly mundane deployment of UUVs and unmanned aerial vehicles (UAVs) in the South China Sea became a potential flashpoint in the ever-contentious territorial disputes.

Countering President Trump’s South China Sea endeavors is a legislative move by Beijing to require all foreign submersibles transiting in China’s claimed territorial waters to travel on the surface and or be subject to confiscation (China News Service, February 15, 2017). The proposed change to the 1984 China Maritime Traffic Safety Law compares to China’s East China Sea Air Defense Identification Zone (ADIZ), set up in 2013. Codifying domestic maritime law further adds a layer of validity in the event a UAV or UUV is captured while patrolling in a disputed area. Assuming a more severe response is unlikely from the U.S., Beijing may use the law as an excuse to reduce unmanned foreign Intelligence, Surveillance, and Reconnaissance (ISR) assets in its periphery, regardless of international opinion.

While demonizing foreign ISR activities, China continues to bolster its own ISR efforts for deployment in maritime disputes, foreign surveillance, and warfighting capacity. Advances in armed/unarmed and stealth UAVs will further integrate UAVs into the Chinese People’s Liberation Army (PLA) joint forces array. Advances such as satellite data-link systems not only extend the range of these assets, but also allow for a more seamless integration of command and control (C2). This further enhances relatively low cost and low risk surveillance mechanisms.

UAVs are already an emerging capability within the PLA, law enforcement, and civil agencies and are playing a more prominent role in operations. Real-world testing will refine the PLA doctrinal use of these systems. Control, direction of development, and interoperability in joint operations are all questions yet to be answered. Developing an understanding of how these systems are incorporated into the PLA force structure may give insight into developing doctrine and political considerations. A clear understanding of both may support a potential framework for de-escalating unmanned vehicle incidents between nations where China has interests.

Deployment

On January 20th, 2017, the Chinese North Sea Fleet (NSF) received a request for help with a distress call initiated from the rescue center in Jiangsu Province to aid in the search and rescue of 13 crew members aboard a Chinese fishing boat that sank around 6 am that morning. The PLAN NSF dispatched two navy frigates, the ‘Suzhou’ and ‘Ji’an’ to the East China Sea to search for the crew of the lost fishing vessel, named the Liaoda Zhongyu 15126. What made this search-and-rescue effort unique was the announcement that a surveillance UAV (make unknown) aided in the search.

The deployment of a UAV with two naval frigates, in coordination with a maritime rescue center, demonstrates the multi-functionality and capability of China’s UAVs. Additionally, it is likely the UAV was deployed from a non-naval platform due to the size of the helicopter deck and lack of hangar on a ‘Suzhou’ and ‘Ji’an’, both Type 056/056A corvettes (Janes, November 3, 2016; Navy Recognition, March 18, 2013). This proof of concept highlights the interoperability of air, land, and sea assets coordinating for a common purpose. What is unknown, specifically, is where the UAV was launched, who controlled it, and whether it was using a line-of-sight (LOS) or extended control system.

China’s 40th Jiangdao-class (Type 056/056A) corvette shortly before being launched on 28 October at the Huangpu shipyard in Guangzhou. (fyjs.cn)

Capitalizing on peacetime operations validates control and communication hand-offs and will integrate intelligence platforms, such as the PLAN’s newest electronic surveillance ship, the Kay Yangxin (开阳星 ), vastly expanding the reach of Chinese ISR. Additionally, integration of satellite-linked communication packages, utilizing the domestic constellation of GPS satellites known as the Beidou, or Compass, will continue to improve UAV navigation and targeting systems. These improved navigation and satellite aids will be integrated into existing UAV datalink systems and developed with future ISR systems in mind.

Command Guidance

The use of UAVs for military and ISR purposes can have unintended political and military consequences. The PLA command structure has always focused around centralization to retain political power over the military. It is fair to assume that the guidelines for deployment of UAVs used for strategic intelligence missions are developed at a high level. On November 26, 2015, President Xi Jinping rolled out one of the many updates to the Soviet-style military system that was part of a recent effort to make the PLA more efficient. According to Yue Gang, a retired Colonel in the PLA’s General Staff Department, placing all branches of the military under a “Joint Military Command” was the “biggest military overhaul since the 1950s.” On February 1, 2016, a few months after Yue Gang’s comments, China’s Defense Ministry Spokesman Yang Yujun stated that the PLA was consolidating seven military regions into five theater commands, a move likely to streamline C2 (China Military Online, February 2, 2016). The theater commands will be presided over by the Central Military Commission for overall military administration (See China Brief, February 4, 2016 and February 23, 2016).

Centralizing and reducing the number of commands will allow for each individual military component to focus on their own training objectives (China Military Online, February 2, 2016). This concept promotes component independence to enhance capability, but doesn’t talk to efforts to enhance integration of forces in joint military exercises. The logistical and financial burden of large-scale exercises naturally limit the frequency of exercises each region can conduct per year. What is not clear, yet important to understand for a high-end conflict, is how joint operations between military regions will be executed. Chinese Defense Ministry Spokesman Yang Yuju added that the new structure allows for the commands to have more decision-making power in responding to threats and requesting CMC support. (China Military Online, February 2, 2016).

Utilizing UAVs in regional operations to patrol disputed regions indicates that tactical control would be conducted at the highest level by a chief staff at a joint command center, but more likely relegated to a lower echelon headquarters element closer to the front lines. These lower-tiered units are likely bound by the strict left and right limits on where they patrol. Advances in simultaneous satellite data-link systems will allow for a more seamless handoff of ISR/strike assets between commands in a robust communications environment. The fielding of enhanced and interoperable satellite communications is likely to bolster the deployment of UAVs and further integrate them into PLA doctrine by supporting the “offshore waters defense” and “open seas protection” missions, as outlined in the PLA’s 2015 White Paper on Military Strategy (China Military Online, May 26, 2015).

Direct operational control of the PLA’s UAVs is generally given to the commander of the next higher echelon or to a commander on the ground. UAV technicians depicted on Chinese military websites tend to hold the ranks of junior non-commissioned officers E-5/OR-5 (Sergeant) to O- 2/OF-1 (First Lieutenant). This is similar to certain units of the United States Army, where platforms are directly controlled by enlisted and warrant officers. However, just like the U.S., guidance and direction is usually “tasked down” by a higher echelon, and UAVs with a strike package will likely be controlled or employed by officers under orders from above.

UAV units in the PLA are likely to be attached to a reconnaissance or communications company. Likewise, the PLA Air Force (PLAAF) and PLA Navy (PLAN) will likely have UAV-specific units. Advancements in communication will enable various command levels (i.e. company, battalion, brigade) to simultaneously pull UAV feeds and give guidance to the operator. Based on the size of various exercises, the training indicates UAV control is given down to the lowest level of command but under extremely strict guidance. Additionally, the authority to deploy or strike is likely to be held at the regional command level or higher. Specific rules of engagement are unknown, but those authorities will be developed through trial and error during a high-intensity conflict.

Interoperability

Communications infrastructure improvements are evident in the development of over-the-horizon satellite datalink programs and communication relays. The CH-5 “Rainbow” (Cai Hong) drone, for example, resembles a U.S. Atomic General MQ-9 “Reaper” and is made to function with data systems capable of integrating with previous CH-4 and CH-3 models (Global Times, November 3, 2016). The newest model is capable of 250 km line-of-sight datalink, with up to 2000 km communications range when linked into a secure satellite (Janes, November 7, 2016).

It is likely that improvements in interoperability will be shared among service branches. Recent developments in Ku-Band UAV data-link systems, highlighted during the 11th China International Aviation and Aerospace Exposition in November 2016, will further synchronize intelligence sharing and over-the-horizon control of armed and unarmed UAVs (Taihainet.com, November 2, 2016).

PLA Signal Units already train on implementing UAV communication relays (China Military Online, April 8, 2016). Exercises like these indicate a desire to increase the interoperability in a joint environment. UAVs with relay packages will improve functionality beyond ISR & strike platforms. Units traversing austere environments or maritime domains could utilize UAV coverage to extend the range of VHF or HF radios to direct artillery or missile strikes from greater distances. If keyed to the same encrypted channels, these transmissions could be tracked at multiple command levels.

Joined with a UAV satellite datalink, ground or air communications could be relayed from thousands of kilometers away. At the same time, a Tactical Operations Center (TOC) could directly receive transmissions before passing UAV control to a ground force commander. In a South China Sea or East China Sea contingency, UAVs could link unofficial maritime militias (dubbed “Little Blue Men”) via VHF to Chinese Coast Guard Vessels or Naval ships. These messages could also be relayed to PLA Rocket Force units in the event of an anti-access area denial (A2AD) campaign.

Capping off China’s already enormous communication infrastructure is the implementation of dedicated fiber-optic cables, most likely linking garrisoned units and alternate sites to leadership nodes. Future use technologies such as “quantum encryption” for both fiber-optic and satellite based communication platforms could lead to uninhibited communication during a military scenario (The Telegraph, November 7, 2014; Xinhua, August 16, 2016).

Functionality 

Based on the use of Chinese UAVs overseas and in recent exercises, UAVs will continue to be utilized on military deployments in the South China Sea for patrol and ISR support. In the event of a contingency operation or the implementation of an A2/AD strategy, UAVs will likely be used for targeting efforts, battle damage assessments, and small scale engagements. Against a low-tech opponent, the UAV offers an asymmetric advantage. However, the use of UAVs for something other than ISR would be greatly contested by more modern powers. UAVs are generally slow, loud, and observable by modern radar. Many larger UAVs can carry EW packages, although there is little information on how the datalink systems handle EW interference. Ventures in stealth technology, such as the “Anjian/ Dark Sword,” (暗剑) and “Lijian/ Sharp sword” (利剑) projects, would increase Beijing’s UAV survivability and first strike capability if deployed in a contingency operation (Mil.Sohu.com, November, 24, 2013). However, a large-scale deployment of stealth UAV assets is not likely in the near future due to cost and material constraints.

To reduce the risk of high-intensity engagements, China may expand its reliance on UAVs to harass U.S., Taiwanese, Japanese, Philippine, and Vietnamese vessels. Additionally, UAVs may be utilized abroad in the prosecution of transnational threats. So far, China has stuck to a no-strike policy against individuals, although it was considered as an option to prosecute a drug kingpin hiding out in Northeast Myanmar (Global Times, February 19, 2016). The “Rainbow/Cai Hong” variant and “Yilong / Pterodactyl,” made by Chengdu Aircraft Design & Research Institute (CADI), represent some of the more well-known commercial ventures used by the PLAAF (PLA Air Force) and sold on the global market. These variants are often used for ISR in counter-insurgency and counterterrorism operations (The Diplomat, October 6, 2016; Airforce-technology.com, no date).

Strike capability, aided by satellite datalink systems, is another growing capability of China’s UAV programs (Popular Science, June 8, 2016). In late 2015, the Iraqi army released images from a UAV strike against an insurgent element utilizing the Chinese-made export variant “Rainbow 4” (彩虹 4) running on a Window’s XP platform (Sohu.com, January 2, 2016; Popular Science, December 15, 2015). PLA UAVs already patrol border regions, conduct maritime patrols, and assist in geological surveys and disaster relief.

The arrival of off-the-shelf UAVs contributes to the growing integration of dual-use platforms. Technology and imagination are the only limits to the growing UAV industry. Additionally, the export of high-end military UAVs will only continue to grow as they are cheaper than U.S. models and growing in capability. The profit from these sales will certainly aid research and development efforts in creating a near-peer equivalent to the U.S. systems. For a struggling African nation held hostage by rebels (e.g. Nigeria) or an established U.S. ally in the Middle East (e.g. Jordan), the purchase of UAVs at a relatively low price will increase good will and allow for an operational environment to refine each platform’s own capability (The Diplomat, October 6, 2016; The Daily Caller, December 2, 2016).

Conclusion

UAVs for military operations are not new, however, improvements in lethal payloads, targeting, and ISR capabilities will change the role in which UAVs are utilized. Considering China’s own drone diplomacy, the deployment of UAVs is as much a political statement as it is a tactical platform. State-run media has highlighted the successes of its drone program but has not been clear on who, or at what command level, operational control of UAVs is granted. Due to Beijing’s standing policy against lethal targeting, release authority is most likely relegated to the Central Military Commission, or even President Xi himself.

The extent that doctrine has been developed in planning for a high or low-intensity conflict is still unclear. The advent of satellite data-links and communication relays means the tactical control of UAVs may be seamlessly transferred between commanders. The rapid development of UAVs will continue to be integrated into the joint forces array but must be done as part of an overall doctrine and C4ISR infrastructure. Failure to exercise their UAVs in a joint environment will affect combined arms operations and reduce the PLA’s ability to synchronize modern technology with centralized command decisions and rigid doctrine.

Brandon Hughes is the founder of FAO Global, a specialized research firm, and the Senior Regional Analyst-Asia for Planet Risk. He has previously worked with the U.S. Army, the Carnegie-Tsinghua Center for Global Policy, and Asia Society. He is a combat veteran and has conducted research on a wide variety of regional conflicts and foreign affairs. Brandon holds a Masters of Law in International Relations from Tsinghua University, Beijing and has extensive overseas experience focused on international security and U.S.-China relations. He can be reached via email at [email protected].

Featured Image: CASC’s CH-5 strike-capable UAV made its inaugural public appearance at Airshow China 2016 (IHS/Kelvin Wong)

Catch of the Day: Reflections on the Chinese Seizure of a U.S. Ocean Glider

By Heiko Borchert

On 15 December 2016, China seized an Ocean Glider, an unmanned underwater vehicle (UUV), used by the U.S. Navy to conduct oceanographic tasks in international waters about 50-100 nautical miles northwest of the Subic Bay port on the Philippines. Available information suggests that the glider had been deployed from USNS Bowditch and was captured by Chinese sailors that came alongside the glider and grabbed it “despite the radioed protest from the Bowditch that it was U.S. property in international waters,” as the Guardian reported. The U.S. has “called upon China to return the UUV immediately.” On 17 December 2016 a spokesman of the Chinese Defense Ministry said China would return the UUV to the “United States in an appropriate manner.”

Initial legal assessments by U.S. scholars like James Kraska and Paul Pedrozo suggest the capture is violating the law of the sea, as the unmanned glider can be defined as a vessel in international maritime law that enjoys U.S. sovereign immunity. China, by contrast, justifies the capture with reference to its national security. According to Senior Colonel Zhao Xiaozhuo of the PLA Academy of Military Science, the glider “could have threatened the interests of China’s islands, or China’s ships and submarines. It must have damaged Chinese interest that caused the seizure.”

As this incident evolves and more information will become available, it might be useful to start thinking about some of the more long-term consequences of this UUV seizure. Building on a previous analysis of the impact on UUV in the Asia-Pacific region, I would like to suggest three observations for further consideration:

Unmanned Assets are Attractive Targets that Challenge Strategic Communication

This is not the first time an unmanned asset has been captured. Defense News reported that “an ‘unknown vessel’ grabbed another underwater vehicle operated by a U.S. ship near Vietnamese waters, but the vehicle was recovered.” In 2011, Iran seemed to have downed a RQ-170 Sentinel unmanned aerial vehicle (UAV) by jamming its radar system in order to force the UAV to land in an area it was not supposed to land.

In line with these incidents, the most recent UUV capture reinforces the message that unmanned assets that have been designed with benign operating environments in mind and are attractive targets that can be easily captured or attacked. This is a prime challenge for strategic communications.

Seizing a U.S. UUV during the transition phase of the U.S. administration is a first rate headline grabbing media event, which might explain why it occurred now. It illustrates, as a Chinese scholar quoted by the South China Morning Post said, “the power of the Chinese army.” However, a UUV that hovers at the surface can be more or less easily captured. This time no one shot a picture of the “catch”, but this could be different next time. This might prompt a rethink of the media-related cost-benefit analysis of deploying UUVs in hotspots, which leads to the second thought.

Ready to Catch and Ready to Lose?

Testing the U.S. response certainly was a motive in the UUV capture. As Michael S. Chase et. al. have shown, China closely follows the U.S. use of unmanned assets also in view of justifying its own action and developing its own policies and concepts. The incident underlined China’s growing self-confidence and readiness to seize UUVs. But what about the U.S.?

At first sight, the U.S. response was measured and adequate by prompting China to return the captured asset to comply with international law. ‘We play by the rules, you don’t’ – this was the U.S. message. Apart from the question, if you can deter someone who just broke the rule by reminding him not to do so, there is a more trenchant issue at play.

Unmanned systems are attractive because they are easy pickings, but the emphasis on the need to return the U.S. UUV could undermine this very key advantage. In this case the UUV is treated like a manned asset because the overall message is about norm compliance. However, if you want the other side to hand back a relatively low-cost glider, can you credibly convey the message you would be ready to lose a much more sophisticated Large Displacement UUV?

This is the policy question the new U.S. administration and other governments using unmanned assets will need to work on, because a similar incident could occur in the Arabian Sea, the Eastern Mediterranean, the Black Sea, or the Baltic Sea.

Catch Me If You Can: Thinking About More Nuanced Counter-Responses

 Emerging powers have had enough time to study the use of unmanned assets in particular by the U.S. Their first line of defense focused around mimicking U.S. practice in order to catch up. The second line of defense evolves around counter-measures. The seizure of the U.S. glider clearly signals that UUVs need to be prepared to fend off counter-measures as well. Thus more nuanced responses will be needed.

First, more thought needs to be given to when and where to deploy UUV in a non-benign naval environment. The current incident clearly shows that the tactical and strategic benefits of UUVs can quickly turn into a strategic liability if other actors are not willing to back down on their own policy line.Second, this incident should accelerate the development of swarms of Extra Small UUV (XSUUV) that would be radically smaller than current gliders and more difficult to track and trace.

Third, the XSUUV swarm could also help deconflict the policy dilemma. XSUUVs would hardly qualify as vessels enjoying sovereign immunity. Other forms of countering XSUUV notwithstanding, the risk of losing them would be much lower, which could make it far less attractive to catch them.

Fourth, self-protection will become more important in particular for more sophisticated UUVs that execute different missions at the same time. However, solutions should keep the above policy dilemma in mind: if measures to protect the UUV from adversarial interference become too demanding and thus might outstrip the benefits of using UUV, something is probably wrong about the operational concept guiding the respective UUV use.

Dr Heiko Borchert runs Borchert Consulting & Research AG, a strategic affairs consultancy.

Featured Image: A Littoral Battlespace Sensing, LBS, glider (U.S. Navy)

The Future of Sea-Air Drones and Protecting Maritime Assets

By Jack Whitacre

What are some of the ways the U.S. and other countries could defend maritime assets against swarms of Sea-Air drones? Consider a convoy system with human centered technology, algorithms from nature, and elements of gaming.

Loon-Copter-Drone
Oakland University’s Loon Copter works equally well above and below the water’s surface. Photo: Oakland University

The FAA estimated that one million drones would be sold during this 2015 holiday season. This estimate was based primarily on the proliferation of flying drones, however new domains of operation may open up soon. Premiering in 2015, the Loon Copter proves that, in time, these devices will be capable of traditional aerial flight, on-water surface operations, and sub-aquatic diving. Embedded Systems Research at Oakland University created the Loon Copter in 2014. In 2016, the design placed third in the UAE Drones for Good competition. The system works in air as well as in water because the four rotors balance and cut through air and water equally well.  

dronemap1
A map of nations with a drone program as of 2011. Courtesy Defense One, via RAND Corporation.

According to the New America Foundation, at least 19 countries possessed or were acquiring armed drone technology as of 2015. The Washington Post and The Aviationist reported in July of 2014 that even non-state actors like Hamas have manufactured drones capable of firing rockets or missiles. At the time of reporting it was unknown whether this specific group had the ability to launch missiles, but the story does show the willingness of non-state actors to weaponize technology. The same Washington Post article describes how low-tech “suicide” drones effectively function as guided missiles. With the history of state actors increasingly acquiring armed drones and non-state actors weaponizing drones, Sea-Air drones could open new realms of battlespace.

“The profound influence of sea commerce upon the wealth and strength of countries was clearly seen long before the true principles which governed its growth and prosperity were detected.” –Alfred Thayer Mahan 

Sea-Air drones are not currently available off the shelf, so their ramifications are not yet recognized. If non-state or state actors designed suicide drones with sufficient range, it would be very difficult to defend global maritime trade against these threats due to the sheer size of the oceans. The Canadian Military Journal hypothesized that it is only a matter of time before pirates use drones offensively. Articles like these contemplate an important issue, but are limited by only considering the skies. Currently, our ability to detect air drones far exceeds capabilities to detect devices beneath the surface of the ocean. Even by diving ten or fifteen meters beneath the surface, Sea-Air drones may be able to elude satellites. NASA’s Ocean surface topography site describes how the best satellites measuring ocean temperature pierce only one inch below the ocean’s surface.

Shrouded by shadowy depths, would-be aggressors could potentially take down or ransom large freight vessels and trade flows that are so essential to many countries’ survival. According to Rose George in Ninety Percent of Everything,” nearly 90% of goods are transported by sea. The stakes are high and the arena is huge. While it’s unlikely that every inch of the sea will become a combat zone, NOAA estimates that there are nearly 321,003,271 cubic miles of water in the world’s oceans. To this end, DARPA is re-thinking distributed defense by creating small aircraft carrier cooperatives. In the face of such a large and deep strategic chessboard, what are some of the ways the U.S. and other maritime nations could defend shipping from Sea-Air Drones? One option would be to revive the convoy system. The tipping point for such a decision may have to unfortunately be a tragedy with lives lost at sea. By contemplating these scenarios now, we could build in defenses before deaths occur.

“When [the enemy] concentrates, prepare against him.” –Sun Tzu

The cost of drone technology, like other innovations, continues to decrease; beginners models are available for less than $100. As this trend is likely to also occur in the maritime arena, it would be wise to match high-value vessels with an accompanying group of friendly Sea-Air drones offering constant defensive protection. In other words, a convoy must have the ability to destroy or electronically neutralize attacking drones. A ship with a 24/7 security presence would likely be safer than standard battle group coordinated operations. This is because there are simply too many ships at sea at any given time to protect them all through traditional means. The International Chamber of Shipping estimates there are least 50,000 merchant ships plying the oceans at any given time. Having constant convoys would reduce vulnerability amidst the uncertainty of when, where, and how an enemy might attack.

These convoys could be combinations of complex programmable drones capable of truly autonomous decisions and human operated systems. The most successful formations might be inspired from millions of years of evolution and derived through phenomena like flocks of birds and schools of fish. In such swarms it would be possible to make a human operator the “lead,” balancing machine autonomy with human decision-making. To this end, P.W. Singer and August Cole’s futuristic Ghost Fleet novel describes human helicopter pilots flying missions in conjunction with drones. The video below shows many different formations that could be programmed for swarms.

In order to recruit talent, the defense community might consider incorporating crowd-sourcing and gaming to meet increasing demands, at least until convoy defense systems can function in fully automatized ways. Pilots could be given a convoy interface (like Eve Online) and point systems tied to real world rewards to incentivize behavior. With this approach, the U.S. could capitalize upon large reserves of talent to protect trade, coasts, and even fishing vessels. This is merely an opening suggestion. There would, of course, be clear difficulties with such a strategy, such as ensuring a clearance system, similar to that of the Merchant Marine, payments to operators, and contract stipulations surrounding the use of force. However, the proliferation of third-party defense contracting proves that new types of defense arrangements can be made quickly in the face of emergent threats.
 
It may be many years before Sea-Air drones, suicide drone piracy, and other forms of maritime threats emerge in full force. However, there are already clear modes of attack and high valued targets. The future may be hard to predict but that shouldn’t it preclude it from strategic thinking.  

Jack Whitacre is an entrepreneur and former boat captain who studied international security and maritime affairs at The Fletcher School of Law and Diplomacy.