Tag Archives: distributed lethality

Tactical Information Warfare and Distributed Lethality

Distributed Lethality Topic Week

By Richard Mosier

Background

The U.S. Navy’s distributed lethality strategy is to deny sea control to adversaries claiming sovereignty over international waters through the use of small offensive Surface Action Groups (SAGs) that operate in areas covered by the adversary’s anti-access, sea denial sensor systems and supported by land based command and control, interior lines of communication, and defensive platforms and weapons. The Navy strategy is for these SAGs to transit to positions to attack enemy ISR, command and control, and defending forces; and deny them sea control. The success of distributed operations ultimately depends on Information Warfare (IW) operations to deny the enemy the data required to target and attack Surface Action Groups.

Anti-access, sea denial capabilities of near-peer nations present a high threat to surface navy operations. The use of multiple offensive SAGs complicates the enemy’s defense but only if these groups avoid detection, tracking, targeting, and attack. If they operate with active sensors, datalinks and voice and network communications transmitting, they reveal their location, track, classification/identification, and group composition. Moreover, these emissions provide a readily available source for targeting the SAG. If attacked, the resulting battle damage and depleted stock of defensive weapons would most likely require the group to withdraw.  

130131-N-HN991-919 PACIFIC OCEAN (Jan. 31, 2013) The Arleigh Burke-class guided-missile destroyers USS Stockdale (DDG 106) and USS William P. Lawrence (DDG 110) transit the western Pacific Ocean. The Nimitz Strike Group Surface Action Group is operating in the U.S. 7th Fleet area of responsibility. (U.S. Navy photo by Mass Communication Specialist 2nd Class David Hooper/Released)
PACIFIC OCEAN (Jan. 31, 2013) The Arleigh Burke-class guided-missile destroyers USS Stockdale (DDG 106) and USS William P. Lawrence (DDG 110) transit the western Pacific Ocean. The Nimitz Strike Group Surface Action Group is operating in the U.S. 7th Fleet area of responsibility. (U.S. Navy photo by Mass Communication Specialist 2nd Class David Hooper/Released)

For distributed lethality to succeed, SAGs have to avoid being engaged while in transit to the attack position, attack with the advantage of surprise, avoid attack while repositioning, and if attacked, effectively defend the force. If, as must be anticipated, some or all of the units in the SAG are located and the enemy begins defensive operations, the first objective is to avoid being targeted by possibly denying the attacking force the information required to attack. If these measures fail and a SAG is located and targeted by the enemy, the goal is to transition instantaneously to full active defense in a tactically advantageous manner. Destroying the aircraft, surface ships, submarines, or land based sites is preferable to defending against large numbers of fast moving incoming anti-ship weapons.

While emission control (EMCON) is essential to deny targeting, the ships in a SAG will have to communicate to coordinate movements, exchange information, and execute defensive and offensive activities. These datalinks and battle group communications will have to be carefully selected to minimize the probability of intercept by enemy ISR systems.

Implications for Surface Navy Information Warfare

When in EMCON, the SAG will be reliant on own-force passive sensors, organic airborne surveillance systems, and the full range of information from nonorganic Navy, joint, and national ISR systems. This information will enable the tactical commander to gain and maintain both information superiority and speed of command, defined by VADM Cebrowski as: “knowing more things which are relevant, knowing them faster and being able to convert that knowledge into execution faster than the adversary.”

SAG tactical situation awareness requires the capability to automatically correlate relevant active and passive information from organic and non-organic sensors with intelligence at all classifications and compartments for presentation to the commander. This automation is essential to the commander’s situational awareness and speed of command. Surface ships will have to integrate the capabilities to correlate information from the ship’s combat system with intelligence and information from off board sources. Speed of command is dramatically slowed and tactical advantage lost if the commander has to mentally integrate three separate sets of information with some only available in a separate physical space.

Knowing the relevant facts faster than the adversary drives a requirement that off board intelligence and information systems must meet a Key Performance Parameter for time latency, measured from time of sensing to receipt onboard ship. It also indicates the need for a similar metric for ship combat systems measured from time of information receipt on ship to presentation to the commander. Speed of command is the key to tactical success in distributed operations.

Even when exercising electromagnetic and acoustic EMCON to avoid detection, surface ships can be detected by radars, visually, and by electro-optical sensor systems. Assessing whether the SAG has been detected will depend on factors such as enemy sensor location and altitude, platform type, sensor types on the platform, and a detailed understanding of enemy sensor performance. Sensor performance estimates require not only detailed technical intelligence, but also the assessment of effects of atmospheric and acoustic conditions on enemy sensor performance at any time during the mission. This suggests that combat systems will have to incorporate new automated IW functionality that, among other things, integrates track information with technical intelligence and meteorologic/oceanographic data to assess whether the ship has been detected or not.

Conclusion

The effective planning and command of SAG IW activities requires line officers that are trained, have specialized in IW during their careers, and are ready to perform the IW functions required for success in distributed operations. That is, to achieve superior situation awareness and speed of command, influence enemy decisions, deny the enemy information superiority, disrupt enemy decision making, and protect and defend own force information and information systems from external or internal threats.

As the concept of distributed lethality matures and the Navy gains an appreciation of the necessity for and potential of IW at the tactical level, the Navy will have to adjust to more clearly define IW, describe the missions and functions of IW, establish a career path for Surface Warfare Officer (SWO) IW specialists, and equip surface combatants with the information warfare capabilities required for successful distributed operations.

Richard Mosier is a former naval aviator, intelligence analyst at ONI, OSD/DIA SES 4, and systems engineer specializing in Information Warfare. The views express herein are solely those of the author.

Featured Image:  The Arabian Gulf (Mar. 23, 2003) — The Tactical Operations Officer (TAO), along with Operations Specialists, stand watch in the Combat Direction Center (CDC) aboard the aircraft carrier USS Abraham Lincoln (CVN 72) monitoring all surface and aerial contacts in the operating area.  (U.S. Navy photo by Photographer’s Mate Airman Tiffany A. Aiken)

Beans, Bullets, and Benzene: A Proposal for Distributing Logistics

Distributed Lethality Topic Week

By Elee Wakim

The days of majestic leviathans harnessing the power of the elements for propulsion to cruise the world’s navigable waters are long past. What has evolved are voracious beasts which tear across the world with little concern for all but the largest of wind and wave. The appetite of the engines that propel these vessels can only be satiated by a routine supply of petroleum. The United States Navy has established a global logistics network to feed this hunger, the backbone of which is a fleet of tankers, manned by the merchant mariners of the Military Sealift Command (MSC). Hand in hand with the ability to refuel the Navy’s ships is the ability to send fresh food, replacement parts, and ammunition to surface assets without the need to have them return to domestic ports and safe havens. This steady stream of supplies allows the United States to project power around the world. Given the importance of our MSC fleet, they will likely be a priority target in the opening stages of a conflict against a near-peer adversary. Given their vulnerability, these vessels will be faced with the prospect of withdrawing from the area of responsibility (AOR) or being sunk. Whatever the outcome, the cruisers, destroyers, and littoral combat ships at the tip of the spear will retain the requirement of contesting the battlefield until sufficient forces arrive in theater to relieve them. How then to supply these vessels and ensure they have what they need to do what is demanded of them? This paper seeks to address this concern and provide a possible solution to the disruption of our supply chain in the Western Pacific.

Distributing Logistics

One possible solution harkens back to the late 19th century, when nations desiring to project naval power around the world were confronted with a need for coaling stations to support their relatively short legged ships. The 21st century Navy, borrowing from this concept, could build a series of logistics hubs throughout the Western Pacific. These miniature logistics hubs could be built in small inlets, coves, and atolls – anywhere with sufficient draft to support our surface assets. They would function as temporary sanctuaries where thirsty ships could quickly gas up and resupply before turning around and returning to the fight. The infrastructure required to support this concept need not be excessive. A small tug, a fuel barge, and the personnel to man them would be the extent of the investment.

Depending on the potential threat (largely driven by its proximity of an adversary’s weapons systems, or lack thereof), the Navy could expand beyond the aforementioned bare necessities to provide additional support to its vessels. A runway could be constructed to allow for replacement ordnance or repair teams to be flown in.  To complement this, cranes could be prepositioned to support reloading of expended VLS cells. Any combination of support equipment could be staged to support rapid augmentation via air during wartime. Indeed, if we were feeling particularly ambitious, we could use these locations to facilitate the forward repair of battle damage, using vessels like the USNS Frank Cable (AS-40) with their extensive machine shops to establish floating forward repair facilities.

101230-N-8423B-015 POLARIS POINT, Guam (Dec. 30, 2010) The submarine tender USS Frank Cable (AS 40) tends the Virginia-class attack submarine USS Hawaii (SSN 776). Hawaii is the first Virginia-class attack submarine to be moored outboard of a submarine tender. Frank Cable conducts maintenance and support of submarines and surface vessels deployed in the U.S. 7th Fleet area of responsibility. (U.S. Navy photo by Mass Communication Specialist 2nd Class Catherine Bland)
POLARIS POINT, Guam (Dec. 30, 2010) The submarine tender USS Frank Cable (AS 40) tends the Virginia-class attack submarine USS Hawaii (SSN 776). Hawaii is the first Virginia-class attack submarine to be moored outboard of a submarine tender. (U.S. Navy photo by Mass Communication Specialist 2nd Class Catherine Bland)

There are several advantages that such outposts offer our frontline commanders.  First and foremost is that, in a scenario where our logistics ships are driven off, sunk, or otherwise unavailable, the captains fighting their ships would have multiple locations to replenish and get back into the fight. This would facilitate greater time on station which is crucial to maintaining their ability to shape the conflict, contest the battle space, and disrupt an adversary’s plan.

Secondly, these dispersed outposts would allow for fixed locations to refuel. In a degraded C2 environment, this is no small consideration when the ship in question may not have the ability to locate, communicate with, or sufficient endurance to reach surviving oilers. By dispersing potential resupply locations across a greater expanse, we inherently complicate potential adversaries ISR and force distribution calculations. No longer could it be assumed that naval vessels will be taking the most direct route to or from Guam, Japan, Singapore, or the Philippines. Instead, the foe must now picket additional lines of approach and disperse limited assets.

It is a very different tactical problem to protect widely dispersed oilers with a handful of assets than those steaming in company with a strike group. If our logistics ships are to survive in an increasingly lethal anti-access/area-denial (A2AD) environment, they will require an escort to provide sensor and kinetic coverage, primarily from hostile airborne and subsurface threats. This coverage will necessarily be supplied by large surface combatants. This coverage would likely require a one to one matchup between these – the shepherds – and their quarry. Freeing them of the need to ride herd on our logistics (at least until they initially transit out of the theater) will make them available for other tasking.

Considerations and Challenges

There are a host of questions to consider, one of which is the sustainability of these stations. Operating upon the high seas takes a heavy toll upon equipment, which requires a great deal of maintenance to remain operational. These outposts would require personnel to ensure the airfields are capable of supporting aircraft, the cranes of swinging VLS cells, and the pumps of pushing fuel. Exact expenditure and allocation of personnel would need to be worked out on a case by case basis. The current U.S. Army facilities on Kwajalein in the Marshall Islands provide a possible blueprint for use elsewhere. The island possesses a harbor, tug, fuel barge, and runway, which do not require burdensome manning. Additional requirements would necessarily be subject to further study.

(Kwajalein Range Services)
Kwajalein atoll in the Marshall Islands. (Kwajalein Range Services)

Another question which merits consideration is the diplomatic expenditures necessary to enable the placement of these logistics hubs. Should the United States construct these facilities on the territory of regional partners or should it seek to, like the People’s Republic of China, improve upon maritime features scattered throughout the Pacific? Both lines of approach have inherent hurdles. Establishing them on the territory of another nation will require a greater initial investment of political capital and defining legal framework to permit their existence. Building upon unclaimed maritime features risks a charge of hypocrisy against the United States relative to its stance on the Spratly Islands, though this could largely be mitigated through a decision to forego claiming a surrounding exclusive economic zone. Ultimately, some combination of the two may ultimately prove desirable.

A third matter that should be addressed is that of targeting by long range weapons of an adversary. The proposed logistics hubs, like their seaborne counterparts, would be prime targets in the opening hours of a conflict while, unlike their counterparts, they would be unable to dodge. How then to prevent them from being anything other than a target or a drain of resources? There are two potential paths to their salvation. The first draws from the Russian concept of maskirovka, or military deception. Given the pervasiveness of satellite imagery, it will be difficult to actually hide the locations, making it necessary to convince an adversary that they serve a different purpose. They will be far less likely to waste precious missiles on a naval construction battalion facility or medical facility than a place to replenish a warship. The other path, for those facilities which would be emplaced on foreign territory, would be the protection afforded by the sovereignty of that nation. Potential adversaries may not want to draw unnecessary third parties (such as the Philippines or Japan) into a conflict with the United States by lobbing missiles at their territory, especially if the third parties are not obligated to join the United States.

Conclusion

George Patton once quipped, “fixed fortifications are monuments to man’s stupidity.”  This paper does not advocate turning these proposed positions into heavily manned bastions. Rather, their physical security would be derived from geographic remoteness and light covering forces such as Patriot batteries and Naval Expeditionary Combat Command detachments. This paper also does not seek to posit that our MSC fleet lacks utility; indeed, it is quite the opposite. Those ships are the defining variable in determining not only whether we can emerge victorious from a prolonged conflict, but whether we can simultaneously support our global commitments.

This paper offers an alternative means to supply our fleet in the opening stages of a conflict against a near-peer adversary who is capable of tracking and targeting our logistic ships at great distances. If we have sufficient forces in theater to meet mission obligations and protect our logistics ships, then there is no harm in having built up such a capability.  If, however, our opponent has denied these vessels the ability to safely operate where they are most needed, then such a low-cost investment may prove decisive in allowing our ships to hold the enemy at risk. Let us not forget that if she runs out of gas, no amount of advanced sensors or weapons will prevent a ship from being anything more than a target.

LTJG Elee Wakim is a Surface Warfare Officer in the United States Navy.  He is currently stationed in Singapore with the Maritime Staff Element of Destroyer Squadron SEVEN.  The views expressed here are his own and do not represent those of the United States Department of Defense or any other organization.

Featured Image: EAST CHINA SEA (July 30, 2016) The forward-deployed Arleigh Burke-class guided-missile destroyer USS Barry (DDG 52) conducts an underway-replenishment with the Military Sealift Command (MSC) fleet replenishment oiler Joshua Humphreys (T-AO 188). (U.S. Navy photo by Mass Communication Specialist 2nd Class Kevin V. Cunningham/Released)

Distributed Lethality Week Kicks Off on CIMSEC

By Dmitry Filipoff

This week CIMSEC is hosting articles exploring the U.S. Navy’s Distributed Lethality concept in partnership with the Distributed Lethality Task Force. The U.S. Navy is investigating distributed lethality as a potentially game changing approach for the conduct of naval warfare. The Task Force’s call for articles may be read here. Below is a list of articles featuring during the topic week, which will be updated as the topic week rolls out and as prospective authors finalize additional publications.

Beans, Bullets, and Benzene: A Proposal for Distributing Logistics by Elee Wakim
Tactical Information Warfare and Distributed Lethality by Richard Mosier
Roles for Up-gunned LCACs in Adaptive Force Packages by Megan McCulloch
Which Player Are You? Warfare Specialization in Distributed Lethality by Jon Hill
After Distributed Lethality – Unmanned Netted Lethality by Javier Gonzalez

Dmitry Filipoff is CIMSEC’s Director of Online Content. Contact him at Nextwar@cimsec.org.

Featured Image: PHILIPPINE SEA (Apr. 11, 2015) – Arleigh Burke-class guided-missile destroyer USS Mustin (DDG 89) fires its 5-inch gun during a naval surface fire support evolution. (U.S. Navy photo by Mass Communication Specialist Seaman David Flewellyn/Released)

Electronic Warfare’s Place in Distributed Lethality: Congressional Testimony

The following testimony published on Information Dissemination, and is shared with the author’s permission.

By Jon Solomon

Testimony before the House Armed Services Committee

Subcommittee on Seapower and Projection Forces

Prepared Statement of Jonathan F. Solomon

Senior Systems and Technology Analyst, Systems Planning and Analysis, Inc.

December 9th, 2015

The views expressed herein are solely those of the author and are presented in his personal capacity on his own initiative. They do not reflect the official positions of Systems Planning and Analysis, Inc. and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency. These views have not been coordinated with, and are not offered in the interest of, Systems Planning and Analysis, Inc. or any of its customers.

Thank you Chairman Forbes and Ranking Member Courtney and all the members of the Seapower and Projection Forces subcommittee for granting me the honor of testifying today and to submit this written statement for the record.

I am a former U.S. Navy Surface Warfare Officer (SWO), and served two Division Officer tours in destroyers while on active duty from 2000-2004. My two billets were perhaps the most tactically-intensive ones available to a junior SWO: Anti-Submarine Warfare Officer and AEGIS Fire Control Officer. As the young officer responsible for overseeing the maintenance and operation of my destroyers’ principal combat systems, I obtained an unparalleled foundational education in the tactics and technologies of modern naval warfare. In particular, I gained a fine appreciation for the difficulties of interpreting and then optimally acting upon the dynamic and often ambiguous “situational pictures” that were produced by the sensors I “owned.” I can attest to the fact that Clausewitz’s concepts of “fog” and “friction” remain alive and well in the 21st Century in spite of, and sometimes exacerbated by, our technological advancements.

My civilian job of the past eleven years at Systems Planning and Analysis, Inc. has been to provide programmatic and systems engineering support to various surface combat system acquisition programs within the portfolio of the Navy’s Program Executive Officer for Integrated Warfare Systems (PEO IWS). This work has provided me an opportunity to participate, however peripherally, in the development of some of the surface Navy’s future combat systems technologies. It has also enriched my understanding of the technical principles and considerations that affect combat systems performance; this is no small thing considering that I am not an engineer by education.

In recent years, and with the generous support and encouragement of Mr. Bryan McGrath, I’ve taken up a hobby of writing articles that connect my academic background in maritime strategy, naval history, naval technology, and deterrence theory with my professional experiences. One of my favorite topics concerns the challenges and opportunities surrounding the potential uses of electronic warfare in modern maritime operations. It’s a subject that I first encountered while on active duty, and later explored in great detail during my Masters thesis investigation of how advanced wide-area oceanic surveillance-reconnaissance-targeting systems were countered during the Cold War, and might be countered in the future.

Electronic warfare receives remarkably little attention in the ongoing debates over future operating concepts and the like. Granted, classification serves as a barrier with respect to specific capabilities and systems. But electronic warfare’s basic technical principles and effects are and have always been unclassified. I believe that much of the present unfamiliarity concerning electronic warfare stems from the fact that it’s been almost a quarter century since U.S. naval forces last had to be prepared to operate under conditions in which victory—not to mention survival—in battle hinged upon achieving temporary localized mastery of the electromagnetic spectrum over the adversary.

America’s chief strategic competitors intimately understand the importance of electronic warfare to fighting at sea. Soviet Cold War-era tactics for anti-ship attacks heavily leveraged what they termed “radio-electronic combat,” and there’s plenty of open source evidence available to suggest that this remains true in today’s Russian military as well.[i] The Chinese are no different with respect to how they conceive of fighting under “informatized conditions.”[ii] In a conflict against either of these two great powers, U.S. maritime forces’ sensors and communications pathways would assuredly be subjected to intense disruption, denial, and deception via jamming or other related tactics. Likewise, ill-disciplined electromagnetic transmissions by U.S. maritime forces in a combat zone might very well prove suicidal in that they could provide an adversary a bullseye for aiming its long-range weapons.

To their credit, the Navy’s seniormost leadership have gone to great lengths to stress the importance of electronic warfare in recent years, most notably in the new Maritime Strategy. They have even launched a new concept they call electromagnetic maneuver warfare, which appears geared towards exactly the kinds of capabilities I am about to outline. It is therefore quite likely that major elements of the U.S. Navy’s future surface warfare vision, Distributed Lethality, will take electronic warfare considerations into account. I would suggest that Distributed Lethality’s developers do so in three areas in particular: Command and Control (C2) doctrine, force-wide communications methods, and over-the-horizon targeting and counter-targeting measures.

First and foremost, Distributed Lethality’s C2 approach absolutely must be rooted in the doctrinal philosophy of “mission command.” Such doctrine entails a higher-echelon commander, whether he or she is the commander of a large maritime battleforce or the commander of a Surface Action Group (SAG) consisting of just a few warships, providing subordinate ship or group commanders with an outline of his or her intentions for how a mission is to be executed, then delegating extensive tactical decision-making authority to them to get the job done. This would be very different than the  Navy’s C2 culture of the past few decades in which higher-echelon commanders often strove to use a “common tactical picture” to exercise direct real-time control, sometimes from a considerable distance, over subordinate groups and ships. Such direct control will not be possible in contested areas in which communications using the electromagnetic spectrum are—unless concealed using some means—readily exploitable by an electronic warfare-savvy adversary. Perhaps the adversary might use noise or deceptive jamming, deceptive emissions, or decoy forces to confuse or manipulate the “common picture.” Or perhaps the adversary might attack the communications pathways directly with the aim of severing the voice and data connections between commanders and subordinates. An adept adversary might even use a unit or flagship’s insufficiently concealed radio frequency emissions to vector attacks. It should be clear, then, that the embrace of mission command doctrine by the Navy’s senior-most leadership on down to the deckplate level will be critical to U.S. Navy surface forces’ operational effectiveness if not survival in future high-end naval combat.

Let me now address the question of why a surface force must be able to retain some degree of voice and data communications even when operating deep within a contested zone. As I alluded earlier, I consider it highly counterproductive if not outright dangerous for a higher-echelon commander to attempt to exercise direct tactical control over subordinate assets in the field under opposed electromagnetic conditions. But that doesn’t mean that the subordinate assets should not share their sensor pictures with each other, or that those assets should not be able to spontaneously collaborate with each other as a battle unfolds, or that higher-echelon commanders should not be able to issue mission intentions and operational or tactical situation updates—or even exercise a veto over subordinates’ tactical decisions in extreme cases. A ship or an aircraft can, after all, only “see” on its own what is within the line of sight of its onboard sensors. If one ship or aircraft within some group detects a target of opportunity or an inbound threat, that information cannot be exploited to its fullest if the ship or aircraft in contact cannot pass what it knows to its partners in a timely manner with requisite details. In an age where large salvos of anti-ship missiles can cover hundreds—and in a few cases thousands—of miles in the tens of minutes, where actionable detections of “archers” and “arrows” can be extremely fleeting, and where only minutes may separate the moments in which each side first detects the other, the side that can best build and then act upon a tactical picture is, per legendary naval tactical theorist Wayne Hughes, the one most likely to fire first effectively and thus prevail.[iii]

This requires the use of varying forms of voice and data networking as tailored to specific tactical or operational C2purposes. A real-time tactical picture is often needed for coordinating defenses against an enemy attack. A very close to real-time tactical picture may be sufficient for coordinating attacks against adversary forces. Non-real time communications may be entirely adequate for a higher-echelon commander to convey mission guidance to subordinates.

But how to conceal these communications, or at least drastically lower the risk that they might be intercepted and exploited by an adversary? The most secure form of communications against electronic warfare is obviously human courier, and while this was used by the U.S. Navy on a number of occasions during the Cold War to promote security in the dissemination of multi-day operational and tactical plans, it is simply not practicable in the heat of an ongoing tactical engagement. Visible-band and infrared pathways present other options, as demonstrated by the varying forms of “flashing light” communications practiced over the centuries. For instance, a 21st Century flashing light that is based upon laser technologies would have the added advantage of being highly directional, as its power would be concentrated in a very narrow beam that an adversary would have to be very lucky to be in the right place at the right time to intercept. That said, visible-band and infrared systems’ effective ranges are fairly limited to begin with when used directly between ships, and even more so in inclement weather. This may be fine if a tactical situation allows for a SAG’s units to be operating in close proximity. However, if unit dispersal will often be the rule in contested zones in order to reduce the risk that an adversary’s discovery of one U.S. warship quickly results in detection of the rest of the SAG, then visible-band and infrared pathways can only offer partial solutions. A broader portfolio of communications options is consequently necessary.

It is commonly believed that the execution of strict Emissions Control (EMCON) in a combat zone in order to avoid detection (or pathway exploitation) by an adversary means that U.S. Navy warships would not be able to use any form of radiofrequency communications. This is not the case. Lower-frequency radios such as those that operate in the (awkwardly titled) High, Very High, and Ultra High Frequency (HF, VHF, and UHF) bands are very vulnerable because their transmission beams tend to be very wide. The wider a transmission beam, the greater the volume through which the beam will propagate, and in turn the greater the opportunity for an adversary’s signals intelligence collectors to be in the right place at the right time. In order to make lower-frequency radio communications highly-directional and thereby difficult for an adversary to intercept, a ship’s transmitting antennas would have to be far larger than is practical. At the Super High Frequency (SHF) band and above, though, transmission beamwidth using a practically-sized antenna becomes increasingly narrow and thus more difficult to intercept. This is why the Cold War-era U.S. Navy designed its Hawklink line-of-sight datalink connecting surface combatants and the SH-60B helicopter to use SHF; the latter could continually provide sonarbuoy, radar, or electronic support measures data to the former—and thereby serve as an anti-submarine “pouncer” or an anti-ship scout—with a relatively low risk of the signals being detected or exploited. In theory, the surface Navy might develop a portfolio of highly-directional line-of-sight communications systems that operate at SHF or Extremely High Frequency (EHF)/Millimeter-wave (MMW) bands in order to retain an all-weather voice and data communications capability even during strict EMCON. The Navy might also develop high-band communications packages that could be carried by manned or unmanned aircraft, and especially those that could be embarked aboard surface combatants, so that surface units could communicate securely over long-distances via these “middlemen.” Shipboard and airframe “real estate” for antennas is generally quite limited, though, so the tradeoff for establishing highly-directional communications may well be reduced overall communications “bandwidth” compared to what is possible when also using available communications systems that aren’t as directional. Nevertheless, this could be quite practicable in a doctrinal culture that embraces mission command and the spontaneous local tactical collaboration of ships and aircraft in a SAG.

High-directionality also means that a single antenna can only communicate with one other ship or aircraft at a time—and it must know where that partner is so that it can point its beam precisely. If a transmission is meant for receipt by other ships or aircraft, it must either be relayed via one or more “middleman” assets’ directional links to those units or it must be broadcast to them using less-directional pathways. Broadcast is perfectly acceptable as a one-way transmissions method if the broadcaster is either located in a relatively secure and defensible area or alternatively is relatively expendable.  An example of the former might be an airborne early warning aircraft protected by fighters or surface combatants broadcasting its radar picture to friendly forces (and performing as a local C2 post as well) using less-directional lower-frequency communications. An example of the latter might be Unmanned Aerial Systems (UAS) launchable by SAG ships to serve as communications broadcast nodes; a ship could uplink to the UAS using a highly-directional pathway and the UAS could then rebroadcast the data within a localized footprint. Higher-echelon commanders located in a battlespace’s rearward areas might also use broadcast to provide selected theater- and national-level sensor data, updated mission guidance, or other updated situational information to forward SAGs. By not responding to the broadcast, or by only responding to it via highly-directional pathways, receiving units in SAGs would gain important situational information while denying the adversary an easy means of locating them.

Low Probability of Intercept (LPI) radiofrequency communications techniques provide surface forces an additional tool that can be used at any frequency band, directional or not. By disguising waveforms to appear to be ambient radiofrequency noise or by using reduced transmission power levels and durations, an adversary’s signals intelligence apparatus might not be able to detect an LPI transmission even if it is positioned to do so. I would caution, though, that any given LPI “trick” might not have much operational longetivity. Signal processing technologies available on the global market may well reach a point, if they haven’t already, where a “trick” works only a handful of times—or maybe just once—and thereafter is recognized by an adversary. Many LPI techniques accordingly should be husbanded for use only when necessary in a crisis or wartime, and there should be a large enough “arsenal” of them to enable protracted campaigning.

Finally, I want to briefly discuss the importance of providing our surface force with an actionable over-the-horizon targeting picture while denying the same to adversaries. The U.S. Navy is clearly at a deficit relative to its competitors regarding anti-ship missile range. This is thankfully changing regardless of whether we’re talking about the Long-Range Anti-Ship Missile (LRASM), a Tomahawk-derived system, or other possible solutions.

It should be noted, though, that a weapon’s range on its own is not a sufficient measure of its utility. This is especially important when comparing our arsenal to those possessed by potential adversaries. A weapon cannot be evaluated outside the context of the surveillance and reconnaissance apparatus that supports its employment.

In one of my earlier published works, I set up the following example regarding effective first strike/salvo range at the opening of a conflict:

Optimal first-strike range is not necessarily the same as the maximum physical reach of the longest-ranged weapon system effective against a given target type (i.e., the combined range of the firing platform and the weapon it carries). Rather, it is defined by trade-offs in surveillance and reconnaissance effectiveness…This means that a potential adversary with a weapon system that can reach distance D from the homeland’s border but can achieve timely and high-confidence peacetime cueing or targeting only within a radius of 0.75D has an optimal first-strike range of 0.75D…This does not reduce the dangers faced by the defender at distance D but does offer more flexibility in using force-level doctrine, posture, plans, and capabilities to manage risks.[iv]

Effective striking range is reduced further once a war breaks out and the belligerents take off their gloves with respect to each others’ surveillance and reconnaissance systems. The qualities and quantities of a force’s sensors, and the architecture and counter-detectability of the data pathways the force uses to relay its sensors’ “pictures” to “consumers” matter just as much as the range of the force’s weapons.[v] Under intense electronic warfare opposition, they arguably matter even more.

For a “shooter” to optimally employ long-range anti-ship weaponry, it must know with an acceptable degree of confidence that it is shooting at a valid and desirable target. Advanced weapons inventories, after all, are finite. It can take considerable time for a warship to travel from a combat zone to a rearward area where it can rearm; this adds considerable complexities to a SAG maintaining a high combat operational tempo. Nor are many advanced weapons quickly producible, and in fact it is far from clear that the stockpiles of some of these weapons could be replenished within the timespan of anything other than a protracted war. This places a heavy premium on not wasting scarce weapons against low-value targets or empty waterspace. As a result, in most cases over-the-horizon targeting requires more than just the detection of some contact out at sea using long-range radar, sonar, or signals collection and direction-finding systems. It requires being able to classify the contact with some confidence: for example, whether it is a commercial tanker or an aircraft carrier, a fishing boat or a frigate, a destroyer or a decoy. An electronic warfare-savvy defender can do much to make an attacker’s job of contact classification extraordinarily difficult in the absence of visual-range confirmation of what the longer-range sensors are “seeing.”

A U.S. Navy SAG would therefore benefit greatly from being able to embark or otherwise access low observable unmanned systems that can serve as over-the-horizon scouts. These scouts could be used not only for reconnaissance, but also for contact confirmation. They could report their findings back to a SAG via the highly-directional pathways I discussed earlier, perhaps via “middlemen” if needed.

Likewise, a U.S. Navy SAG would need to be able to degrade or deceive an adversary’s surveillance and reconnaissance efforts. There are plenty of non-technological options: speed and maneuver, clever use of weather for concealment, dispersal, and deceptive feints or demonstrations by other forces that distract from a “main effort” SAG’s thrust. Technological options employed by a SAG might include EMCON and deceptive emissions against the adversary’s signals intelligence collectors, and noise or deceptive jamming against the adversary’s active sensors. During the Cold War, the U.S. Navy developed some very advanced (and anecdotally effective) shipboard deception systems to fulfill these tasks against Soviet sensors. Unmanned systems might be particularly attractive candidates for performing offboard deception tasks and for parrying an adversary’s own scouts as well.

If deception is to be successful, a SAG must possess a high-confidence understanding of—and be able to exercise agile control over—its emissions. It must also possess a comprehensive picture of the ambient electromagnetic environment in its area of operations, partly so that it can blend in as best as possible, and partly to uncover the adversary’s own transient LPI emissions. This will place a premium on being able to network and fuse inputs from widely-dispersed shipboard and offboard signals collection sensors. Some of these sensors will be “organic” to a SAG, and some may need to be “inorganically” provided by other Navy, Joint, or Allied forces. Some will be manned, and other will likely be unmanned. This will also place a premium on developing advanced signal processing and emissions correlation capabilities.

We can begin to see, then, the kinds of operational and tactical possibilities such capabilities and competencies might provide U.S. Navy SAGs. A SAG might employ various deception and concealment measures to penetrate into the outer or middle sections of a hotly contested zone, perform some operational task(s) of up to several days duration, and then retire. Other naval or Joint forces might be further used to conduct deception and concealment actions that distract the adversary’s surveillance-reconnaissance resources (and maybe decision-makers’ attentions) from the area in which the SAG is operating, or perhaps from the SAG’s actions themselves, during key periods. And still other naval, Joint, and Allied forces might conduct a wide-ranging campaign of physical and electromagnetic attacks to temporarily disrupt if not permanently roll back the adversary’s surveillance-reconnaissance apparatus. Such efforts hold the potential of enticing an adversary to waste difficult-to-replace advanced weapons against “phantoms,” or perhaps distracting or confusing him to such an extent that he attacks ineffectively or not at all.

The tools and tactics I’ve outlined most definitely will not serve as “silver bullets” that shield our forces from painful losses. And there will always be some degree of risk and uncertainty involved in the use of these measures; it will be up to our force commanders to decide when conditions seem right for their use in support of a particular thrust. These measures should consequently be viewed as force-multipliers that grant us much better odds of perforating an adversary’s oceanic surveillance and reconnaissance systems temporarily and locally if used smartly, and thus better odds of operational and strategic successes.

With that, I look forward to your questions and the discussion that will follow. Thank you.

Jon Solomon is a Senior Systems and Technology Analyst at Systems Planning and Analysis, Inc. in Alexandria, VA. He can be reached at jfsolo107@gmail.com. The views expressed herein are solely those of the author and are presented in his personal capacity on his own initiative. They do not reflect the official positions of Systems Planning and Analysis, Inc. and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency. These views have not been coordinated with, and are not offered in the interest of, Systems Planning and Analysis, Inc. or any of its customers.

[i] For example, see the sources referenced in my post “Advanced Russian Electronic Warfare Capabilities.” Information Dissemination blog, 16 September 2015,http://www.informationdissemination.net/2015/09/advanced-russian-electronic-warfare.html

[ii] For examples, see 1. John Costello. “Chinese Views on the Information “Center of Gravity”: Space, Cyber and Electronic Warfare.” Jamestown Foundation China Brief, Vol. 15, No. 8, 16 April 2015,http://www.jamestown.org/programs/chinabrief/single/?tx_ttnews%5Btt_news%5D=43796&cHash=c0f286b0d4f15adfcf9817a93ae46363#.Vl4aL00o7cs; 2. “Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China 2015.” (Washington, DC: Office of the Secretary of Defense, 07 April 2015), 33, 38.

[iii] CAPT Wayne P. Hughes Jr, USN (Ret). Fleet Tactics and Coastal Combat, 2nd ed. (Annapolis, MD: U.S. Naval Institute Press, 2000), 40-44.

[iv] Jonathan F. Solomon. “Maritime Deception and Concealment: Concepts for Defeating Wide-Area Oceanic Surveillance-Reconnaissance-Strike Networks.” Naval War College Review 66, No. 4 (Autumn 2013): 113-114.

[v] See my posts 1. “21st Century Maritime Operations Under Cyber-Electromagnetic Opposition, Part II.” Information Dissemination blog, 22 October 2014, http://www.informationdissemination.net/2014/10/21st-century-maritime-operations-under_22.html; and 2. “21st Century Maritime Operations Under Cyber-Electromagnetic Opposition, Part III.” Information Dissemination blog, 23 October 2014,http://www.informationdissemination.net/2014/10/21st-century-maritime-operations-under_23.html

Featured Image: Persian Gulf (Feb. 5, 2007) – Air Traffic Controller 1st Class Otto Delacruz identifies an air contact to Air Traffic Controller 1st Class Brent Watson standing watch in the ship’s helicopter direction center aboard USS Boxer (LHD 4). (U.S. Navy photo by Mass Communication Specialist Seaman Joshua Valcarcel)