Tag Archives: USV

Unmanned Ships: A Fleet to Do What?

By Jonathan Panter

On March 18, 2021, former Congresswoman Elaine Luria of Virginia criticized the Navy’s then-recently-released Unmanned Campaign Framework as “full of buzzwords and platitude but really short on details.” When promised a classified concept of operations, she added, “I think the biggest question I have [is]… it is a fleet to do what?”

Two and a half years later, the American public – soon to spend half a billion dollars on unmanned vessels – could ask the same thing. What strategic ends are unmanned vessels intended to serve? The Navy has yet to update the Unmanned Campaign Framework. The document promises all the right things (“faster, scalable, and distributed decision-making”; “resilience, connectivity, and real time awareness”) but provides little granular detail about the differential utility of unmanned systems across mission and warfare areas.

Nevertheless, unmanned vessels are receiving more attention than ever. The media frenzy surrounding Ukraine’s “drone boats” continues; the Navy’s Task Force 59 (responsible for testing small unmanned surface vessels in the Persian Gulf) gets the feature-length treatment in Wired; and a front-page article in the New York Times all but lobbies for more unmanned ships.

Perhaps a concept of operations for unmanned surface vessels is floating around in the classified world. But elsewhere, buzzwords still rule the day. Just weeks ago the Department of Defense announced its new “Replicator” initiative to deploy thousands of drones within two years: it will be “iterative,” “data-driven,” “game-changing,” and of course, “innovative” (variations of the latter appear 22 times in the announcement). Never mind that, in warfare, “innovative” is not always synonymous with “useful.”

Part of the problem is conceptual. The term “unmanned system” includes everything from a civilian hobbyist quadcopter used for spotting artillery in Ukraine, to the Navy’s as-yet-unbuilt “large unmanned surface vessel,” a tugboat-sized ship that is supposed to launch cruise missiles. This expansive terminology can confuse lay observers or new students of the subject. Unmanned systems have matured at different rates. Some have been thoroughly tested and proven their mettle in real-world operations; others are, at present, theoretical or even daydreams. The U.S. military has decades of experience operating unmanned aerial systems (or “aerial drones”), for instance. But the record of unmanned surface vessels – the focus of this article – is limited. Only two types of unmanned surface vessels have seen operational duty in the current era: Ukraine’s (decidedly non-autonomous) explosive-laden drones, and the U.S. Navy’s tiny “Saildrone,” a vessel with little current purpose besides visually-identifying other ships in a permissive environment. Despite these narrow use cases, the two examples are almost-unfailingly invoked in claims that a naval revolution is underway.

When the same few words, and the same few examples, so frequently justify a wholesale strategic pivot, policymakers and strategists should take pause. If the Navy intends to reorient its ways and means of warfare – and if the taxpayer is expected to pay for it – then Congress and the American people deserve a formal, public strategy document on the general purposes and risks of unmanned surface vessels.

The Missions of the Navy

The 2021 Unmanned Campaign Framework is less a plan than a promotional pamphlet. The Framework dedicates one page each to the Department of Defense’s four unmanned systems “portfolios” – air, surface, subsurface, and ground – an understandably brief introduction given the infancy of the technology and classification concerns. Because specific programs are prone to change, it is more informative to examine the promise of unmanned systems from the perspective of the underlying strategic motivation for their development. That context is a shift to what the Navy calls “distributed maritime operations”: a plan to field more platforms, in a more dispersed fashion, networked together to share information and concentrate fires, while keeping people outside the enemy’s weapons envelope, and sending more expendable assets inside of it. Unmanned ships, the Framework contends, free up humans for other tasks, reduce the risk to human life, increase the fleet’s persistence, and make it more resilient by providing more “nodes” in the network. They are also – the Navy frequently claims – cheap. The Chief of Naval Operations’ Navigation Plan 2022 also promises that unmanned systems will deliver particular means of warfare (e.g., increased distribution of forces) but again, without specifying the differential application of such means across mission and warfare areas.

The first step in determining the likely future distribution of unmanned surface vessel risk is projecting where those vessels are most likely to be used. Setting aside strategic deterrence, which remains the realm of ballistic missile submarines, the Navy’s core four missions are sea control, presence, power projection, and maritime security.

Forward Presence is the practice of keeping ships persistently deployed overseas, demonstrating U.S. capabilities and resolve, in order to deter adversaries and reassure allies. Unmanned ships’ putative “advantages” – that they are cheap, small, expendable, and don’t risk personnel – are decidedly counterproductive for this purpose. Deterrence and reassurance require convincing adversaries and allies that one has skin in the game, and risking an unmanned asset hardly compares to risking a destroyer and her crew. On the other hand, the Navy’s large and medium unmanned surface vessels, if ever successfully fielded (and there are ample reasons to suggest that severe challenges remain) might contribute to the credible combat power that deterrence requires.

Another possible argument is that unmanned vessels will free up manned ships for those specific presence operations where a human touch is invaluable (such as port visits), reducing strain on the fleet. But that raises a conundrum. For a ship to demonstrate credible combat power, it must be able to shoot. And the Navy has made clear that any unmanned ship with missiles and guns will be under human control. Particularly in the next few decades, when unmanned vessels’ maintenance and support requirements will be high, nearby manned ships will probably provide that control. Hence, while unmanned vessels could increase the fleet’s vertical-launch capacity – and therefore its combat credibility – they may also worsen operational tempo or contribute to higher overall costs.

Power Projection is the use of ships to fire missiles, launch aircraft, land troops, or provide logistical resupply in support of combat operations on land. The Navy’s large unmanned surface vessel is expected to serve this mission by swelling the Navy’s capacity to launch land-attack missiles. Destroyers and guided missile submarines already serve this function, but unmanned vessels will, according to their advocates, do so more cheaply and with less human risk. But since manned assets’ capabilities in this area are proven, and unmanned assets’ capabilities are not, the Navy must explain what happens if the new technologies fail, and the traditional fleet – perhaps prematurely shrunken or reordered to accommodate the unmanned systems – has to step in to pick up the slack. Unmanned vessels are not officially intended to “replace” manned warships, but a significant strategic imperative for their development is the Navy’s tacit acknowledgment that, given constrained budgets, it cannot achieve its desired fleet expansion with manned ships alone.

Sea Control is attacking enemy ships, aircraft, and submarines, so that the U.S. and its allies can use the sea for power projection or make it passable for wartime commerce. Its corollary is sea denial: preventing an enemy from using of the sea for his purposes. This is where unmanned surface vessels are really supposed to shine. The two biggest arguments for their value-add in sea control are intelligence, surveillance and reconnaissance (ISR), and increased anti-ship missile capacity. There are also interesting emerging use cases, such as swarming electromagnetic warfare.

Small unmanned surface vessels, like the Saildrone – the argument goes – can loiter in large numbers, for weeks at a time (using solar power), all over a battlespace, looking and listening for enemies. While such a niche case for surveillance can be useful, the problem is that maritime surface ISR can struggle to match the global access and persistence of space-based and airborne ISR. Even in relatively constrained areas like the East and South China Seas, the search areas are vast. Unmanned surface vessels cannot match the revisit rates of low earth orbit satellites when combing large swaths of the ocean’s surface. In the last few years, the vast growth in low-earth orbit satellite constellations (both commercial and government-owned) has further diminished the urgency and budget efficiency of meeting ISR needs with surface ships. Ironically, the Saildrone and similar craft may end up being more dependent on space, because unmanned surface ISR assets operating over the horizon will rely on satellite communications to send mission data back. As for airborne ISR (that conducted by manned or unmanned aircraft), small unmanned surface vessels deployed en masse can exceed the persistence of aircraft, but at the cost of sensor reach: these vessels’ low “height of eye” inherently limits the range of their electro-optical sensors.

That relates to the second role unmanned ships are expected to serve in the sea control mission: offensive surface warfare. As noted, the Navy has been explicit that any unmanned ship with kinetic capabilities will be controlled by humans. As such, these vessels cannot be compared to, say, a command-guided missile that switches to radar in the terminal phase. Any kinetic-equipped unmanned vessel will rely on over-the-horizon communications relay provided by satellites, manned and unmanned surface vessels, or airborne assets. But if the Navy expects a satellite-degraded environment, as is possible in a conflict with a peer competitor, then surface and airborne assets will substantially assume the relay burden (requiring far greater numbers of them). Considering the Navy’s stated intent that most unmanned assets be “attritable,” however, it remains to be seen how long such a distributed network would last before manned vessels must themselves assume the relay function, bringing them closer to the enemy’s weapons engagement zone.

Maritime Security refers to constabulary functions such as protecting commerce from terrorists and pirates and preventing illegal behavior such as arms smuggling and drug running. In such operations, small and medium unmanned surface vessels could technically conduct surveillance, issue warnings, or engage threats with small-caliber weapons while under remote human control. The latter, however, seems especially unlikely in practice. Maritime security is a peacetime endeavor, conducted in congested sea space among civilians. Accordingly, there is a high premium on positive identification of bad actors, and generally the goal is not to kill anyone. A human touch will be required – not just “in the loop,” but probably on-scene.

Another problem is that, if unmanned vessels are small and cheap – two of their most celebrated characteristics – terrorists and drug runners may be able to disable them quite easily. Saildrone, therefore, adds most value for maritime security ISR under the following narrow set of conditions: when no aviation assets, satellite coverage, or allied coast guards are available; manned ships or shore facilities are within communications range; it is sunny, or enough sunny days have recently passed to keep batteries charged; and the targets of surveillance are incapable of shooting at, or (as with Iran in 2022), attempting to capture the drone monitoring them from within visual range.

The Risks of Concentration

Most contemporary Navy ships can be used for a variety of the missions delineated above. Destroyers can be used for power projection, sea control, presence, and maritime security; aircraft carriers can be used for all of those; amphibious assault ships are best for power projection and presence but can readily support maritime security. None of this is true for any unmanned vessel – not any in production, and none even in the design phase. A large unmanned surface vessel will have one purpose: to support power projection. Medium unmanned surface vessels will have two purposes: to contribute to sea control and maritime security.

Multi-mission capability, however, is not necessarily the goal. Unmanned assets, proponents argue, will not replace manned ships, but rather augment them as part of a “hybrid fleet.” The Navy expects a force structure that is 40 percent unmanned by 2050, although that does not mean that each naval mission area will be 40 percent unmanned. Some missions will rely more heavily on unmanned platforms than others will. This means the risks of unmanned vessels will not be evenly distributed across the Navy’s missions.

In general, we can forecast that unmanned vessels will fall out of operation (in peacetime) or attrite more quickly (in wartime) than manned ships for two reasons. First, the technology is immature and likely to remain so for a long time; currently, unmanned vessels are prone to inherent hull, mechanical, and electrical casualties, and cyber vulnerabilities. In brief, persistence is these vessels’ greatest challenge (and one the Defense Advanced Research Projects Agency is attempting to solve). Unmanned vessels may be required to keep station for weeks or months, in contrast to aerial drones’ persistence times, which are measured in hours. The longer unmanned surface vessels are at sea without maintenance, the greater their chance of routine equipment failure that either requires remote troubleshooting or on-scene repair. The former incurs both electromagnetic targeting and cyber risk. Second, unmanned vessels are explicitly designed to be less survivable, or “expendable” in the words of proponents.

The New York Times feature article mentioned previously illustrates the problem. It observes that the Navy has not scaled the success of Saildrone by integrating larger unmanned surface vessels into the fleet. This failure is attributable, the article argues, to bureaucratic inertia and industry capture. Missing from the discussion is the fact that the hull, mechanical, and electrical solutions required to field a 2000-ton medium unmanned surface vessel (especially one capable of persistent operations) are an order of magnitude more complex than those required for the 14-ton Saildrone. The propulsion requirements alone, let alone combat systems, place the former decades behind the latter in technological maturity. It is therefore nearly guaranteed that by 2030, for instance – even if the Navy has increased the overall percentage of unmanned vessels in its force structure – the Navy will not be able to have significant numbers of unmanned vessels in key mission areas.

Accordingly, the Navy must assess concentration risk: what happens when certain missions, but also warfare areas within those mission areas, degrade at different rates due to the differential survivability of manned versus unmanned assets. As a thought experiment, let us assume the Navy hits its 40 percent unmanned target. However, because Saildrones are far less technically complex, and far cheaper, than large unmanned surface vessels, the future fleet has more of the former than the latter. That future fleet would therefore be more reliant on unmanned assets for maritime security than for presence. Suppose, then, that China executes a successful cyber attack against a network of Saildrones; suddenly the maritime security mission is compromised, and the Navy must draw on its manned assets to support it – at the expense of the presence mission.

Sound unrealistic? Ukraine recently hacked Iranian-made drones used by Russia; during the Solar Winds hack, malicious code was delivered via legitimate code process; and the National Oceanic and Atmospheric Administration’s satellite network was hacked on at least one known occasion. And these are only some of the reasons why any unmanned asset with external communications capability must be assumed as cyber-vulnerable by default.

Beware Innovation for Innovation’s Sake

It should make the hairs stand up on the back of one’s neck when a new capability is described as simultaneously cheaper and more effective; when dozens of articles use the same buzzwords; when strategy documents are heavy on sweeping generalizations and light on detail; when the claim that technology will “mature” is delivered as a certainty; when “innovative” is treated as synonymous with “useful;” or when the same few empirical examples appear in every article on a subject. All of these are present in spades in media coverage of unmanned vessels.

If the U.S. Navy is to embark on a costly project with uncertain chances of success, it owes Congress and the American people a better Unmanned Campaign Framework, or an unclassified concept of operations that disaggregates the role of unmanned ships across the Navy’s various missions, and the warfare areas that comprise them. Such a concept must be honest about concentration risk and suggest ways to mitigate it. And Congress, which has already begun to take a deeper interest in unmanned platforms, should hold the Navy to account.

Jonathan Panter is a Ph.D. Candidate in Political Science at Columbia University. His dissertation examines the strategic logic of U.S. Navy forward presence. Prior to attending Columbia, he served as a Surface Warfare Officer in the U.S. Navy.

The author thanks Anand Jantzen and Ian Sundstrom for comments on an earlier draft of this article.

Featured Image: NAVAL STATION KEY WEST, Fl. – (Sept. 13, 2023) Commercial operators deploy Saildrone Voyager Unmanned Surface Vessels (USVs) out to sea in the initial steps of U.S. 4th Fleet’s Operation Windward Stack during a launch from Naval Air Station Key West’s Mole Pier and Truman Harbor(U.S. Navy photo by Danette Baso Silvers/Released)

Exercise Digital Horizon: Accelerating the Development of Unmanned Surface Vehicles

By George Galdorisi

The international community has been tremendously proactive in undertaking operations, exercises, experiments, and demonstration to accelerate the development and fielding of unmanned surface vehicles, reflecting the real importance of these systems to world navies. Much of this work has occurred in and around the Arabian Gulf under the auspices of Commander U.S. Fifth Fleet and Task Force 59.

These ambitious exercises throughout the course of 2022 provided a learning opportunity for all participating navies. These culminated in the capstone unmanned event, Exercise Digital Horizon, a three-week event in the Middle East focused on employing artificial intelligence and 15 different unmanned systems: 12 unmanned surface vehicles (USVs) and three unmanned aerial vehicles (UAVs).

A key goal of Digital Horizon was to speed new technology integration across the 5th Fleet, and to seek cost-effective alternatives for Maritime Domain Awareness (MDA) missions. As Carrington Malin described the importance of Digital Horizon:

“Despite the cutting-edge hardware in the Arabian Gulf, Digital Horizon is far more than a trial of new unmanned systems. This exercise is about data integration and the integration of command and control capabilities, where many different advanced technologies are being deployed together and experimented with for the first time.

The advanced technologies now available and the opportunities that they bring to enhance maritime security are many-fold, but these also drive an exponential increase in complexity for the military. Using the Arabian Gulf as the laboratory, Task Force 59 and its partners are pioneering ways to manage that complexity, whilst delivering next-level intelligence, incident prevention and response capabilities.”1

Digital Horizon brought together emerging unmanned technologies and combined them with data analytics and artificial intelligence in order to enhance regional maritime security and strengthen deterrence by applying leading-edge technology and experimentation.2 Vice Admiral Brad Cooper, commander of U.S. Naval Forces Central Command, U.S. 5th Fleet and Combined Maritime Forces introduced the exercise and highlighted its potential: “I am excited about the direction we are headed. By harnessing these new unmanned technologies and combining them with artificial intelligence, we will enhance regional maritime security and strengthen deterrence. This benefits everybody.”3

Click to expand. Graphic illustration depicting the unmanned systems that will participate in exercise Digital Horizon 2022. The three-week unmanned and artificial intelligence integration event involved employing new platforms in the region for the first time. (U.S. Army graphic by Sgt. Brandon Murphy)

Captain Michael Brasseur, then-commodore of Task Force 59, emphasized the use of unmanned maritime vehicles to conduct intelligence, surveillance and reconnaissance missions, including identifying objects in the water and spotting suspicious behavior.4 He noted: “We pushed beyond technological boundaries and discovered new capabilities for maritime domain awareness to enhance our ability to see above, on and below the water.”5

During Digital Horizon, Task Force 59 leveraged artificial intelligence to create an interface on one screen, also called a “single pane of glass,” displaying the relevant data from multiple unmanned systems for watchstanders in Task Force 59’s Robotics Operations Center (ROC). Reviewing what was accomplished during this event, Captain Brasseur marveled at the pace of innovation: “We are challenging our industry partners in one of the most difficult operational environments, and they are responding with enhanced capability, fast.”6

One of the features of Digital Horizon, and in line with the first word of the exercise, “Digital,” was the ability of one operator to command and control five unique drones, a capability long-sought by U.S. Navy officials.7 The Navy is acutely aware of the high cost of manpower and is dedicated to moving beyond the current “one UXS, multiple joysticks, multiple operators,” paradigm that has plagued UXS development for decades.

Digital Horizon was a unique exercise from the outset. Task Force 59 worked with the Department of Defense’s Defense Innovation Unit (DIU) in order to leverage that organization’s expertise as a technology accelerator. Additionally, given the U.S. Navy’s ambitious goals to rapidly test and subsequently acquire USVs to populate the Fleet, CTF-59 used a contractor-owned/contractor operated (COCO) model to bring a substantial number of unmanned systems to Digital Horizon, well beyond those already in the inventory. This approach sidestepped the often clunky DoD acquisition system while providing appropriate oversight during the exercise and gaining operational experience with new systems.

MANAMA, Bahrain (Nov. 19, 2022) Various unmanned systems sit on display in Manama, Bahrain, prior to exercise Digital Horizon 2022. (U.S. Army photo by Sgt. Brandon Murphy)

Another distinctive feature of Digital Horizon involved launching and recovering small UAVs from medium-size USVs. This lash-up leveraged the capabilities of both unmanned assets, enabling the long-endurance USVs to carry the shorter-endurance UAVs to the desired area of operations. This “operationalized” a CONOPS that emerged from the U.S. Navy laboratory community years ago.8

The results of Digital Horizon lived up to the initial hype. During a presentation at the 2023 Surface Navy Association Symposium, here is how Vice Admiral Cooper described what was accomplished during Digital Horizon:

“We are creating a distributed and integrated network of systems to establish a “digital ocean” in the Middle East, creating constant surveillance. This means every partner and every sensor, collecting new data, adding it to an intelligent synthesis of around-the-clock inputs, encompassing thousands of images, from seabed to space, from ships, unmanned systems, subsea sensors, satellites, buoys, and other persistent technologies.

No navy acting alone can protect against all the threats, the region is simply too big. We believe that the way to get after this is the two primary lines of effort: strengthen our partnerships and accelerate innovation…One of the results from the exercise was the ability to create a single operational picture so one operator can command and control multiple unmanned systems on one screen, a ‘Single Pane of Glass’ (SPOG)…Digital Horizon was a visible demonstration of the promise and the power of very rapid tech innovation.”9

The results of Digital Horizon could change the way the world’s navies conduct maritime safety and security. Having multiple unmanned systems conduct maritime surveillance, with the operations center then using big data, artificial intelligence and machine learning to amalgamate this sea of data into something that commanders can use to make real-time decisions, enables navies to “stretch” their crewed vessels and use them for more vital missions than merely conducting surveillance.

As one example of how Digital Horizon brought together COTS unmanned surface vehicles with COTS systems and sensors, the T-38 Devil Ray was equipped with multiple state-of-the-art COTS sensors to provide persistent surveillance. The T-38 provided AIS, full motion video from SeaFLIR-280HD and FLIR-M364C cameras, as well as the display of radar contacts on a chart via the onboard Furuno DRS4D-NXT Doppler radar. These were all streamed back to Task Force 59’s Robotics Operations Center via high bandwidth radios and SATCOM.

These exercises and initiatives are important if the Navy is to convince a skeptical Congress that its plans for unmanned systems are sound, and represent an important course change in the way the Navy intends to communicate with Congress, by “showing, not telling” what its unmanned systems can do.10 This approach is vital, for as long as Congress remains unconvinced regarding the efficacy of the unmanned systems the Navy wishes to procure; it is unlikely that funding will follow.11

Secretary of the Navy, Carlos Del Toro, explained this new “show, don’t tell,” philosophy built on an ongoing series of exercises, experiments and demonstrations, further indicating that he believes the Navy is “on the same page as Congress:”

“The Navy has a responsibility to be able to prove that the technology that Congress is going to invest in actually works and it meets what we need to address the threat. I think that’s the responsible thing to do…I don’t see it as a fight between Congress and the Department of Navy. I think we’re aligned in our thinking about what has to be done.”12

Indeed, in remarks at the Reagan National Defense Forum, Secretary Del Toro said the Navy intends to stand up additional unmanned task forces around the globe modeled after what Task Force 59 accomplished during Digital Horizon, noting:

“We’ve demonstrated with Task Force 59 how much more we can do with these unmanned vehicles—as long as they’re closely integrated together in a [command and control] node that, you know, connects to our manned surface vehicles. And there’s been a lot of experimentation; it’s going to continue aggressively. And we’re going to start translating that to other regions of the world as well. That will include the establishment of formal task forces that will fall under some of the Navy’s other numbered fleets.”13

Secretary of the Navy Del Toro continued this drumbeat during the U.S. Naval Institute/AFCEA “West” Symposium in February 2023. In a keynote address describing the Navy’s progress and intentions regarding integrating unmanned systems into the Fleet, he emphasized the progress that CTF-59 had made, especially in the area of successfully integrating unmanned systems and artificial intelligence during Digital Horizon.14

A Marine Advanced Robotics WAM-V unmanned surface vessel operates in the Arabian Gulf, Nov. 29, during Digital Horizon 2022. (U.S. Army photo by Sgt. Brandon Murphy)

Importantly, the U.S. Navy has now created the infrastructure to accelerate the testing and evaluation of unmanned surface vehicles. In 2019, the Navy stood up Surface Development Squadron One to provide stewardship for unmanned experimentation and manned-unmanned teaming.15 In 2022, seeking to put additional emphasis on unmanned maritime vehicles, the Navy established Unmanned Surface Vessel Division One (USVDIV-1), under the command of Commander Jeremiah Daley.16

This new division oversees medium and large unmanned surface vessels out of Port Hueneme Naval Base in Ventura County.17 Unmanned Surface Vessel Division One is engaged with the Fleet to move the unmanned surface vessels further west and exercise autonomy, payloads, and hull, mechanical and electrical (HM&E) systems to ensure that future programs of record (LUSV and MUSV) are successful from inception, and that they provide lethality and combat effectiveness for future naval and joint forces.

Digital Horizon presages a new paradigm in the way navies will think about uncrewed assets, no longer as “vehicles” but rather as “systems” that are nodes in a web of assets delivering far greater capability than the sum of the parts. World navies will conduct ambitious unmanned exercises, experiments and demonstrations throughout 2023 and beyond, and the lessons learned from Digital Horizon will no doubt inform those efforts.

Captain George Galdorisi (USN – retired) is a career naval aviator whose thirty years of active duty service included four command tours and five years as a carrier strike group chief of staff. He began his writing career in 1978 with an article in U.S. Naval Institute Proceedings. He is the author of 15 books, including four New York Times best-sellers. The views presented are those of the author, and do not reflect the views of the Department of the Navy or the Department of Defense.

References

1. Carrington Malin, “A Testbed for Naval Innovation,” Middle East AI News, December 1, 2022.

2. Aaron-Matthew Lariosa, “US Navy Highlights TF 59 Contributions to Fleet’s Unmanned Vision,” Naval News, January 23, 2023.

3. “U.S. Launches New Unmanned & AI Systems Integration Event,” U.S. Naval Forces Central Command Public Affairs, November 23, 2022, accessed at: https://www.cusnc.navy.mil/Media/News/Display/Article/3226901/us-launches-new-unmanned-ai-systems-integration-event/.

4. J.P. Lawrence, “Navy’s ‘Influx’ of Aquatic and Aerial Drones Tested in the Middle East,” Stars and Stripes, December 1, 2022.

5. “Digital Horizon Wraps Up: Task Force 59 Perspective, Second Line of Defense, December 22, 2022.

6. Geoff Ziezulewicz, “New in 2023: Here Comes the First-Ever Surface Drone Fleet,” Navy Times, January 3, 2023.

7. Justin Katz, “Accenture Demos Data Vis, C2 for Multiple USVs During Navy’s Digital Horizons Exercise,” Breaking Defense, December 16, 2022.

8. Vladimir Djapic et al, “Heterogeneous Autonomous Mobile Maritime Expeditionary Robots and Maritime Information Dominance,” Naval Engineers Journal, December 2014.

9. Audrey Decker, “5th Fleet Commander Details ‘Digital Ocean’ After TF-59 Reaches FOC,” Inside the Navy, January 16, 2023.

10. See, for example, George Galdorisi, “Catch a Wave: Testing Unmanned Surface Vehicles Is Becoming an International Endeavour,” Surface SITREP, Winter 2022.

11. “Navy Failing to Make ‘Critical Pivot’ In Unmanned Investment,” Inside the Navy, October 10, 2022.

12. Justin Katz, “Show, Don’t Tell: Navy Changes Strategy to Sell Unmanned Systems to Skeptical Congress,” Breaking Defense, March 10, 2022.

13. Jon Harper, “Navy to Establish Additional Unmanned Task Forces Inspired by Task Force 59,” Defense Scoop, December 4, 2022.

14. Remarks by the Honorable Carlos Del Toro, Secretary of the Navy, at the U.S. Naval Institute/AFCEA “West” Symposium, February 16, 2023.

15. Meagan Eckstein, “Navy Stands Up Surface Development Squadron for DDG-1000, Unmanned Experimentation,” USNI News, May 22, 2019.

16. “Navy to Stand Up New USV Command This Summer,” Inside the Navy, January 13, 2022.

17. Joshua Emerson Smith and Andrew Dyer, “Navy Ramps Up Efforts on Unmanned Vessels,” San Diego Union Tribune, May 16, 2022, and Diana Stancy Correll, “Navy Creates Unmanned Surface Vessel Division to Expedite Integration of Unmanned Systems,” Navy Times, May 16, 2022.

Featured Image: T38 Devil Ray during Exercise Digital Horizon. (Photo by Dave Meron)

Call for Articles: Unmanned Systems Program Office Launches CIMSEC Topic Week

Submissions Due: April 30, 2019
Week Dates: May 6–May 10, 2019

Article Length: 1000-3500 words
Submit to: Nextwar@cimsec.org

By CAPT Pete Small, Program Manager, Unmanned Maritime Systems

The U.S. Navy is committed to the expedited development, procurement, and operational fielding of “families” of unmanned undersea vehicles (UUVs) and unmanned surface vessels (USVs). CNO Adm. John Richardson’s Design for Maintaining Maritime Superiority (Version 2.0) explicitly calls for the delivery of new types of USVs and UUVs as rapidly as possible.

My office now manages more than a dozen separate efforts across the UUV and USV domains, and that number continues to increase. The Navy’s commitment to unmanned systems is strongly reinforced in the service’s FY2020 budget with the launching of a new high-priority program and key component of the Future Surface Combatant Force — the Large Unmanned Surface Vessel (LUSV) — along with the funding required to ensure the program moves as rapidly as possible through the acquisition process. This effort is closely aligned with the Medium Unmanned Surface Vessel (MUSV) rapid prototyping program started in FY19. Mine Countermeasures USV (MCM USV) efforts have several key milestones in FY19 with Milestone C and low-rate initial production of the minesweeping variant and the start of minehunting integration efforts.

U.S. Navy’s unmanned surface vessels systems vision. (NAVSEA Image)

On the UUV side, the ORCA Extra Large UUV (XLUUV) program has commenced the fabrication of five systems that are expected to begin testing in late 2020. The Snakehead submarine-launched Large Displacement UUV (LDUUV) is wrapping up detailed design and an operational prototype will be ready for Fleet experimentation by 2021. Several medium UUV programs continue in development, production, and deployment including Mark 18, Razorback, and Knifefish. So these new and different systems are coming online relatively quickly.

Supporting the established families of UUVs and USVs are a number of Core Technology standardization efforts in the areas of battery technology, autonomy architecture, command and control, and machinery control. While these architecture frameworks have stabilized and schedules have been established, there are still a host of logistical and sustainability issues that the Navy must work through. Most of these unmanned platforms do not immediately align with long-established support frameworks for surface ships and submarines. These are critical issues and will impact the operational viability of both UUVs and USVs if they are not fully evaluated and thought through before these systems join the Fleet.

Here are some of the questions we are seeking to more fully understand for the long-term sustainment and support of UUVs and USVs:

  • Where should the future “fleets” of UUVs and USVs be based or distributed?
  • What infrastructure is required?
  • How or where will these systems be forward deployed?
  • What sort of transportation infrastructure is required?
  • What is the manning scheme required to support unmanned systems?
  • How and where will these unique systems be tested and evaluated?
  • How do we test endurance, autonomy, and reliability?
  • What new policies or changes to existing policies are required?
  • How will these systems be supported?
  • What new training infrastructure is required?

To help jumpstart new thinking and address these questions and many others we have yet to consider, my office is partnering with the Center for International Maritime Security (CIMSEC) to launch a Special Topic Week series to solicit ideas and solutions. We are looking for bold suggestions and innovative approaches. Unmanned systems are clearly a growing part of the future Navy. We need to think now about the changes these systems will bring and ensure their introduction allows their capabilities to be exploited to the fullest.

The results of this topic week can be viewed here.

CAPT Pete Small was commissioned in 1995 from the NROTC at the University of Virginia where he earned a Bachelor of Science Degree in Mechanical Engineering. He earned a Master of Science Degree in Operations Research in 2002 from Columbia University, and a Master of Science Degree in Mechanical Engineering and a Naval Engineer Degree in 2005 from the Massachusetts Institute of Technology. He is currently serving as Program Manager PMS 406, Unmanned Maritime Systems. 

Featured Image: Common Unmanned Surface Vessel (CUSV) intended to eventually serve as the U.S. Navy’s Unmanned Influence Sweep System (UISS) unmanned patrol boat. (Textron photo)

Developing New Tactics and Technologies in Naval Warfare: The MDUSV Example

By Jeffrey Kline, John Tanalega, Jeffrey Appleget, and Tom Lucas

Introduction

The paper is about synergy. It demonstrates the power of using analytical tools in a logical sequence to generate, develop, and assess new concepts and technologies in warfare. Individually there is nothing new here. Each of the analytical tools described in this paper is thoroughly discussed in academic literature. The use of intelligent experimental design and large scale simulation to advance knowledge in defense and homeland security issues is well describe in Design and Analysis of Experiments by leaders in the Naval Postgraduate School’s Simulation Experiments and Efficient Design (SEED) Center for Data Farming (Sanchez, 2012).1 The power of campaign analysis to gain insight and quantify the value of new technologies and capabilities is covered in the campaign analysis chapter of Wiley’s Encyclopedia of Operations Research and Management Science (Kline, 2010).2 Wargaming’s use to develop concepts for employment of those new technologies and discover possible risks to them are discussed recently in both the Military Operations Research Society’s Phalanx (Appleget, 2015)3 and the journal for Cyber Security and Information Systems Information Analysis Center (Appleget, 2016).4

It is the synergy created by bringing these tools together—linked by officers with tactical experience and educated in the analytical techniques—which this paper addresses.  We provide it as an example of military operations research in practice to advance naval force development and fleet combat tactics.  We tell this story through the lens of our co-author, LT John Tanagela, USN, and one technology, the Medium Displacement Unmanned Surface Vessel (MDUSV), but provide multiple examples of past work similar in nature. LT Tanagela is a qualified Surface Warfare Officer who chose to attend the Naval Postgraduate School to obtain a master’s degree in Operations Research. We select John’s educational and research experience not for its uniqueness, but instead for its normalcy as a NPS OR student with unrestricted line qualifications. Our other co-authors were John’s combat models instructor, campaign analysis instructor, wargaming instructor, and thesis research advisors. We provide descriptions and results from the analytical courses John leveraged to advance his research in employing a MDUSV and highlights from his thesis.  We conclude with brief summaries of other concepts and technologies advanced in this manner.

Triad of Military Applied Courses

The Naval Postgraduate School’s Operations Research students receive three foundational courses in warfare analysis: the introduction to joint combat modeling course, the joint campaign analysis course, and the wargaming course (See Figure 1). In these applied courses they learn to model combat effects in tactical and operational level conflict, integrate these quantitative techniques in campaign analysis and human decision making, and, as a result, develop and quantitatively assess new concepts, tactics, and technologies.  

Figure 1: The three warfare analysis courses provided to NPS operations research students.

The joint combat models course introduces traditional force-on-force modeling, including homogeneous and heterogeneous Lanchester equations, Hughes’ salvo equations, and computer-based combat simulations. It provides our officers the experience to integrate uncertainty into these models to allow for sensitivity analysis and design of experiments in exploring new capabilities.

The joint campaign analysis class leverages these new skills and previous course work in simulation, optimization, decision analysis, search theory, and probability theory by challenging our officers to apply them in a campaign-level scenario. During the course they must develop a concept of operation to meet campaign objectives, model that concept to assess risk using appropriate measures for their objective, and assess “new” technical capabilities by comparing them to their baseline concept analytical results. The results are quantitative military assessments of new concepts and technologies, identification of force capability gaps, and risk assessments (See Figure 2).

Figure 2: The NPS Joint Campaign Analysis class process for applying officers’ new analytical skills to campaign and operational level issues.

The wargaming class provides an overview of the history, uses, and types of wargaming, but focuses its efforts on teaching officers how to design, develop, execute, analyze, and report on an analytical wargame. After learning the fundamentals, officer-teams are assigned real-world sponsors who provide the objective and the issues they desire to address during a wargame. The officer-teams work with the sponsor through execution of an actual wargame, completing their course work by reporting the wargame’s analysis and results to the sponsor. An example is supporting the Navy’s PEO C4I by assessing the Undersea Constellation concept and technology. (See Figure 3)

Figure 3: Sponsor, student wargaming team (in uniform) and players of the NPS wargaming course’s PEO C4I Undersea Constellation Game.

Passing Lessons and Students along

As the NPS operations research students proceed from one course to another in the triad above—where they are joined by Joint Operational Logistics students, Systems Engineering Analysis students, Defense Analysis students, and Undersea Warfare students—there is an opportunity to carry lessons from on course into another, and gain further insight into those concepts and technologies. The teaching faculty work closely to ensure that happens by design. NPS Warfare Analysis faculty and researchers use these courses synergistically to provide insights to real-world sponsors in advancing their concepts, assessing new technologies proposed by DoD labs and industry, and developing new tactics—all the while enhancing our officer-students’ educational experience and sharpening their combat skills. For example, after learning to model a war at sea strike using salvo equations in the joint combat modeling course, the officers are challenged to develop a maritime concept of employment using distributed forces in the joint campaign analysis class, and assess that concept using the salvo equations and simulation. That concept is passed to the wargaming class (usually the same students) to better understand Blue’s decisions in employing distributed forces and Red’s potential reactions. Common scenarios are used between classes with similar forces structures (See Figure 4).

Figure 4: The NPS Joint Campaign Analysis and Wargaming connection. Technologies and concepts analyzed in the Joint Campaign Analysis class are frequently introduced by real-world sponsors in the wargaming class to better understand Blue’s force employments and Red’s reactions to new Blue capabilities.

The results of these capstone classroom efforts are a series of analytical and wargaming briefings, reports, and papers frequently shared with DoD and service organizations. In addition, the work informs other NPS research occurring in unmanned systems, networks, and command and control. Most impactful, however, is when officers are inspired to take a much more detailed look at new capabilities as their thesis research, using the insights gathered from their capstone course work as a foundation to build upon.

Simulating a Half Million Tactical Engagements 

Officers frequently select a new technology explored in their military operations research applied courses to further study in their thesis work. They will draw upon their own operational experience to develop tactics to employ these technologies; work with weapon tactics instructors to refine these tactical situations; identify important variables and parameters within that scenario to further identify needed performance capabilities (range, speed, etc.) and tactical employment (formations, distances, logistics, etc.); build or use an existing simulation to model those tactics; use intelligent experimental design to efficiently explore a range of values for each of identified parameter; execute the experiment—frequently running over a half million tactical engagements; then use advanced data analytics to identify the most important parameters’ values to be successful (See Figure 5.)

Figure 5: Using simulation, intelligent experimental design, and advance data analytics to identify the most import performance parameters of a technology or tactical employment.

These theses’ results are always of great value to warfare and tactics development commands, to resources sponsors, material commands, and defense laboratories developing new technologies. Their insights also inform future capstone course work and NPS technical research. We now turn to our specific example, LT John Tanalega and the Medium Displacement Unmanned Surface Vessel. 

The Technology: The Medium Displacement Unmanned Surface Vessel

The Office of Naval Research (ONR) Medium Displacement Unmanned Surface Vessel (MDUSV) program is a self-deployed surface unmanned system capable of on station times of 60-90 days with ranges of 900-10000 nautical miles depending on speed (3-24 knots) and payload (5-20 tones).5  For the NPS warfare analysis group, we provide it the following future mission capabilities. In an antisubmarine warfare (ASW) role, it receives an off-board cue and hand off, then conducts overt trail with active sonar. It can act as an ASW scout in coordination with area ASW assets like the P-8 maritime patrol aircraft or benthic laid sensors in an Undersea Constellation, conducting large acoustic surveillance using passive and/or active bi-static sonar. It can deploy three Mk 54 or six smaller CRAW torpedoes. In its Intelligence, Surveillance, and Reconnaissance (ISR) role, it can work with surface ships as an advanced scout employing passive sensors, and in an offensive role, can carry eight RBS-15 surface-to-surface missiles. In its mine warfare role, it can conduct mine sweeping with a MK-104 acoustic sweep body or can deploy a clandestine delivered mine in an offensive mining role. It may also act as a forward environmental survey ship, a platform for operational military deception, a tow for a logistics barge, and special operations equipment delivery.

All MDUSVs in these analyses are augmented by TALON (Towed Airborne lift of naval systems)6, which can carry up to 150 pounds of payload up to 1,500 feet. This payload can be communication relays, radar, electronic jammers (or emitters for decoy operations), or optical sensors.

ACTUV conducting testing with TALONS (DARPA Video)

The MDUSV equipped with TALON has been introduced in several Joint Campaign Analysis classes and Wargaming classes as technical injects to be assessed. LT Tanalega was given the MDUSV as a technical inject for both these classes.

The Student: LT John Tanalega

Academically talented, John has a typical operational background for a Naval Postgraduate School Operations Research student. He graduated from the U.S. Naval Academy in 2011 with a Bachelor of Science degree in English. His initial sea tour was as Auxiliaries and Electrical Officer, and later First Lieutenant, in USS DEWEY (DDG 105). While assigned to DEWEY, he deployed to the Western Pacific, Arabian Gulf, Red Sea, and Eastern Mediterranean. His second division officer tour was as the Fire Control Officer in USS JOHN PAUL JONES (DDG 53), the U.S. Navy’s ballistic missile defense test ship. He attended the Naval Postgraduate School in from 2016 to 2018, where he earned a Master of Science degree in Operations Research and conducted his thesis research in tactical employment of the MDUSV.

Insights from the Joint Campaign Analysis classes, the Wargaming Classes, and other NPS research

As mentioned, the MDUSV with TALON was introduced to a series of Joint Campaign Analysis classes and several NPS wargames. Officer-students have employed it in a variety of missions, from active operational deception to logistics delivery to riverine patrol. Its strongest characteristics are on-station time over unmanned aerial systems, sensor payload capacity over all other unmanned systems, and speed over unmanned underwater systems. Its limitations include vulnerability to attack (it has no active defense), which is mitigated by a low radar cross section making it difficult to target and/or acquire. Our analytical and wargaming teams have found their value forward in offensive naval formations and in defense screening formations (Figure 5). Employing a single or pair of MDUSV with a P-8 maritime patrol aircraft in an area ASW environment is also valuable. (Figure 6).Figure 5: The graph shows the probability of successfully finding and engaging an adversary’s amphibious task force in a South China Sea scenario with a traditional U.S. Surface Action Group (SAG) with and without allied ship support. As MDUSVs are added to the SAG, the probability of mission success is increased. The MDUSV are contributing to the ISR and targeting capabilities of the SAG. This analysis was produced using combat modeling by a Joint Campaign Analysis class team.

Figure 6: This plot shows the simulation results of an Area ASW engagement between a PLA Navy SSK submarine and the MDUSV alone (labeled ACTUV or Anti-Submarine Warfare Continuous Trail Unmanned Vessel, the original DAPRA program name); the MDUSV with a P-8 (labeled both), and the P-8 alone. The Tukey-Kramer test displays significant improvement with the MDUSV and P-8 work as an unmanned-manned pair.

Unique employment concepts are also developed, such as employing paired MDUSVs working as an active-passive team for both active radar and acoustic search. This information is passed to both sponsors and the NPS combat systems research faculty for engineering analysis.

LT John Tanalega’s Joint Campaign Analysis efforts included analyzing the MDUSV’s contribution to a scouting advantage for Blue forces in a surface-to-surface engagement (see figure 5). While a student in the NPS Wargaming Class, John’s team designed, developed, and executed a classified South China Sea game for United States Fleet Forces Command exploring distributed maritime operations and a force structure that included the MDUSV. Lessons from both classes were then applied to his further research in the MDUSV’s best tactical employment in a surface to surface engagement.

Furthering the study by use of simulation (Problem, Tactical Engagement, and Design of Experiments)

In transitioning MDUSV from technical concept to operational reality, several questions are prominent. First, MDUSV is just what its name implies—a vessel. The specific technologies which will make it effective in the maritime domain are all in various stages of development, and they are too numerous for MDUSV to carry all of them. Therefore, an exploration of which capabilities improve operational effectiveness the most is essential. Second, while superior technology is necessary, alone it is not sufficient. USVs must also be used with effective tactics, techniques, and procedures (TTPs) to make them effective SUW platforms. USVs are entirely new to the U.S. Navy, and no historical data exists for their use in combat. Modeling, simulation, and data farming7 provide an opportunity to explore concepts and systems that, today, are only theories and prototypes.

Computer-based modeling and simulation are an effective means of exploring MDUSV capabilities and tactics. Live experiments at-sea are always important to gather real-world data and provide proofs of concepts. However, they require a mature design. They are prohibitively expensive, and the low number of trials that can be conducted reduces the confidence levels of their conclusions. Computer-based modeling and simulation allows us to run tens of thousands of experiments over a wide range of factors. It is, therefore, better suited for design exploration. Using high-performance computing and special techniques in design of experiments (DoE), such as nearly orthogonal and balanced (NOB) designs, simulation experiments that would have taken months or years with legacy factorial designs can be can be performed in a matter of days. This highly efficient technique provides greater insights that inform and direct live experimentation and requirements development.

To explore the effects of MDUSV on surface warfare, LT Tanalega used the Lightweight Interstitials Toolkit for Mission Engineering using Simulation (LITMUS), developed by the Naval Surface Warfare Center, Dahlgren Division (NSWC DD). LITMUS is an agent-based modeling and simulation tool suited specifically to naval combat. Ships, aircraft, and submarines are built by users and customized with weapons, sensors, and behaviors to mirror the capabilities and actions of real-world combat systems. Using an efficient design of experiments and LITMUS scenario, over 29,000 surface battles were simulated with varied active and passive sensor ranges, MDUSV formations and armament, and emissions control EMCON policies.

To compare battle results, LT Tanalega used the probability of a surface force being first to fire a salvo of missiles against an adversary as a measure of effectiveness. This choice is motivated by the maxim of naval combat in the missile era to “fire effectively first,” and indicates a clear advantage in offensive tactics.8

Simulation Results (Unclassified)

Analysis of the simulation output shows that a traditional Blue force combating a very capable Red force in its home waters has 19 percent probability of meeting first-to-fire criteria (See Table 1). Blue surface forces equipped with MDUSV are nearly three times as likely to be first-to-fire. Analysis also found the increase in performance is due primarily to the extended sensor range afforded by the TALONS platform on scouting MDUSV. Based on the presence of MDUSV alone, Blue improves its probability of being first-to-fire by a factor of nearly three (from 19 percent to 56 percent), as shown in Table 1. Though a SAG will likely have helicopters embarked, it is important to note that helicopters are more limited in endurance. Further, the use of a helicopter in Phase II of a conflict poses exceptional risk to human pilots, especially if the enemy is equipped with capable air defense systems. We therefore modeled “worst case” without an airborne helo during the engagements. Given the long endurance of MDUSV and its autonomous nature, MDUSV represents a worthwhile investment for the surface force. When numerically disadvantaged and fighting in dangerous waters, MDUSV levels the odds for Blue.

Table 1. MDUSV Effect on First-to-Fire Probability

Advanced partition tree analysis of the data noted a breakpoint at an MDUSV passive sensor range of 36nm. With this range or greater, Blue was first-to-fire in 81% of the design replications (Table 2). Using the mathematical horizontal slant range formula to approximate visual horizon, this equates to a tether height of approximately 1020 feet. Given the current 150-pound weight limit for a TALONS payload, a passive electro-optical sensor may be more feasible than an active radar. Placing a high power radar, with power amplification, transmission, and signals processing in a TALONS mission package may not be feasible in the near term. Further study, from an electrical engineering and systems engineering perspective, is required.

Table 2. MDUSV Passive Sensor Range Effect on First-to-Fire Probability

While arming MDUSV provides a marginal increase in first-to-fire performance with EMCON policies 1 and 2, it has a small negative effect with EMCON policy 3. Ultimately, first-to-fire in each replication is driven by scouting—who saw whom and fired first. Since detecting the enemy is a necessary condition to shooting him, providing MDUSV with over the horizon sensor capabilities should be the first concern. This will allow the missile shooters of the surface and air forces to employ their weapons without emitting with their own sensors.

Furthering the Study by Use of Wargaming

The Fleet Design Wargame consisted of three separate gameplay sessions. During each session, the BLUE Team received a different order of battle. During gameplay, the study team observed the players’ decisions to organize and maneuver their forces, as well as the rationale behind those decisions. After two to three turns of gameplay, a member of the study team facilitated a seminar in which all players discussed the game results. Each team, BLUE and RED, had a leader playing as the “Task Force Commander,” and a supporting staff. The Blue Team consisted of three SWOs, a Navy pilot, an Air Force pilot, a Navy cryptologic warfare officer, two human resources officers, and a supply officer. The RED team consisted of three SWOs, one Marine NFO, one Navy cryptologic warfare officer, two Naval intelligence officers, and two supply officers. Search was adjudicated using probability tables and dice. Combat actions are being analyzed using combat models, such as a stochastic implementation of the salvo model.

Wargaming Results (unclassified)

The game demonstrated the combat potential that networked platforms, sensors, and weapons provide. Long endurance systems, such as the MQ-4C Triton and the Medium Displacement Unmanned Surface Vehicle (MDUSV) can be the eyes and ears of missile platforms like destroyers. The game also showed that with its range alone, an ASuW-capable Maritime Strike Tomahawk provides BLUE forces with greater flexibility when stationing units. On the other hand, unmanned systems also provide RED with a wider range of options to escalate and test U.S. resolve during phase 1. The study team also found that expeditionary warfare can have a double effect on the sea control fight. The presence of an LHA is a “double threat” to the enemy, acting as both an F-35B platform, and as a means of landing Marines.

Further Research Work on the MDUSV

Future research is required to optimize MDUSV design and to better characterize the human element of MDUSV employment and coordination. While TALONS provides a unique elevated sensor platform, a 150-pound maximum payload will be a considerable constraint. Passive sensors, such as EO/IR, may be mounted on the TALONS platform, but the weight required to house a high-performance radar will be a higher hurdle to overcome. Though this can be mitigated by changing the parasail design to increase lift, this will require more in-depth study of the engineering trade-offs. Also, the process will have to be automated. TALONS testing to-date has involved members of the test team deploying and recovering it.

Though this study was performed with software-driven automata, the tactical decisions leading-up to the placement of MDUSV will be made by humans. The long endurance of MDUSV makes it an ideal platform for deception. Tactical and operational level wargaming may yield insight into the affect that adding MDUSV will have on human decision-making.

As this study was the first SUW simulation of a man-machine teamed force, the scope of the agents explored was purposefully limited. To add to the realism of the experiment, and to explore future tactics, the addition of helicopters and other scout aircraft to the scenario may yield further insight into the design requirements and tactical employment of MDUSV.

MDUSVs in this study were homogenously equipped and shared the same EMCON policy. However, if each MDUSV is given only one capability, such as a particular sensor type or a weapon, their strengths may offset their weaknesses. Grouping several MDUSVs with different mission load-outs may be an alternative to sending a manned multi-mission ship like a DDG. It may also prove to be more resilient to battle damage, as the loss of a single MDUSV would mean the loss of an individual mission, while the mission-kill of a DDG would result in a loss of all combat capability. Further simulation and analysis with LITMUS may yield insights into this trade-off.

Other Examples

Although we have highlighted LT Tanalega’s recent research to demonstrate how the NPS Warfare Analysis group integrates officer’s tactical experience, classroom work, and more detailed research to provide insights in new technologies, tactics, and operational concepts, many other examples can be mentioned. These include tactics to defeat swarms of unmanned combat aerial vehicles, best use of lasers aboard ships, developing tactics to counter maritime special operations insertion, employing expeditionary basing in contested environments, exploration in distributed logistics, best convoy screening tactics against missile-capable submarines, and use of sea bed sensors and systems. Analytical red teaming is also used for sponsors wishing to better understand the resilience and vulnerability of their new systems—employed in the same classes mentioned in this paper. These results are shared with DoD and Navy sponsors interested in getting robust and quantitative assessments of the strengths and weaknesses of their systems.

Although the NPS Warfare Analysis group is pleased to make real-world contributions as part of our students’ education experience, our greatest satisfaction comes from observing the junior officer’s military professional growth that accompanies the application of their newly learned analytical skills. To model and analyze an engagement, a thorough understanding of the tactical factors and performance parameters is necessary. By the end of our students’ experience, they have gained expertise in that mission and in operations analysis—a perfect blend to contribute to our nation’s future force architecture and design.

CAPT Jeff Kline, USN (ret.) is a Professor of Practice in Military Operations Research at the Naval Postgraduate School. He holds the OPNAV N9I Chair of Systems Engineering Analysis and teaches Joint Campaign Analysis, Systems Analysis, and Risk Assessment. jekline@nps.edu

Dr. Jeff Appleget is a retired Army Colonel who served as an Artilleryman and Operations Research analyst in his 30-year Army career. He teaches the Wargaming Analysis, Combat Modeling, and Advanced Wargaming Applications courses.  Jeff directs the activities of the NPS Wargaming Activity Hub. He is the Joint Warfare Analysis Center (JWAC) Chair of Applied Operations Research at NPS. jaappleg@nps.edu

Dr. Tom Lucas is a Professor in the Operations Research Department at the Naval Postgraduate School (NPS), joining the Department in 1998. Previously, he worked as a statistician and project leader for six years at RAND and as a systems engineer for 11 years at Hughes Aircraft Company. Dr. Lucas is the Co-Director of the NPS Simulation, Experiments, and Efficient Design (SEED) Center and has advised over 100 graduate theses using simulation and efficient experimental design to explore  a variety of tactical and technical topcs. twlucas@nps.edu

LT John F. Tanalega is a Navy Surface Warfare Officer from North Las Vegas, Nevada and is a 2011 graduate of the United States Naval Academy His first operational tour was as Auxiliaries and Electrical Officer, and later as First Lieutenant, in USS DEWEY (DDG 105). He next served as Fire Control Officer in USS JOHN PAUL JONES (DDG 53). As an operations analysis student at the Naval Postgraduate School, his research focused on combat modeling, campaign analysis, and analytic wargaming. After graduating from NPS, he reported to the Surface Warfare Officer School (SWOS) in Newport, Rhode Island, in preparation for his next at-sea assignment.

References

1. Sanchez, S.M., T.W. Lucas, P.J. Sanchez, C.J. Nannini, and H. Wong, “Designs for Large-Scale Simulation Experiments with Applications to Defense and Homeland Security,” Design and Analysis of Experiments, volume III, by Hinckleman (ed.), Wiley, 2012, pp. 413-441

2. Kline, J., Hughes, W., and Otte, D., 2010, “Campaign Analysis: An Introductory Review,” Wiley Encyclopedia of Operations Research and Management Science, ed Cochran, J. John Wiley & Sons, Inc

3. Appleget, J., Cameron, F., “Analytical Wargaming on the Rise,” Phalanx, Military Operations Research Society, March 2015, pp 28-32

 4. Appleget, J., Cameron, F., Burks, R., and Kline, J., “Wargaming at the Naval Postgraduate School,” CSIAC Journal, Vol 4, No 3, November 2016 pp 18- 23

5. The Defense Advanced Research Projects Agency (DARPA) has demonstrated a prototype “Sea Hunter”. Information may be found at https://www.darpa.mil/news-events/2018-01-30a

6. For more information on the TALON visit https://www.youtube.com/watch?v=BWEoV88PtTY

7. See Sanchez, ibid.

8. Hughes, W.P., Fleet Tactics and Coastal Combat, 2nd ed, Naval Institute Press, Annapolis, Maryland, 2000.

9. Wagner D.H., Mylander, W.C., Sanders, T.J., Naval Operations Analysis, 3rd ed, Naval Institute Press, Annapolis, Maryland, 1999, pp 109-110.

Featured Image: The Medium Displacement Unmanned Surface Vehicle (MDUSV) (DARPA photo)