Tag Archives: Space control

The Influence of Naval Strategy on the Future of Spacepower

By Dylan “Joose” Phillips-Levine and Trevor Phillips-Levine

Turmoil has engulfed the Galactic Republic. The taxation of trade routes to outlying star systems is in dispute. Hoping to resolve the matter with a blockade of deadly battleships, the greedy Trade Federation has stopped all shipping to the small planet of Naboo, rich in raw materials vital to the economic health of the Republic.1

A long time ago in a galaxy far, far away… Trade Federation officers must have read Alfred Thayer Mahan’s naval classic, The Influence of Sea Power Upon History. In true Mahanian fashion, the Trade Federation massed their capital battleships to blockade Naboo.2 The Trade Federation pays homage to the East India Company that once controlled the trade routes and paved the way for Britain to become a world power.3,4 In The Influence of Sea Power Upon History, Mahan believed that sea control could be gained in part by blockades – an observation borne out by Great Britain’s ascent as an economic and military powerhouse.5 Renowned navalist Milan Vego offers further guidance of how to ensure sea control in his canonical book, Maritime Strategy and Sea Control: Theory and Practice.6 In it, Vego demonstrates through historical examples that sea control can be achieved by strategically positioning forces in straits and chokepoints. Mahan’s focus on blockades combined with Vego’s theory for sea control in straits and chokepoints can guide United States interplanetary grand strategy as the United States, China, India, Russia, the European Union, and countless others shift their sights towards the final frontier.

Straits and Chokepoints

Vego asserts that sea control, in its simplest form, is the ability for a nation to use a given part of the sea and associated air (and space) across the spectrum of conflict to deny the same to the enemy.7 Applying Vego’s definition of sea control and its application to specific geographic regions, the importance of straits becomes evident. Straits or “chokepoints” are a textbook case of sea control limited to a specific region and have remained of great importance throughout history. Nations that control these chokepoints can asphyxiate the enemy by halting commerce causing major economic impacts or denying freedom of maneuver in wartime. During the Napoleonic War, the British had a vested interested in ensuring a neutral Denmark and thus neutral Danish Straits. The plains to the north provided timber for the British and French Navy and were also critical for transporting grain amongst other vital commerce. A century later, Germany’s de facto control of the Danish Straits prevented Britain from reinforcing its Russian ally during the First World War. During the Second World War, the occupation of Denmark allowed Germany to leverage the full economic resources of Scandinavian countries while denying the Royal Navy access to the Baltics.8 Even in a galaxy far, far away the Trade Federation realized the importance of blockading Naboo by placing their battleships in key locations with the goal to leverage the full economic resources of the planet.

Admiral John Fisher, the First Sea Lord of the Royal Navy and founding father of the Dreadnought battleship, identified the strategic importance of Straits when positing this rhetorical question, “Do you know that there are five keys to the world? The Strait of Dover, the Straits of Gibraltar, the Suez Canal, the Straits of Malacca, the Cape of Good Hope. And every one of these keys we hold.”9,10 Although oversimplified, his aphorism still rings true today. In March of 2021, the M/V Ever Given became lodged in the Suez Canal disrupting commerce and causing an estimated 9.6 billion dollars of economic damage per day.11 Ships once waiting in line to transit the Suez Canal extended their voyage and incurred additional fuel and crew costs by sailing around the Cape of Good Hope to their destinations.12,13

Fig. 1. Ships sailing around the Cape of Good while the Suez Canal was blocked in March incurring extra fuel, time, and crew costs. (BBC graphic)

Lagrange Points and Halo Orbits

The same analogy holds true for space travel. Despite the incomprehensible distance, times, and vastness required for interplanetary travel, the chokepoints of sea control can also be distilled down to Lagrange points for space control.14 Lagrange points are specific points (orbits) between any two orbiting celestial bodies where gravitational and centrifugal force negate each other, resulting in orbits that can be maintained with little to no propulsion.15 In simpler terms, only five Lagrange points (labeled L1 through L5) exist between planets and their respective moons or the Sun and its planets.16 Due to the gravity-stable properties and low fuel requirements of Lagrange points, they are ideal for satellites and are understandably well known by space agencies. In 2017, the Director of NASA’s Planetary Science Division, Dr. Jim Green, proposed the radical idea of placing a magnetic dipole shield at Lagrange point L1 in the Sun-Mars system to create an artificial magnetosphere, shielding Mars from solar winds and radiation. This shield would allow the volcanic activity on Mars to continually build up the atmosphere until a point of self-sustainment.17 If a state or non-state actor saturates or even blockades critical Lagrange chokepoints, the ramifications could range from economic depression and collapse of critical space infrastructure to the loss of interplanetary colonies that may eventually inhabit the cosmos.18

Closer to home, satellites from both NASA and the European Space Agency have already made home in earth-system Lagrange points. Lagrange points, specifically L1, L2, and L3, can also host an ecosystem of satellites through halo orbits.19 Although halo orbits are dynamically unstable and require more fuel than the stable Lagrange points at L4 and L5, satellites in halo orbits at L2 can serve as communication relays from the dark side of the moon, Mars, and other celestial bodies. In May of 2018, China placed the first-ever lunar relay satellite, Queqiao, into a halo orbit at the Earth-Moon L2. The following year, China landed their Chang’e 4 rover on the far side of the moon using Queqiao as a communication relay.20 In addition to China, NASA and the European Space Agency have already placed satellites in Lagrange point L2 while countries such as Russia, India, and Japan have their own Lagrangian aspirations.21 Because Lagrange points and associated halo orbits can only host a limited number of spacecraft, the contest for this limited real estate by spacefaring nations can have terrestrial consequences.22,23 These important areas in space are not treatise to international norms and measures yet will be essential for lunar and interplanetary space lines of communication.24

Fig. 2. The Five Lagrange points, L1 through L5. M1 represents the larger celestial body and M2 represents any celestial body whose orbit is anchored to it. If M1 represents the sun, M2 represents the planets. If M1 represents the planets, M2 represents its moons. Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Mechanics/lagpt.html

Access to Resources

The Trade Federation blockaded Naboo in an attempt to leverage the rare economic resources found in the planet. Similar to here on Earth, access to resources is necessary to lift countries and their populations’ standard of living. It is unlikely that much of the world will sacrifice their consumerism to live in harmony with each other and Mother Nature, leaving the limited resources on Earth to support an ever-growing consumer economy. Governments in the future are likely to look to space to solve their growth problems, much as European colonization looked to supplement sapped domestic resources in the 17th and 18th centuries. Beyond Lagrange chokepoints serving as potential flashpoints for real-estate between countries launching satellites, Martian trojan asteroids make home in the gravity-stable environment at Lagrange points L4 and L5 in the Mars-Sun system.25 The imperative of space lines of communication is not necessarily scientific exploration or protection of desirable orbits, but the ability to leverage the vast resources that abound in space. One asteroid floating between Mars and Jupiter is assessed to contain over 10 quintillion dollars of precious metals, more than 10,000 times larger than the 2019 global economy, far more wealth than Han Solo could have ever imagined.26,27

Interplanetary Transport Network and Space lines of Communication

Alfred Thayer Mahan’s unmistakable first lines in the Influence of History Upon Sea Power state:

“The first and most obvious light in which the sea presents itself from the political and social point of view is that of a great highway; or better, perhaps, of a wide common, over which men may pass in all directions, but on which some well-worn paths show that controlling reasons have led them to choose certain lines of travel rather than others. These lines of travel are called trade routes; and the reasons which have determined them are to be sought in the history of the world.”28

While the great highway, wide common, and well-worn paths refer to the sea, his quote can be analogous to Star Wars as well. The hyperspace routes in Star Wars, or trade routes, link the major worlds in the galaxy like an intergalactic superhighway. The routes are safe and account for traveling without colliding into celestial bodies including their gravitational pull. Han Solo couldn’t just punch it when blockade running from Imperial Cruisers. As the Imperial Cruisers closed on him, he quipped to a young Luke Skywalker that, “Traveling through hyperspace ain’t like dusting crops, boy! Without precise calculations we could fly right through a star or bounce too close to a supernova and that’d end your trip real quick, wouldn’t it?”29

Fig. 3. Punch it! Still from “Star Wars: Episode V”. Copyright Lucasfilm Limited. Used under the terms of Fair Use per 17 U.S. Code § 107.

Although hyperspace only remains a reality in the Star Wars Universe, a great highway through our solar system already exists. Lagrange points serve as interplanetary straits, connecting celestial bodies in our solar system through the Interplanetary Transport Network (ITN).30 The halo orbits around Lagrange points can be used to alter spacecraft and satellite trajectories to arrive at any point in the solar system with minimal energy, although reaching Mars could take a millennium using the ITN – far longer than the record breaking 12 parsec Kessel Run flown by Han Solo in the Millennium Falcon.31,32 However, the slowness of ITN trajectories can be modified with external speed injections. In 2003, Cal-Teach professors introduced a Multi-Moon Orbiter concept.33 The concept proposed that a spacecraft could use Lagrange points to modify its trajectory to survey the moons of Jupiter with a final touch down on Europa where NASA speculates both water and life could exist.34 Lagrange points will serve as the keys to unlock the universe that could transform mankind into a multi-planetary species.

Fig. 4. Artist’s depiction of the ITN that connects our solar system. Abrupt changes in trajectory are due to Lagrange points. Image credit: NASA/JPL

The Line between Prescient and Far-fetched

While critics may point to the astronomical costs and technological gaps that make interplanetary travel an impossibility, the critique is confined to now. In 1945, some mainstream scientists felt that satellites and intercontinental ballistic missiles were fool hardy errands that would be too technologically complex and cost prohibitive to develop.35 Less than twelve years later, Sputnik orbited the planet and within fifteen years, intercontinental missiles rested in silos. The once lone small metal ball named Sputnik launched by the Russians in 1957 has given way to a world that depends on complex networks of satellites. While GPS has become a household name in a few short decades, Russia’s GLONASS, China’s Beidou, and Europe’s Galileo systems offer competing location services with global navigation satellite systems (GNSS) receivers. The recent out-of-control Chinese rocket shows that China’s Communist Party is serious about becoming a space-based power and willing to pursue this capability at all costs without due regard for safety.36 Even more recently, the Chinese landed their Zhurong rover on Mars where President Xi Jinping proudly praised all involved by saying, “You were brave enough for the challenge, pursued excellence and placed our country in the advanced ranks of planetary exploration.”37 On July 11th, 2021, Richard Branson along with five other crewmates flew to space aboard the VSS Unity proving the viability of space tourism.38,39 The following week, Jeff Bezos and Blue Origin followed suit in achieving spaceflight in the New Shephard.40

The rapid pace of artificial intelligence (AI) advancement and Space X’s Falcon 9 rockets, Starhopper, and now Starship all show that a manned mission to Mars is a matter of when, not if, and might occur as soon as 2024. SpaceX has plans to colonize Mars with one million people by 2050.41,42

To sustain and develop a Martian colony and more, established and secure space lines of communication will be of critical importance. Interplanetary pursuits are being pursued at a break-neck pace by both allies and adversaries, including China, Russia, India, United Arab Emirates, the United Kingdom, and European Union.43 As each country pursues its own interests among the solar system, the United States must develop a grand strategy in the solar system to protect US interests against both state and non-state actors. The reflection of this reality came to fruition on June 7th, 2021, when Congressman Ted Lieu introduced the Space Infrastructure Act which will “issue guidance with respect to designating space systems, services, and technology as critical infrastructure.”44

Fig. 5. The success of Martian colonies will require an intelligent space strategy. Artist’s illustration of SpaceX Starships on Mars. Image credit: SpaceX.


The blockade of Naboo never happened, but it does have historical precedents and very real implications for space exploration and exploitation. As countries vie to expand their resources, they not only gaze across the vast oceans but upwards towards the final frontier. The increased focus on Mars and beyond demands a robust US interplanetary strategy to protect the United States’ interests in the cosmos. While the United States is rightly focused on earth-based priorities, Milan Vego’s canonical book Maritime Strategy and Sea Control: Theory and Practice, can provide guidance for interplanetary strategy in ensuring a “a free and open [solar system] in which all nations, large and small, are secure in their sovereignty and able to pursue economic growth consistent with accepted international rules, norms, and principles of fair competition.”45 If the United States neglects interplanetary strategy, the United States will be left behind as other countries not only develop but execute their interplanetary strategies.46 If Admiral Fisher was alive today, he would ask, “Do you know that there are five keys to the solar system?” We need to ask ourselves, who will control these keys?

Lieutenant Commander Dylan “Joose” Phillips-Levine is a naval aviator and serves with TACRON-12.  His Twitter handle is @JooseBoludo.

Lieutenant Commander Trevor Phillips-Levine is a naval aviator and serves as a department head in Strike Fighter Squadron Two. His Twitter handle is @TPLevine85.


1. George Lucas, 1999, ¨Star Wars: Episode I The Phantom Menace”, Lucasfilm Limited.

2. “Databank Naboo,” Star Wars, https://www.starwars.com/databank/naboo.

3. Tim Veekhoven, “The Trade Federation And Neimoidians: A History,” Star Wars (14 October 2014), https://www.starwars.com/news/the-trade-federation-and-neimoidians-a-history.

4. Erin Blakemore, “How the East India Company became the world’s most powerful business,” National Geographic, (6 September 2019) https://www.nationalgeographic.com/culture/article/british-east-india-trading-company-most-powerful-business.

5. Dr. Milan Vego, “Naval Classical Thinkers And Operational Art” Naval War College (2009) 3 Naval War College https://web.archive.org/web/20170131144505/https:/www.usnwc.edu/getattachment/85c80b3a-5665-42cd-9b1e-72c40d6d3153/NWC-1005-NAVAL-CLASSICAL-THINKERS-AND-OPERATIONAL-.aspx.

6. Dr. Milan Vego, Maritime Strategy and Sea Control: Theory and Practice, Routledge; 1st edition, (14 April 2016), 189 https://www.amazon.com/Maritime-Strategy-Sea-Control-Practice-ebook/dp/B019H40ST2

7. Ibid, 24

8. Ibid 188

9. The Editors of Encyclopaedia Britannica, “John Arbuthnot Fisher, 1st Baron Fisher,” Encyclopaedia Britannica https://www.britannica.com/biography/John-Arbuthnot-Fisher-1st-Baron-Fisher.

10. Dr. Milan Vego, Maritime Strategy and Sea Control: Theory and Practice, Routledge; 1st edition, (14 April 2016), 188 https://www.amazon.com/Maritime-Strategy-Sea-Control-Practice-ebook/dp/B019H40ST2

11. Kshitij Bhargava, “Single ship stuck causing Suez Canal ‘traffic jam’ may cost $9.6 billion per day,” Financial Express (26 March 2021) https://www.financialexpress.com/economy/single-ship-stuck-causing-suez-canal-traffic-jam-may-cost-9-6-billion-per-day/2220575/.

12. Daniel Stone, “The Suez Canal blockage detoured ships through an area notorious for shipwrecks,” National Geographic (29 March 2021) https://www.nationalgeographic.com/history/article/suez-blockage-detoured-ships-through-cape-good-hope-notorious-shipwrecks.

13. Peter S. Goodman and Stanley Reed, “With Suez Canal Blocked, Shippers Begin End Run Around a Trade Artery,” New York Times (26 March 2021, Update 29 March 2021) https://www.nytimes.com/2021/03/26/business/suez-canal-blocked-ship.html.

14. Lead Authors: Clementine G. Starling, Mark J. Massa, Lt Col Christopher P. Mulder, and Julia T. Siegel With a Foreword by Co-Chairs General James E. Cartwright, USMC (ret.) and Secretary Deborah Lee James in collaboration with: Raphael Piliero, Brett M. Williamson, Dor W. Brown IV, Ross Lott, Christopher J. MacArthur, Alexander Powell Hays, Christian Trotti, Olivia Popp, “The Future of Security in Space: A Thirty-Year US Strategy” Atlantic Council (April 2021) 35 https://www.atlanticcouncil.org/wp-content/uploads/2021/04/TheFutureofSecurityinSpace.pdf.

15. NASA/WMAP Science Team, “What is a Lagrange Point?,” NASA (27 March 2018) https://solarsystem.nasa.gov/resources/754/what-is-a-lagrange-point/.

16. Shane D. Ross, “The Interplanetary Transport Network,” American Scientist, Volume 94 (April 2006) 234 http://www.dept.aoe.vt.edu/~sdross/papers/AmericanScientist2006.pdf.

17.Matt Williams, “NASA proposes a magnetic shield to protect Mars’ atmosphere,” Universe Today (3 March 2017) https://phys.org/news/2017-03-nasa-magnetic-shield-mars-atmosphere.html.

18. Lead Authors: Clementine G. Starling, Mark J. Massa, Lt Col Christopher P. Mulder, and Julia T. Siegel with a Foreword by Co-Chairs General James E. Cartwright, USMC (ret.) and Secretary Deborah Lee James in collaboration with: Raphael Piliero, Brett M. Williamson, Dor W. Brown IV, Ross Lott, Christopher J. MacArthur, Alexander Powell Hays, Christian Trotti, Olivia Popp, “The Future of Security in Space: A Thirty-Year US Strategy” Atlantic Council (April 2021) 35 https://www.atlanticcouncil.org/wp-content/uploads/2021/04/TheFutureofSecurityinSpace.pdf.

19. Ibid 70.

20. Luyuan Xu, “How China’s lunar relay satellite arrived in its final orbit,” Planetary (15 June 2018) https://www.planetary.org/articles/20180615-queqiao-orbit-explainer

21. Lead Authors: Clementine G. Starling, Mark J. Massa, Lt Col Christopher P. Mulder, and Julia T. Siegel with a Foreword by Co-Chairs General James E. Cartwright, USMC (ret.) and Secretary Deborah Lee James in collaboration with: Raphael Piliero, Brett M. Williamson, Dor W. Brown IV, Ross Lott, Christopher J. MacArthur, Alexander Powell Hays, Christian Trotti, Olivia Popp, “The Future of Security in Space: A Thirty-Year US Strategy” Atlantic Council (April 2021) 35 https://www.atlanticcouncil.org/wp-content/uploads/2021/04/TheFutureofSecurityinSpace.pdf.

22. Ibid 70.

23. Ibid 10.

24. Ibid 72.

25. Jesse Emspak, Are Mars’ Trojan Asteroids Pieces of the Red Planet?,” Space (July 24, 2017) https://www.space.com/37565-mars-trojan-asteroids-pieces-of-the-planet.html.

26. Adam Smith, “Asteroid Worth $10 Quintillion Could Be Only One of Its Kind,” Independent (29 October 2020) https://www.independent.co.uk/life-style/gadgets-and-tech/asteroid-10-quintillion-psyche-19-iron-nickel-b1419635.html.

27. “Star Wars IV: A New Hope Quotes,” Movie Quote Database, https://www.moviequotedb.com/movies/star-wars-episode-iv-a-new-hope/quote_29904.html.

28. Alfred Thayer Mahan, “The Influence of Sea Power Upon History, 1660-1783,” Dover Publications; Revised ed. edition (November 1, 1987) https://www.amazon.com/Influence-History-1660-1783-Military-Weapons/dp/0486255093.

29. “Star Wars IV: A New Hope Quotes,” Movie Quote Database, https://www.moviequotedb.com/movies/star-wars-episode-iv-a-new-hope/quote_29894.html.

30. Shane D. Ross, “The Interplanetary Transport Network,” American Scientist, Volume 94 (April 2006) 230 http://www.dept.aoe.vt.edu/~sdross/papers/AmericanScientist2006.pdf.

31. Ibid 236.

32. Kyle Hill, “How the Star Wars Kessel Run Turns Han Solo into a Time-Traveler,” Wired (12 February 2013) https://www.wired.com/2013/02/kessel-run-12-parsecs/.

33. Ross, S. D. and Koon, W. S. and Lo, M. W. and Marsden, J. E. “Design of a Multi-Moon Orbiter,” Spaceflight Mechanics 2003. Advances in the Astronautical Sciences. No. 114. American Astronautical Society, 1. https://resolver.caltech.edu/CaltechAUTHORS:20101007-131136558

34.“ Ingredients for Life?,” NASA https://europa.nasa.gov/why-europa/ingredients-for-life/

35. John. A. Olsen, “A History of Air Warfare,” Potomac Books Incorporated (2010), audiobook. Part 5 Chapter 16, time: 16:42.

36. Alison Rourke, “‘Out-of-control’ Chinese rocket falling to Earth could partially survive re-entry,” The Guardian (4 May 2021) https://www.theguardian.com/science/2021/may/04/out-of-control-chinese-rocket-tumbling-to-earth.

37. Jonathan Amos, “China lands its Zhurong rover on Mars,” BBC (15 May 2021) https://www.bbc.com/news/science-environment-57122914.

38. Chelsea Gohd, “Virgin Galactic launches Richard Branson to space in 1st fully crewed flight of VSS Unity,” 12 July 2021) SPACE.COM https://www.space.com/virgin-galactic-unity-22-branson-flight-success

39. Mike Wall, “ Virgin Galactic Unveils New SpaceShipTwo Unity for Space Tourists,” Scientific American (23 February 2016) SPACE.COM https://www.scientificamerican.com/article/virgin-galactic-unveils-new-spaceshiptwo-unity-for-space-tourists/.

40. Paul Rincon, “Jeff Bezos launches to space aboard New Shepard rocket ship,” BBC (20 July 2021), BBC https://www.bbc.com/news/science-environment-57849364

41. Hanneke Weitering, “Elon Musk says SpaceX’s 1st Starship trip to Mars could fly in 4 years,” Space (16 October 2020) https://www.space.com/spacex-starship-first-mars-trip-2024.

42. Morgan McFall-Johnsen and Dave Mosher “Elon Musk says he plans to send 1 million people to Mars by 2050 by launching 3 Starship rockets every day and creating ‘a lot of jobs’ on the red planet,” Business Insider (17 January 2020) https://www.businessinsider.com/elon-musk-plans-1-million-people-to-mars-by-2050-2020-1.

43. “Once a two-country race, Mars missions now on radar of multiple nations,” Times of India (18 February 2021) https://timesofindia.indiatimes.com/home/science/once-a-two-country-race-mars-missions-now-on-radar-of-multiple-nations/articleshow/81096583.cms.

44. Mr. Lieu, “Space Infrastructure Act,” House of Representatives (17 May 2021) https://lieu.house.gov/sites/lieu.house.gov/files/LIEU_172_xml.pdf.

45. The Deparment Of Defense, “Indo-Pacific Strategy Report” Department of Defense (1 June 2019) https://media.defense.gov/2019/Jul/01/2002152311/-1/-1/1/DEPARTMENT-OF-DEFENSE-INDO-PACIFIC-STRATEGY-REPORT-2019.PDF.

46. Brien Flewelling, “Securing cislunar space: A vision for U.S. leadership,” Space News (9 November 2020) https://spacenews.com/op-ed-securing-cislunar-space-a-vision-for-u-s-leadership/.

Feature Image: Still from “Star Wars: Episode I” depicting the blockade of Naboo. Copyright Lucasfilm Limited. Used under the terms of Fair Use per 17 U.S. Code § 107.

The Importance of Space in Maritime Security

Honorable Mention – CIMSEC High School Essay Contest

As long as man has walked the Earth and gazed into the stars, he’s asked “what’s out there what’s waiting for me?” Today, our country asks that very same question, although not for what we can find, but how we can use Space and its resources to advance our scientific and military might into, and hopefully beyond the 21st century.

GPS_Satellite_NASA_art-iifWith the dawn of rockets and the nuclear confrontation between the United States and the Soviet Union during the height of the Cold War, Space would soon become a vital asset for the interests of both countries and other major players for the years to come (particularly China). With the sudden rise of China, and the reemergence of the Russia as a major military power, it is absolutely vital that the United States once again pursue Space for economic, political, and commercial purposes, as well as for strategic military purposes which will benefit not only the military, but the United States as a whole; and how our Navy can play a big role in helping us make this happen.

As of the time of this writing, the United States and other Western European Countries are currently embroiled in a geopolitical dispute with Russia over Ukraine and the rights of its territory such as Crimea and Eastern Ukraine. As a result of this, the United States and the European Union declared economic sanctions on Russia which are meant to cripple the Russian economy and force Russia out over its interference in Ukraine. In response to this, the Kremlin has threatened to stop shuttling Astronauts to and from the International Space Station, and cut off supplies to the ISS.  In 2007, the Chinese military carried out its first antisatellite missile test when it launched a ground based missile 500 miles to destroy an aging satellite of theirs.

Both of these events are very disturbing as they easily threaten the United States and its space capability to carry out intelligence gathering and reconnaissance missions in Space using the latest technology and satellites. If these satellites, whether civilian or military, ever happen to be threatened in a time of war, the results could be catastrophic. The Navy should invest in further developing laser weapons like the LaWS that are capable of punching holes through thick steel plates on ships as well as a countermeasure against any ballistic missile that may threaten our satellite capability in Space or onboard the ISS. Laser weapons are surprisingly very cheap and affordable. According to Rear Admiral Matthew Klunder in an interview for defense-aerospace.com, “with affordability a serious concern for our defense budgets, this will more effectively manage resources to ensure our sailors and marines are never in a fair fight.” The article goes on to claim that firing this type of weapon can cost less than $1 dollar per shot; a great bargain in a time that our military is starting to see a drawdown in military spending. Christopher Harrier, an analyst at the Institute for the Study of War was quoted as saying that: “The existing naval weapons systems, small-caliber cannons, large-caliber naval guns, and missiles, are at or near the limits of their potential capability. Guns and missiles just aren’t going to get much more accurate or lethal while lasers have significant potential for increases in range, accuracy, lethality, reliability, and cost-effectiveness.”

It is clear that if the Navy wants to confront new 21st Century threats, it must research and develop new combat systems, whether it is by land, sea, air, or space.  The Russians and the Chinese are also looking into developing similar weapons systems, while also trying to implement a missile defense system capable of intercepting and eliminating enemy targets. With a resurgent Russia and emerging China, this has become a must for defense of our allies and overseas military installations all around the world. It has been stated that an enemy country wouldn’t necessarily have to launch a direct nuclear strike if it wanted to destroy the United States. Countries like China and Russia could simply detonate a nuclear weapon in the upper atmosphere right over the Midwestern United States and knock out most, if not all, of the electrical power grids in the continental United States through an Electromagnetic Pulse Effect. An EMP would be devastating to the United States as it would cripple our infrastructure, down all of our technology, leave the US Government and military crippled and slow to react, and cause the global economy to collapse. It would be a scene right out of a post-apocalyptic film like The Postman or The Book of Eli. Not to mention the millions of casualties and deaths that would occur due to starvation or anarchy. It would truly be a shame and a complete lack of competence if our Government doesn’t have a contingency plan already in place for an event like this.

In order for this plan on space based missile defense to work however, it must learn from the mistakes made in the 1980’s when Ronald Reagan famously proposed in 1983 his SDI (Strategic Defense Initiative) or the “Star Wars Program”. As many people know, SDI was announced in 1983 by Ronald Reagan as a means of countering the Soviet threat with space based weaponry capable of shooting down any Soviet missile before it entered American airspace. Unfortunately, due to the slow technological development at the time of space based missile defense systems, as well as other factors including the Dissolution of the USSR, inefficiency, and overall lack of continued public support, SDI did not succeed in meeting its goals.

In comparison to the 1980’s-early 90’s, America does have the infrastructure in 2015 to support a new SDI type program. For starters, in 1983 something called: “private space companies” did not exist. With companies such as SpaceX, Virgin Galactic, Orbital Sciences, and Blue Origin starting to appear and establish themselves as legitimate companies in the aerospace sector, there’s no reason why they couldn’t be expected to help the American military develop a space based missile defense system. Similar to how other Aerospace contractors such as Boeing and Lockheed Martin have helped the Air Force in its development of their new aircraft and weapons systems, a joint government/private program with the DoD and Navy providing the funding, and the private companies will handle the testing and development could be developed. That way there won’t be as large of an outcry by the public as there was with SDI in the 1980’s and the politicians/military leaders don’t have to worry so much about any failures and the potential political backlash with the program, as it will fall on the shoulders of the private contractors. Plus, this program will be more affordable now than it ever was in the 1980s.

SpaceX is currently developing the Falcon-9 space rocket with the intention of making it reusable and cheaper to launch into orbit. According to NASA, the average typical launch cost for the Space Shuttle Program was $450 million dollars. With the SpaceX designed Falcon-9 rocket, that cost is now about 50-56 million USD, an absolute bargain when compared to how much NASA’s launches cost. The biggest obstacle to this plan would not necessarily be the technical or financial challenges involved, but compliance with international law such as the 1967 Outer Space Treaty. Article IV of the 1967 Space Treaty states: “States Parties to the Treaty undertake not to place in orbit around the earth any objects carrying nuclear weapons or any other kinds of weapons of mass destruction, install such weapons on celestial bodies, or station such weapons in outer space in any other manner.

The moon and other celestial bodies shall be used by all States Parties to the Treaty exclusively for peaceful purposes. The establishment of military bases, installations and fortifications, the testing of any type of weapons and the conduct of military maneuvers on celestial bodies shall be forbidden. The use of military personnel for scientific research or for any other peaceful purposes shall not be prohibited. The use of any equipment or facility necessary for peaceful exploration of the moon and other celestial bodies shall also not be prohibited. “

The key words in this text being: “Nuclear or any kinds of weapons of mass destruction.” WMD’s are most often defined as being either: Biological, Chemical, Radiological, or Nuclear.  Since lasers do not fall into either of these specifically defined categories (as lasers are electromagnetic), this would not violate international law regarding space and weapons of mass destruction. And their primary purpose would be defensive in nature. The Navy could easily place these interceptors on ships or in bases around the world in order to be alerted by any of these threats, as well as satellites which can track and locate enemy ships and submarines before they attack.

It is obvious that space will play a critical role in the development of naval affairs and maritime security through the use of satellites and space based defense which will be used to further America’s Naval supremacy in both the Sea and Space throughout the rest of the 21st century and beyond. As we can see, the Navy will not just be limited to the sea but will have an increasingly expanded role as technology and space travel progresses.







About the Author 

Nolan McEleney was born in Jacksonville, Florida in 1996 and is a diehard fan of the Jacksonville Jaguars. His family moved to CT in 2005, before finally settling in MD in 2008. Nolan is currently a cadet officer in the Civil Air Patrol for the Bethesda-Chevy Chase Composite Squadron where he is currently assigned as a flight commander. Nolan currently attends The Avalon School in Gaithersburg where he is the Washington house captain. In extracurriculars, he is heavily involved with the Civil Air Patrol. Nolan is also a part of his squadrons cyberpatriot team which deals with cybersecurity and other threats as part of a nationwide competition. He has also taken online courses with the Cisco Networking Academy and Hillsdale College. 

 In the future, Nolan would like to work with NASA, a private space company, or any science and tech company. Whether it be in a technical or non-technical role, he feel like a lot of these companies such as SpaceX are on the cusp of history with proposed missions to the Moon, Mars, and beyond. He would also like to be a part of and contribute to that in any way he can. Nolan currently intends on going to the University of Washington and participating in ROTC so that he can become an officer.