Category Archives: Future Tech

What is coming down the pipe in naval and maritime technology?

The Battle of Locust Point: An Oral History of the First Autonomous Combat Engagement

Fiction Topic Week

By David R. Strachan


TOP SECRET/NOFORN

The following classified interview is being conducted per the joint NHHC/USNI Oral History Project on Autonomous Warfare. This is the first of an eight-part series with Admiral Jeremy B. Lacy, USN (Ret), considered by many to be the father of autonomous undersea warfare, where we discuss the development of the Atom-class microsubmarine, and its role in the first combat engagement of the autonomous era, the Battle of Locust Point.

November 17, 2033

Annapolis, Maryland

Interviewer: Lt. Cmdr. Hailey J. Dowd, USN


The last twenty-five years have witnessed extraordinary developments in naval warfare. Ever smaller, smarter, more lethal vehicles have revolutionized the way navies fight, and the way nations project power beyond their borders. Historians agree that the genesis of this “micronaval revolution” can be traced to the year 2016, when a disabled Russian Istina-class microsubmarine was recovered off the coast of Cape Charles, Virginia. The Chesapeake Bay Incident, as it became known, was a harbinger of things to come, for just ten weeks later, as crowds descended on Baltimore Harbor for Fleet Week and the commissioning of the U.S. Navy’s newest destroyer, USS Zumwalt (DDG 1000), Russian and U.S. microsubmarines would square off just beneath the surface in what would be the first combat engagement of the autonomous era, the Battle of Locust Point.

Historians also agree that the micronaval revolution can be traced to a single individual, an individual whose name, like Hyman Rickover, is virtually synonymous with the bold thinking that has come to define the modern U.S. Navy.

Admiral Jeremy Baynes Lacy, USN (ret.) graduated from the United States Naval Academy in 1989, earning a Bachelor of Science in Mechanical Engineering. He served at sea aboard the USS Pennsylvania (SSBN 735), USS Henry M. Jackson (SSBN 730), USS Springfield (SSN 761), and the USS Pogy (SSN 647), deploying to the North Atlantic, Arctic, and Western Pacific, as well as conducting numerous strategic patrols. Ashore, Lacy earned a Masters Degree from the Naval Postgraduate School in Naval/Mechanical Engineering, and served as Major Program Manager for Undersea Project 7, the Atom-class microsubmarine program. Following his work on the Atom-class, he established and commanded Strikepod Group (COMPODGRU) 1, eventually serving as Commander, Strikepod Forces, Atlantic (COMPODLANT). His personal decorations include the Distinguished Service Medal, the Legion of Merit (three awards), the Meritorious Service Medal (two awards), the Joint Service Commendation Medal, the Navy and Marine Corps Commendation Medal (five awards), and Navy and Marine Corps Achievement Medal (two awards), in addition to numerous unit and campaign awards.

Admiral Lacy is currently enjoying his “retirement” as the Corbin A. McNeill Endowed Chair in Naval Engineering at the United States Naval Academy. He was interviewed at his home in Annapolis, Maryland.

Would you tell us a little of your background? How did you end up in the Navy?

I was born and raised in the rural New Jersey hamlet of Port Murray, nestled among cornfields and cow pastures many people can’t believe exist the Garden State. My mother was a secretary at the local elementary school, and my father managed a printing plant just outside New York City. He grew up dirt poor on a farm in New Hampshire without a whole lot of options, so he enlisted in the Navy the day after he graduated from high school. After basic, he ended up in crypto school in California, then a Naval Security Group detachment in Turkey where he eavesdropped on Soviet communications. When I was little he used to make these veiled references here and there to his time in the service, but he never elaborated on anything. He took his secrecy oath very seriously, and it wasn’t until the mid 80s, when I was a curious teenager, that he felt comfortable opening up about what he did. I was totally captivated by the stories he would tell, and the meaning that the work gave him. As luck would have it, I was a pretty good student, and managed to get accepted to the Academy. Fast forward four years and I’ve got a degree in mechanical engineering, and five years of submarine service waiting for me.

Why did you choose submarines?

Never in a million years did I expect to end up choosing submarines. It was the time of Top Gun, and boy I was gonna fly jets! But during my summer service orientation I went for a cruise on the Nebraska, and that was it. I was hooked, and fifteen months later I’m on the Pennsylvania for my junior tour.

Would you say it was the submarine service that spurred your interest in unmanned vehicles?

Oh, definitely. When I was on the Pogy we worked with some very early prototypes sent up from [Naval Undersea Warfare Center] Newport for arctic testing. Nothing too sexy – ocean survey, bathymetry. But I guess at that time I was intrigued with the idea, and started imagining the possibilities, the implications. What if these things could think for themselves? What if they were weaponized?  And what if the bad guys had them? After my tour on Pogy, I ended up at the Naval Postgraduate School working on my masters, and actually wrote my thesis on UUVs – a survey of current architecture, an examination of future technologies and how these could be leveraged for unmanned systems, and how UUVs could be integrated into fleet operations.

Legend has it DOD wanted to classify it.

[Laughs] Well, not really. It was nothing more than a skillful integration of open sources, some analysis, and extrapolation. It did manage to attract some interest, though.

From ONR? DARPA?

Well, actually it was the folks at Newport who reached out to me initially. My advisor at NPS was friendly with the CO there, and at the time – around early 1999 – they were working with APL, SPAWAR, and some other folks on crafting the Navy’s UUV master plan. So they called me up, asked if I’d like to come aboard, and next thing I know I’m on a plane to Rhode Island.

What was your contribution to the 2000 UUV Master Plan?

Well, by the time I entered on duty, the bulk of the heavy lifting was pretty much complete. But I did manage to contribute some perspective on the vision, CONOPS (especially in ASW), as well as technology and engineering issues. But where I think I added the most value was regarding the feasibility of the SWARM [Shallow Water Autonomous Reconnaissance Modules] concept – the idea of utilizing large numbers of small AUVs to create a dynamic, autonomous sensor grid for wide area mine countermeasures.

Was the SWARM concept a precursor to the Strikepod?

Conceptually, yes. It was an early articulation of an undersea battle group, the idea of numerous autonomous vehicles cooperating together to complete a mission. But while the idea was entirely feasible, I felt that SWARM was rather narrow in its scope. As an MCM platform, I suppose it made sense, with scores of small, relatively inexpensive nodes spread across hundreds of square miles, air dropped from B-2s or Hornets. But what we needed was an entirely new class of vehicle that was flexible, adaptive, and capable of carrying out multiple missions, whether in networks of two or two thousand. So, then, I guess you could say that SWARM inspired both Strikepods and the Atom-class submarine, but for different reasons.

Can you talk about how the Atom-class program originated, and how the Strikepod concept evolved?

I’d been having discussions with some of the Newport and MIT folks while working on the Master Plan, and we were all pretty much in agreement on the core elements of a UUV pod structure – connectivity, redundancy and expendability. We were also in agreement that small is beautiful, if you will, but all of the work on miniaturization was being done in the universities. Long story short, not only did ONR find the funding, but agreed to bring the university people on board, and next thing we have a lovely, windowless compartment in the basement of the Navy Lab. And we had a nice, nondescript name: Undersea Project 7.

It was an exciting time, and it was a genuine privilege working with some of the brightest minds around, people who could have easily been making five times their salaries at Google, or JP Morgan. 

The technology was complex, and the work could be pretty tedious. Lots of highs and lows – two steps forward one step back. For some of the top brass it was hard to justify the expense, pouring all that money into a system that seemed unnecessarily complicated, and, for them, pure science fiction. Do we really need roaming schools of killer fish? Don’t forget, these were guys who came from the era of SOSUS. But that’s what we were offering – and more. A smart SOSUS that could be deployed anywhere, at any time.

We envisioned three variants – one for command & control, or what we called the Rogue, one for navigation and communications, which we called the Relay, and a third that could physically attach itself to vessels, mines, infrastructure. This we called the Remora. Together they could be organized in networks of any size, undersea strike groups capable of communicating with each other and, via the Relay, surface assets and ashore bases.

The Atom-class was under development for nearly fifteen years. Were you at all aware of what was happening with adversary developments, and did that play a role in the design?

Absolutely, and somewhat.  Over time, I became increasingly involved with the intelligence side of things – collection guidance, and analysis. There came a point where I was ping-ponging pretty regularly between Carderock and Suitland, especially by the late 2000s when we were really stepping up our efforts. We were well aware of Chinese interest in unmanned systems, and around 2010 we started receiving reports about the Shāyú program. We were also keeping close tabs on some tech transfer between North Korea and Iran, something reminiscent of their Yono and Ghadir cooperation. There was a real sense of urgency, that we needed to be out-innovating and out-classing our adversaries if we were going to stay ahead of the curve. But we believed strongly in the Atom and Strikepods, and while it was important to know what the other guys were up to, we didn’t let it distract us from our own vision.

The most intriguing stuff was the HUMINT coming out of Rubin [Central Design Bureau for Marine Engineering] – concerning a Project S3, or “Istina” – references to unmanned systems, miniaturization, and a breakthrough in energy production. And then there were reports of Russian vessels showing up unexpectedly during our boomer patrols. They seemed to just know where we were. The counterintelligence guys were in overdrive – this was eerily familiar to the red flag that plagued Richard Haver before the Walker ring was exposed. So we couldn’t just stand there and scratch our heads. But everything checked out internally. So, if there was no security breach, then, how could they know?

So, I started compiling data, and mapped it all out. CIA and DIA both believed it could be evidence of a non-acoustic sensor of some kind, and while this was certainly plausible, the evidence was mostly hearsay. We had imagery of SOKS sensors, and journal articles, and public statements by high ranking officials, but no hard data to substantiate the existence of a viable, working platform. We were, however, receiving quality product on the Istina program that suggested the Russians had developed some kind of miniaturized naval platform capable of lurking silently off Groton or King’s Bay, then trailing our boats to expose their positions to the Russian Fleet.

But you couldn’t sell it?

[Laughs] Well, no, which, admittedly, was pretty frustrating. But something that gets lost in all the scandals and the slanted reporting is the commitment to analytic rigor that permeates the intelligence community. These folks understand that their work has a direct impact not only on U.S. policy, but ultimately on human lives. The difference between right and wrong can mean the difference between life and death, and they carry that burden every day. So, no, I couldn’t sell it. And it was back to the drawing board.

And then Cape Charles happened.

And then Cape Charles happened.

Can you tell us about that day?

I remember it like it was yesterday. It was a Saturday morning, one of those heavy, dewy August mornings in D.C. I was out getting in my run before the heat of the day, when I get a call from Chandra [Reddy, the ONI liaison for Undersea Project 7]. He tells me I need to come in to the office. We were working weekends pretty regularly, but I’d blocked out that day for a round of golf with my dad. I kindly remind him of this, and all he says is, “Jay – we’ve got something.” An hour later I’m on an SH-60 out of Andrews with Chandra and four engineers from S&T, tracking the Potomac out to the Bay. 

They briefed me enroute. Apparently the Coast Guard in Cape Charles, Virginia got a call around 7:30 that morning from a fisherman about a mile off the coast who said he came across something that “looked military.” They send out an RB-M, and bring back what they believe is a U.S. Navy prototype submersible. They phone it in, and ninety minutes later we’re putting down on a grassy airfield in the middle of nowhere, where we’re greeted by an earnest seaman recruit who proceeds to leadfoot it all the way to the station.

It was being kept in a back room, sitting on a table under a blue tarp. When I first saw it, I thought it was just a radio-controlled sub, like someone’s weekend garage project had gone astray. It was basically a miniaturized Oscar II, maybe six or seven feet long, which I suppose shouldn’t be surprising, since the Oscar was built for capacity, and why go to the trouble of designing and developing a whole new hull form when you can just miniaturize one that’s already in the inventory? 

We didn’t know how long it had been disabled, or if the Russians were even aware. We did know that the [Vishnya-class intelligence ship] Leonov had been lurking offshore, and there were a couple of fishing boats we were keeping an eye on near Norfolk, but for all we knew the handlers were right nearby, somewhere on shore. We had to assume they would come looking, so we had to act quickly.

We cracked it open and took a look right there on the table. The guys from S&T were like pathologists, very careful and thorough. One of them had a video camera, which I eventually realized was patched in to the White House Situation Room. 

I don’t think I need to tell you that the intelligence value was immeasurable, a holy grail. It confirmed, of course, what I’d been speculating all along, but it also showed us just how far along the Russians were. The propulsion system alone was a quantum leap for them, and was very similar to what we had been developing for the Atom.

Too similar?

I’d say strikingly similar. Maybe alarmingly so. But there was so much information floating around in the public domain – academia, scientific journals – so much private sector R&D going on, the design could have originated anywhere. For sure there was plenty for the counterintelligence guys to lose sleep over, but at that moment we had bigger fish to fry.

Did you bring it back to Washington for further analysis?

Well, actually, no.

You see, during the autopsy, one of the tech guys notices something – a small explosive charge right against the hull, wired to the CPU. The damn thing had an autodestruct! It was right out of Mission Impossible, but it obviously had failed to activate. We’d been toying with just such an idea for the Atom-class – a small blast to punch a hole in the hull and allow it to disappear into the depths, then ping like a black box for eventual retrieval.

Chandra’s on the secure phone, presumably with the Situation Room, when he turns to me, pointing at the Istina. “They want us to blow it,” he says. “They want us to put it back.” Immediately I think – are they crazy? This is the biggest intelligence haul since K-129, and they want to just dump it?  But then I realize – of course!  The Bay is shallow enough that if the Russians come calling, they will expect to find it, and if they can’t, they’ll have to assume we did. We needed them to believe we were clueless, so we had to let them find it. That way they’d never know what we knew.

So we closed it up, drove it back out into the Bay, and scuttled it.

Was it then that the President authorized Operation Robust Probe?

The biggest question on everyone’s mind was: Is this an isolated penetration, or is it part of a larger operation? Prudence required that we take action to sanitize the Bay, so yes, Robust Probe was ordered, and the Navy immediately mobilized.

But as urgent as the situation was, there was also a need for discretion. We couldn’t exactly fill the Chesapeake Bay with destroyers. Even an increased presence of Coast Guard or small patrol craft would likely not go unnoticed, at least by the Russians. So, within hours the Navy had cobbled together a flotilla of private watercraft manned by cleared contractors and sailors in civies. They fanned out across the Bay, banging away with dipping sonar, fish finders, and whatever they could use.

Fortunately, we’d been putting Alpha, the first operational Strikepod, through its paces, and had been having a lot of success. So we fast-tracked sea trials, put a crew together, rigged up a mobile command post – the very first Strikepod Command – in what looks like a plain T.V. news van, and we’re in business. 

Within twenty-four hours Alpha had detected another Istina lurking just off Thomas Point Light. It was an odd mixture jubilation – knowing that the Atom-class was a success – and dread, the weight of knowing of what was at hand, that the Russians had not only designed, developed and deployed a sophisticated micro AUV, but they were using it to brazenly violate our territorial waters.

Was there any other reaction from the White House?

The President immediately convened the National Security Council, and, yes, yours truly was ordered to attend and provide the briefing. He was not happy. How did we not see this coming? I explained how we were aware of Russian efforts, but that our coverage had been spotty. And there were no indications that the Russians were on the brink of deploying a new vehicle to the fleet, much less inserting it into U.S. territorial waters. 

I remember how surreal it felt, sitting there in the Situation Room, the looks on the faces around me. 

Fear?

Not fear. More like a mixture of deep concern and disbelief as if no one could wrap his head around the fact that this was actually happening. And I think everyone in that room knew that things were about to change, that all of our theorizing, prognosticating, and preparing for the future of naval warfare was coming to a head. The future had arrived, right in our back yard. 

The prevailing opinion in the room was that we should move immediately to destroy it and contact the Russian government. The guys from CIA made a compelling argument for restraint – one with which I concurred – that this was more an opportunity than a threat. There was no reason to believe this was Russia’s opening move against the United States, and that if anything it was the latest example of resurgent Russian bravado and Putin’s longing for the Cold War days. This was an opportunity to gather as much intelligence as possible on a new foreign weapons platform. But there was also concern that, if weaponized, the Istinas could be used to stage a terror attack and sow further insecurity and political unrest in the United States. In the end, though, we managed to convince the President to hold off, but if at any point it was determined that there existed a threat to life or property, we would have to destroy it.

Did you personally have any theories as to its intentions?

Not many. There was Aberdeen [Proving Ground]. Theoretically an Istina could get in close enough to extract some SIGINT or MASINT, depending on the vehicle’s sensor capabilities. But who really knew? Maybe the Russians were just interested in ship spotting, or counting crabs.

And then it just kind of hit me. It was September – the following month was Fleet Week in Baltimore. The Navy would be showcasing its wares –warships, the Blues – which normally wouldn’t be such a big deal, except there was something else that year.

Zumwalt? 

Exactly. Zumwalt was on the agenda that year for commissioning. She’d be sailing up the Bay, and then docked for several days at Locust Point. We weren’t concerned with an Istina attacking Zumwalt, per se, but we knew that there was much to be had intelligence-wise. And while we had no desire to enable a Russian intelligence operation, we also wanted to collect as much as possible of our own.

When we examined the Istina in Cape Charles, we didn’t discover a warhead of any kind, so we assumed any others wouldn’t be weaponized either. And even if they were, it was unlikely that a single Istina could inflict any meaningful damage on an armored warship, unless the Russians had managed to develop a super compact, high yielding explosive, but there was no intelligence indicating such. Perhaps a group of Istinas detonating simultaneously could cause a problem, enough to raise some eyebrows or even provoke a crisis, but it would take dozens to equal the yield of even a single torpedo.

It was a delicate, rapidly unfolding situation that was unlike anything we’d ever experienced in the modern era. Of course, we’d ventured into Soviet waters in manned submarines during the Cold War, at great risk to both human life and the delicate balance that defined the Cold War. But had Parche or Halibut been detected or attacked and sunk during Ivy Bells, it would have provoked a political crisis that may well have triggered World War III. Were the stakes just as high now? It was anyone’s guess.

Were you able to deploy additional Strikepods?

Yes. Alpha had been working like a charm, but then abruptly it loses contact with the Istina as it moves under a passing tanker, which was of course disappointing, but not entirely unexpected. In the meantime, we’d deployed two more six-ship Strikepods – Beta to cover the central Bay, and Gamma the southern region. It was a lot of territory to cover, but that constituted the sum total of our Atom-class fleet at the time. There were eight currently in various stages of production, but it would be at least a day or two before we could deploy them.

Pretty soon we get word that Gamma has detected something down near Bloodworth Island.  At first we figured we’d reacquired the original, but an analysis of the acoustic data revealed that it was actually a new vehicle. It was alarming, for sure, knowing that there were now at least two Russian microsubmarines lurking in the Chesapeake Bay.

We tracked it for about two days, and then Beta manages to reacquire Istina number one. About twelve hours later, Alpha detects not one, but two more right at the mouth of the Patapsco River. That’s when everyone’s hackles went up. This was no longer a counterintelligence operation. 

Operation Robust Probe becomes Robust Purge?

Correct. Once we realized that we were dealing with at least four Istinas in the Bay, and they were lingering in Zumwalt’s path, the time for just being sneaky was over. We needed to at the very least disrupt, if not outright destroy them. 

By now the eight new Atoms have come off the line, so we fit them each with a makeshift warhead of C4, designate them Remoras, and deploy them immediately – four for Alpha, which was now tracking two separate targets, and two each for Beta and Gamma. They would only be employed if we felt that there was an immediate threat to life or property.

In the meantime, Zumwalt, Leyte Gulf, and Jason Dunham, and the other ships arrive, and as they transit the Bay, the Istinas take up position about 500 meters astern. Once the ships turn into the Patapsco, though, they back off and assume a position just outside the mouth of the river. They linger there for about twelve hours, until we get a burst from Alpha: One of the Istinas is headed up river.

So now we have a decision to make. Alpha is tracking two separate vehicles. Do we order Alpha to pursue, and break off contact with one of them? Turns out Sea Rays and Boston Whalers aren’t particularly effective ASW platforms, and Strikepods Beta and Gamma were both busy with their own tracks, well to the south, too far away to assist Alpha in time.

Then one of our brilliant engineers suggests splitting Alpha pod. We could repurpose one of the Remoras as a Rogue, and assign it an armed Remora and a Relay for coms. The engineers get on it, and in about fifteen minutes a small splinter pod breaks off and starts trailing the Istina up the Patapsco.  Things get increasingly tense as it nears the Key Bridge, and we decide that if the Istina begins moving toward the bridge supports, we would have no choice but to destroy it.

After a few anxious moments it passes under the bridge without incident, and continues on a path toward Locust Point, where the warships are docked. Word comes down from the Sit Room: The Istinas now present a clear and present danger, so immediately we order the splinter pod to attack. A minute later a Remora detonates about five meters below the surface, and we watch as it and the Istina disappear from the tactical display. Beta and Gamma attack as well, sending their respective contacts, as well as two Remoras, to the bottom of the Bay.

And just like that it was over?

It was over.

The Strikepods and surface vessels continued to prosecute Robust Purge until Zumwalt and the other ships made it safely to the Atlantic. By all accounts, Baltimore Fleet Week, including the commissioning of the Navy’s newest destroyer, came off without a hitch. No one had any idea that the first decisive battle of a new era in naval warfare had just occurred within throwing distance of Fort McHenry.

What were the takeaways?

Well, we had terabytes of data to analyze, of course, but perhaps even more importantly, there were myriad political, security, and even philosophical questions to consider. What exactly were AUVs? Were they vessels? Weapons? In a way they were like spies, but rather than round them up and expel them, or put them in jail, we’d have to disrupt them, or even kill them.

Perhaps the biggest takeaway, though, was the realization that a new form of conflict was dawning. Submarines had of course always been characterized by stealth and secrecy, and had engaged in high risk cat-and-mouse games in order to stay ahead of the adversary. But now that submarines were unmanned, and, like their stealthy manned cousins, operated far from the prying eyes of the public, a kind of limited war was now possible, a war with little or no risk of escalation, or political fallout, and most importantly, no loss of human life. A war characterized by secrecy, anonymity, and non-attribution.

In other words, as we sit here today in my living room, in the year 2033, with the benefit of hindsight, our vision of AUVs as merely an extension of the Fleet’s eyes and ears was really rather primitive.

And only the beginning of the story.

[End Part I]

David R. Strachan is a writer living in Silver Spring, MD. His website, Strikepod Systems, explores the emergence of unmanned undersea warfare via real-time speculative fiction. Contact him at strikepod.systems@gmail.com.

Featured Image: Arctic Sub Base by Jon Gibbons (via Deviant Art)

To Rule the (Air)Waves

By Tim McGeehan and Douglas Wahl

A new domain of conflict emerges as America transitions onto a wartime footing. Military, commercial, and private interests debate how to balance security, privacy, and utility for new technology that unleashes the free-flow of information. The President issues Executive Orders to seize and defend the associated critical infrastructure for exclusive government use for the duration of the conflict.

This is not the plot for a movie about a future cyber war, nor is it a forecast of headlines for late 2017; rather, the year was 1917 and the “new” technology was wireless telegraphy.

Long before anyone imagined WiFi, there was wireless telegraphy or simply “wireless.” This revolutionary technology ultimately changed the conduct of war at sea, making the story of its adoption and wartime employment timely and worthy of re-examination. While these events took place last century, they inform today’s discussion as the U.S. Navy grapples with similar issues regarding its growing cyber capabilities.

Wireless Unveiled

In 1896, Guglielmo Marconi filed the first patent for wireless telegraphy, redefining the limits of long range communication.1 Wireless quickly grew into a means of mass dissemination of information with applications across government, commerce, and recreation. The Russo-Japanese War of 1904-5 provided a venue to demonstrate its wartime utility, when Japanese naval scouts used their wireless to report critical intelligence concerning the Russian Fleet as it sailed for Tsushima Strait. This information allowed the Japanese Fleet to prepare a crippling attack on the Russians and secure victory at sea.2 

People came to believe that wireless communication was not only invaluable, but invulnerable, as described in 1915 by Popular Mechanics: “interference with wireless messages… is practically impossible. Telegraph wires and [submarine] cables may be cut, but a wireless wave cannot be stopped.”3

Naval Implications

Command and Control

Wireless profoundly impacted command and control (C2) at sea. Traditionally, on-scene commanders exercised C2 over ships in company via visual signals; once over the horizon, units relied on commander’s intent. Wireless changed this paradigm. By enabling the long-distance flow of information, wireless allowed a distant commander to receive reports from and issue orders to deployed units in real time, increasing a commander’s situational awareness (SA) and extending their reach. A 1908 newspaper article even referred to the Royal Navy’s wireless antenna at the Admiralty building as the “Conning Tower of the British Empire,” and that the First Sea Lord, “as he sits in his chair at Whitehall,” can “survey the whole area of possible conflict and direct the movements of all the fleets with as much ease as if they were maneuvering beneath his office windows.”4

While wireless did improve communication, it did not achieve harmony between the Fleet and its headquarters. A second 1908 article appeared with a self-explanatory title: “Fleet Commanders Fear Armchair Control During War by Means of Wireless.”5 Much as today, officers considered increased connectivity a mixed blessing; they appreciated the information flow but feared interference with their ability to command.6

Vulnerabilities and Opportunities

While wireless increased SA, it introduced new vulnerabilities. The discipline of Signals Intelligence grew with the ability to intercept communications from adversary ships. While Marconi claimed to have a secure means of transmission, this was quickly disproven in the 1903 “Maskelyne Affair,” when a wireless competitor hijacked Marconi’s public demonstration and transmitted an obscene Morse code message that was received in front of Marconi’s audience.7  This “spoofing” foreshadowed similar episodes in World War I (WWI) where false messages were sent by adversary operators impersonating friendly ones.8

Militaries understood the vulnerabilities of wireless even before the outbreak of WWI. The day after declaring war on Germany, the British cut five German undersea telegraph cables. This action degraded the Germans’ long-distance communications capability and forced them to rely on less secure wireless transmissions, which were vulnerable to interception.9

While the “internals” (content) of these signals held strategic value by revealing an adversary’s plans and intentions, the “externals” (emission characteristics) held tactical value. With the advent of direction finding (DF) capabilities, friendly units could locate transmitting adversary platforms (to include a new menace, the submarine). When combined with known locations of friendly units (self-reported by wireless), these positions provided a near-real time common operating picture (COP).

Mitigations and Countermeasures

Ships could mitigate some vulnerability by maintaining radio silence to deny adversary DF capabilities. A complementary tactic was the adoption of Fleet broadcasts, with headquarters transmitting to all units on a fixed schedule (analogous to today’s Global Broadcast System).10 This “push” paradigm allowed ships to passively receive information, vice having to transmit requests for it (and risk disclosing their location to adversary DF).

In 1906, The Journal of Electricity, Power, and Gas described early countermeasures, specifically jamming techniques, where in “war games one Fleet has kept plying its wireless apparatus incessantly thereby blocking the signals of its opponents until it has passed clear.”11 It analyzed the ‘recent’ Russo-Japanese War, noting that while Russian ships sortied from Port Arthur, “the powerful station on shore began to grind out the Russian alphabet, thus paralyzing the weaker [wireless] outfits of the Japanese pickets.”12 It criticized the Russians for not continually transmitting on their wireless to interfere with the Japanese scouts reporting on their position in the run up to Tsushima Strait.13 In 1915, Popular Mechanics even described how to counter jamming, by “making frequent changes of wave length at known intervals,” a practice known today as “frequency hopping.”14

Wireless, WWI, and the U.S. Navy

On the day America entered WWI, President Wilson issued Executive Order (EO)-2585, which directed “radio stations within the jurisdiction of the United States as are required for Naval communications shall be taken over by the Government…and furthermore that all radio stations not necessary to the Government of the United States for Naval communications, may be closed.”15 The New York Times ran the headline “GOVERNMENT SEIZES WHOLE RADIO SYSTEM; Navy Takes Over All Wireless Plants It Needs and Closes All Others.”16 Weeks later EO-2605A went further and directed the removal “all radio apparatus” from stations not required by the Navy.17 In addition, EO-2604 titled “Censorship of Submarine Cables, Telegraph, and Telephone Lines” gave the Navy additional authority over all submarine cables and the Army authority over all telegraph and telephone lines.”18 Thereafter, the military controlled all means of telecommunication in the United States.

Secretary of the Navy (SECNAV) Daniels had provided rationale for wireless seizure in 1916, when he explained that “control of the Fleet requires a complete and effective Naval radio system on our coasts” and instances of “mutual interference between the Government and commercial stations, ship, and shore, are increasing.”19 He saw no way to resolve the issue “except by the operation of all radio stations on the coast under one control” (the Navy).20

Class in session, at the Wireless School at the Washington Navy Yard, D.C. December 1904. Note schematic diagram on blackboard, and apparatus in use. (Naval History and Heritage Command)

Officials prohibited foreign ships in U.S. ports from using their wireless, sealed their transmitters, and sometimes even removed their antennae. The government shut down amateur operators altogether. Two years earlier, The Journal of Electricity, Power, and Gas opined the “Government would have a tremendous task on its hands if an attempt should be made to dismantle all privately-owned stations, as more than 100,000 of them exist.”21 Nonetheless, that is exactly what happened.

Federal agents worked to track down and secure unauthorized wireless sets and their rogue operators. The Navy assigned operators at newly commissioned “listening-in stations” to monitor signals in specific frequency bands for their geographic area.22 When a suspicious signal was detected, multiple stations triangulated the transmitter and “Naval investigators would immediately [be dispatched to] reach the spot in fast automobiles.”23 The Electrical Experimenter featured a series about a “radio detective” who worked tirelessly to hunt down wireless operators. The detective described false alarms, but also the genuine discovery of hidden antennae disguised as clotheslines, tracing wires to buildings, and catching rogue operators and foreign agents.24

It is worthy to note that even after seizing control of the wireless enterprise, the government recognized the economic impact of wireless and therefore directed the Navy to continue passing commercial traffic. In 1917, SECNAV Daniels reported that the Navy made a profit providing this service and submitted $74,852.59 to the Treasury.25

Comparisons

The wireless actions of 1917 projected into cyber actions of 2017 would be analogous to the Navy seizing control of the Internet, passing traffic on behalf of commercial entities (for profit), censoring all email, and establishing domestic monitoring stations with deployable teams to round up hackers. The backlash would be epic.

However, rebranding the story with different terminology makes it palatable. In 1917, the Navy “seized control of the spectrum” by operating all wireless infrastructure as a “warfighting platform,” thus ensuring it was “available, defendable, and ready to deliver effects.” Censoring traffic and closing unnecessary stations (and private sets) was “reducing the attack surface.”  Navy listening stations “conducted tailored Signals Intelligence” to detect enemy activity. This language should all sound familiar to Navy cyber personnel today, as “Operate the Network as a Warfighting Platform,” “Deliver Warfighting Effects through Cyberspace,” and “Conduct Tailored Signals Intelligence” are all goals extracted from the U.S. Fleet Cyber Command/TENTH Fleet (FCC/C10F) Strategic Plan.26 Like wireless, cyber capabilities are key to ensuring the flow of information, building a COP (associated FCC/C10F goal: “Create Shared Cyber Situational Awareness”), and enabling C2. While a crack team of Sailors might not jump into a “fast automobile” to hunt down an unauthorized Internet hotspot, the function is analogous to Cyber Protection Teams (CPTs) responding to intrusions on the DoD’s network.27 

While security partnerships between government and industry still exist, there are significant differences from 1917’s arrangements. The Navy could not seize control of the entire Internet as it did with all wireless capability in 1917. Wireless was in an “early adopter” phase and did not impact daily life and commerce to the extent of today’s Internet. Likewise, given the volume of email and internet traffic, censorship on the scale of 1917 is not feasible – even  if it was legal. Finally, while the Navy passing commercial traffic during WWI seems unusual now, the Navy actually had been routinely handling commercial traffic since 1912, when the Act to Regulate Radio Communication required that it “open Naval radio stations to the general public business” in places not fully served by commercial stations.28 That act effectively required the Navy to establish a commercial entity (complete with accounting) to oversee all duties of a commercial communication company; today this would essentially mean operating as an Internet Service Provider.29 In 1913, Department of the Navy General Order #10 opened all Naval ship communications to public business while in port; today’s Navy will most likely not turn its shipboard communications systems into public WiFi hotspots.30

Information Systems Technician 3rd Class John Erskine, Chief Information Systems Technician Jennifer Williams, Cryptologic Technician (Networks) 2nd Class Tyrone Fuller, and Information Systems Technician 2nd Class Amanda Kisner work together to assess the security of the computer networks aboard the aircraft carrier USS George H.W. Bush (CVN 77). (U.S. Navy photo)

The wireless story is also a cautionary tale. Even after the war was over, the Government did not want to relinquish control of the airwaves. Among multiple Executive Branch witnesses, SECNAV Daniels testified to Congress that “radio communications stands apart because the air cannot be controlled and the safe thing is that only one concern should control and own it” (the Navy).31 The President voiced his support, spurring headlines like “Wilson Approves Making Wireless a Navy Monopoly.” However, industry applied political pressure and successfully lobbied to restore wireless to commercial and private use in 1919.32 

Takeaways

It is tempting to think that this story is about technology. However, the most important lessons are about people. The final goal in today’s FCC/C10F Strategic Plan is to “Establish and Mature Navy’s Cyber Mission Forces”; the Navy of 1917 had similar challenges developing a workforce to exploit a new domain. Some of their approaches are applicable today (indeed, the Navy is already pursuing some of them):

  • The Navy of 1917 leveraged outside experience by strategically partnering with industry and amateur organizations to recruit wireless operators. In 1915, with war looming, the Superintendent of the Naval Radio Service foresaw a dramatic increase in the requirement for radio operators. He contacted wireless companies to request that they steer their employees towards obligating themselves to Government service in the event of war – the companies enthusiastically complied. He also contacted the National Amateur Wireless Association, which shared its membership rosters. By 1916, it had chapters organized to support their local Naval Districts and helped form the Naval Communication Reserve the following year.33 Patriotic amateurs even petitioned Congress to allow them to operate as “a thousand pair of listening ears” to monitor wireless transmissions from Germany.34  Today the opposite of 1917 happens, where the Navy loses trained, experienced personnel to contractors and commercial enterprise. While the Navy creates its own cyber warriors, it should continue tapping into patriotic pools of outside talent. Deepening relationships with companies by expansion of programs like “Tours With Industry” could help attract, train, and retain cyber talent.
  • The Navy established a variety of demanding training courses for wireless operators. One of the Navy’s earliest courses had non-trivial prerequisites (candidates had to be “electricians by trade” or have similar experience), lasted five months, and was not an introductory but rather a “post-graduate” course.35 Later, a growing Fleet and requirements for trained radiomen necessitated multi-level training. The Navy established radio schools in each Naval District to provide preliminary training and screen candidates for additional service. In 1917, it established a training program at Harvard. These programs provided the Navy over 100 radio operators per week in 1917 and over 400 per week by 1918.36  Today’s Navy should continue expanding its portfolio of cyber training courses to more fully leverage academia’s facilities and expertise.
Recruiting Poster: “What the Navy is Doing: Live and Learn” Showing students in the Navy radio wireless school, at Great Lakes Illinois, circa 1919. (Naval History and Heritage Command)
  • During the war, the Navy looked past cultural differences (and indiscretions) when drawing personnel from non-traditional backgrounds. The “wireless detective” described rogue wireless operators as “being of a perverse turn of mind,”37 and “a reckless lot – at times criminally mischievous.”38 However, the Navy leveraged these tendencies and employed former amateurs “who were familiar with the various tricks anyone might resort to in order to keep their receiving station open” to hunt secret wireless apparatus.39 Today’s cyber talent pool may not look or act like traditional recruits; however, they possess skills, experience, and mindsets critical to innovation. The Navy should weigh traditionally disqualifying enlistment criteria against talent, capability, and insight into adversarial tactics.
  • The Navy of 1917 offered flexible career paths to recruit skilled operators. Membership in the Naval Communication Reserve only required citizenship, ability to send/receive ten words per minute, and passing a physical exam.40 New members received a retainer fee until they qualified as “regular Naval radio operators” when their salary increased. There was no active duty requirement (except during war) and a member could request a discharge at any time.41 Today’s Navy should continue expanding flexible career paths allowing skilled cyber professionals to enter and exit active duty laterally (vice entering at the bottom and advancing traditionally).

Conclusion

There are several parallels between the advent of “wireless” warfare last century and today’s cyber warfare. In modern warfare, cyber capabilities are potential game changers, but many questions remain unanswered on how to best recruit, employ, and integrate cyber warriors into naval operations. Like wireless in 1917, it is easy to become focused on the technical aspects of a new capability and new domain. However, to fully wield cyber capabilities, the Navy needs to focus on the people and not the technology.

Tim McGeehan is a U.S. Navy Officer currently serving in Washington.  

Douglas T. Wahl is the METOC Pillar Lead and a Systems Engineer at Science Applications International Corporation.

The ideas presented are those of the authors alone and do not reflect the views of the Department of the Navy, Department of Defense, or Science Applications International Corporation.

References

[1] Tesla- Life and Legacy, 2004, http://www.pbs.org/tesla/ll/ll_whoradio.html

[2] Steel Ships at Tsushima – Five Amazing Facts About History’s First Modern Sea Battle, June 9, 2015, http://militaryhistorynow.com/2015/06/09/the-battleships-of-tsushima-five-amazing-facts-about-historys-first-modern-sea-battle/

[3]  G. F. Worts, Directing the War by Wireless, Popular Mechanics, May 1915, p. 650

[4] W. T. Stead, Wireless Wonders at the Admiralty, Dawson Daily News, September 13, 1908

[5] Fleet Commanders Fear Armchair Control During War by Means of Wireless, Boston Evening Transcript, May 2, 1908

[6] B. Scott, Restore the Culture of Command, USNI Proceedings, August 1915, https://www.usni.org/magazines/proceedings/2015-08/restore-culture-command ; D.A. Picinich, Mission Command in the Information Age: Leadership Traits for the Operational Commander, Naval War College, May 2013, http://www.dtic.mil/dtic/tr/fulltext/u2/a583531.pdf

[7] Lulz, Dot-dash-diss: The gentleman hacker’s 1903, New Scientist, https://www.newscientist.com/article/mg21228440-700-dot-dash-diss-the-gentleman-hackers-1903-lulz/

[8] H. J. B. Ward, Wireless Waves in the World’s War, The Yearbook of Wireless Telegraphy and Telephony, 1916, pp. 625-644, http://earlyradiohistory.us/1916war.htm

[9] Porthcurno, Cornwall: Cable Wars, May 2014, http://www.bbc.co.uk/programmes/p01wsdlh

[10] Navy’s Control of Radio a Big Factor in War, New York Herald, December 12, 1918,  http://earlyradiohistory.us/1918navy.htm

[11] H.C. Gearing, Naval Wireless Telegraphy on the Pacific Coast, Journal of Electricity, Power, and Gas, June 9, 1906, p. 309

[12] H.C. Gearing, Naval Wireless Telegraphy on the Pacific Coast, Journal of Electricity, Power, and Gas, June 9, 1906, p. 309

[13] H.C. Gearing, Naval Wireless Telegraphy on the Pacific Coast, Journal of Electricity, Power, and Gas, June 9, 1906, p. 309

[14] G. F. Worts, Directing the War by Wireless, Popular Mechanics, May 1915, p. 650

[15] Executive Order 2585, April 6, 1917,  http://www.presidency.ucsb.edu/ws/index.php?pid=75407

[16] Government Seizes Whole Radio System; Navy Takes Over All Wireless Plants It Needs and Closes All Others, The New York Times, April 8, 1917

[17] Executive Order 2605A, April 30, 1917, http://www.presidency.ucsb.edu/ws/index.php?pid=75415

[18] Executive Order 2604, April 28, 1917, http://www.presidency.ucsb.edu/ws/?pid=75413

[19] 1916 Annual Reports of the Department of the Navy, pp. 27-30

[20] 1916 Annual Reports of the Department of the Navy, pp. 27-30

[21] G. F. Worts, Directing the War by Wireless, Popular Mechanics, May 1915, p. 650

[22] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141, http://earlyradiohistory.us/1919spy.htm

[23] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141, http://earlyradiohistory.us/1919spy.htm

[24] P.H. Boucheron, A War-Time Radio Detective, lectrical Experimenter, May, 1920, pages 55, 102-106, http://earlyradiohistory.us/1920spy.htm

[25] 1917 Annual Reports of the Navy Department, p. 45

[26] U.S. Fleet Cyber Command/TENTH Fleet Strategic Plan 2015-2020, http://www.navy.mil/strategic/FCC-C10F%20Strategic%20Plan%202015-2020.pdf

[27] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141, http://earlyradiohistory.us/1919spy.htm

[28] An Act to Regulate Radio Communication, SIXTY-SECOND CONGRESS. Session II, Chapter 287, August 13, 1912, pp. 302-308, https://www.loc.gov/law/help/statutes-at-large/62nd-congress/session-2/c62s2ch287.pdf

[29] An Act to Regulate Radio Communication, SIXTY-SECOND CONGRESS. Session II, Chapter 287, August 13, 1912, pp. 302-308, https://www.loc.gov/law/help/statutes-at-large/62nd-congress/session-2/c62s2ch287.pdf

[30] 1914 Annual Reports of the Navy Department, p. 219

[31] P. Novotny, The Press in American Politics, 1787-2012, 2014, p. 82

[32] P. Novotny, The Press in American Politics, 1787-2012, 2014, p. 83

[33] L.S. Howeth, Operations  and  Organization  of  United  States  Naval  Radio  Service  During  Neutrality  Period, History of Communications-Electronics in the United States Navy, 1963, pp. 227-235,  http://earlyradiohistory.us/1963hw19.htm

[34] P. Novotny, The Press in American Politics, 1787-2012, 2014, p. 79

[35] H.C. Gearing, The Electrical School, Navy Yard, Mare Island, Journal of Electricity, Power, and Gas, May 25, 1907, p. 395

[36] G. B. Todd, Early Radio Communications in the Twelfth Naval District, San Francisco, California, http://www.navy-radio.com/commsta/todd-sfo-01.pdf

[37] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141, http://earlyradiohistory.us/1919spy.htm

[38] J. Keeley, 20,000 American “Watchdogs”, San Francisco Chronicle, January 30, 1916, http://earlyradiohistory.us/1916wat.htm

[39] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141, http://earlyradiohistory.us/1919spy.htm

[40] L.S. Howeth, Operations  and  Organization  of  United  States  Naval  Radio  Service  During  Neutrality  Period, History of Communications-Electronics in the United States Navy, 1963, pp. 227-235,  http://earlyradiohistory.us/1963hw19.htm

[41] L.S. Howeth, Operations  and  Organization  of  United  States  Naval  Radio  Service  During  Neutrality  Period, History of Communications-Electronics in the United States Navy, 1963, pp. 227-235,  http://earlyradiohistory.us/1963hw19.htm

Featured Image: Soviet tracking ship Kosmonavt Yuri Gagarin.

Harvesting the Electromagnetic Bycatch

By Tim McGeehan

Most Navy bridge watchstanders have had the experience of adjusting their surface-search radar to eliminate sea clutter or rain. In relation to the task of detecting surface ships, these artifacts represent “noise,” just as when one tunes out unwanted transmissions or static to improve radio communications.

However, information can be gleaned indirectly from unintentionally received signals such as these to yield details about the operating environment, and it may reveal the presence, capabilities, and even intent of an adversary. This “electromagnetic bycatch” is a potential gold mine for the Navy’s information warfare community (IWC) in its drive to achieve battlespace awareness, and represents a largely untapped source of competitive advantage in the Navy’s execution of electromagnetic maneuver warfare (EMW).

Electromagnetic Bycatch

The term electromagnetic bycatch describes signals that Navy sensors receive unintentionally. These signals are not the intended target of the sensors and usually are disregarded as noise. This is analogous to the bycatch of the commercial fishing industry, defined as “fish which are harvested in a fishery, but which are not sold or kept for personal use, and includes economic discards [edible but not commercially viable for the local market] and regulatory discards [prohibited to keep based on species, sex, or size].”1

The amount of fisheries bycatch is significant, with annual global estimates reaching twenty million tons.2 Navy sensor systems also receive a significant volume of bycatch, as evidenced by efforts to drive down false-alarm rates, operator training to recognize and discard artifacts on system displays, and the extensive use of processing algorithms to filter and clean sensor data and extract the desired signal. Noise in the sensor’s internal components may necessitate some of this processing, but many algorithms aim to remove artifacts from outside the sensor (i.e., the sensor is detecting some sort of phenomenon in addition to the targeted one).

U.S. and international efforts are underway to reduce fishing bycatch by using more-selective fishing gear and methods.3 Likewise, there are efforts to reduce electromagnetic bycatch, with modifications to Navy sensors and processing algorithms via new installations, patches, and upgrades. However, it is unlikely that either form of bycatch ever will be eliminated completely. Recognition of this within the fishing industry has given rise to innovative efforts such as Alaska’s “bycatch to food banks” program that allows fishermen to donate their bycatch to feed the hungry instead of discarding it at sea.4 This begs the question: Can the Navy repurpose its electromagnetic bycatch too?

The answer is yes. Navy leaders have called for innovative ideas to help meet twenty-first century challenges, and do to so in a constrained fiscal environment. At the Sea-Air-Space Symposium in 2015, Admiral Jonathan W. Greenert, then-Chief of Naval Operations, called for the Navy to reuse and repurpose what it already has on hand.5 Past materiel examples include converting ballistic-missile submarines to guided-missile submarines; converting Alaska-class tankers to expeditionary transfer docks (ESDs), then to expeditionary mobile bases (ESBs); and, more recently, repurposing the SM-6 missile from an anti-air to an anti-surface and anti-ballistic missile role.6 However, the Navy needs to go even further, extending this mindset from the materiel world to the realm of raw sensor data to repurpose electromagnetic bycatch.

Over The River and To The Moon

The potential value of bycatch that U.S. fisheries alone discard exceeds one billion dollars annually (for context, the annual U.S. fisheries catch is valued at about five billion dollars).7 Likewise, the Navy previously has found high-value signals in its electromagnetic bycatch.

In 1922, Albert Taylor and Leo Young, two engineers working at the Naval Aircraft Radio Laboratory in Washington, DC, were exploring the use of high-frequency waves as new communication channels for the Navy. They deployed their equipment on the two sides of the Potomac River and observed the communication signals between them. Soon the signals began to fade in and out slowly. The engineers realized that the source of the interference was ships moving past on the river.8 Taylor forwarded a letter to the Bureau of Engineering that described a proposed application of this discovery:

If it is possible to detect, with stations one half mile apart, the passage of a wooden vessel, it is believed that with suitable parabolic reflectors at transmitter and receiver, using a concentrated instead of a diffused beam, the passage of vessels, particularly of steel vessels (warships) could be noted at much greater distances. Possibly an arrangement could be worked out whereby destroyers located on a line a number of miles apart could be immediately aware of the passage of an enemy vessel between any two destroyers in the line, irrespective of fog, darkness or smoke screen. It is impossible to say whether this idea is a practical one at the present stage of the work, but it seems worthy of investigation.9

However, this appeal fell on deaf ears; the idea was not considered worthy of additional study. Later, in 1930, after it was demonstrated that aircraft also could be detected, the newly formed Naval Research Laboratory (NRL) moved forward and developed the early pulsed radio detection systems whose successors are still in use today.10 What started as degradations in radio communication signals (owing to objects blocking the propagation path) evolved to being the signal of interest itself. Today that bycatch is used extensively for revealing the presence of adversaries, navigating safely, and enforcing the speed limit. It is known as RAdio Detection And Ranging, or simply by its acronym: RADAR.

Notebook entry of James H. Trexler, dated 28 January 1945, showing calculations for a long-distance communications link between Los Angeles, California, and Washington, D.C., via the Moon. (Courtesy of the Naval Research Laboratory)

During World War II, Navy radar and radio receivers became increasingly sensitive and began picking up stray signals from around the world. Instead of discarding these signals, the Navy set out to collect them. The NRL Radio Division had been investigating this phenomenon since the mid-1920s, and in 1945 NRL established a Countermeasures Branch, which had an interest in gathering random signals arriving via these “anomalous propagation” paths.11 By 1947, it had erected antennas at its Washington, DC, field site to intercept anomalous signals from Europe and the Soviet Union.12 Just the year before, the Army Signal Corps had detected radio waves bounced off the moon. The convergence of these events set the stage for one of the most innovative operations of the Cold War.

NRL engineer James Trexler, a member of the Countermeasures Branch, advocated exploiting the moon-bounce phenomenon for electronic intelligence (ELINT). He outlined his idea in a 1948 notebook entry:

From the RCM [Radio Counter Measures] point of view this system hold[s] promise as a communication and radar intercept device for signals that cannot be studied at close range where normal propagation is possible. It might be well to point out that many radars are very close to the theoretical possibility of contacting the Moon (the MEW [actually BMEWS, for Ballistic Missile Early Warning System] for example) and hence the practicability of building a system capable of intercepting these systems by reflections from the Moon is not beyond the realm of possibility.13

Trexler’s idea addressed a particular intelligence gap, namely the parameters of air- and missile-defense radars located deep within the Soviet border. With an understanding of these parameters, the capabilities of the systems could be inferred. This was information of strategic importance. As friendly ground and airborne collection systems could not achieve the required proximity to intercept these particular radar signals, the moon-bounce method provided a way ahead. All that was required was for both the Soviet radar and the distant collection site to have the moon in view at the same time. What followed were NRL’s Passive Moon Relay experiments (known as PAMOR) and ultimately the Intelligence Community’s Moon Bounce ELINT program, which enjoyed long success at collecting intelligence on multiple Soviet systems.14

Around this time, the Navy grew concerned about ionospheric disturbances that affected long-range communications.15 So the service employed the new moon-bounce propagation path to yield another Navy capability, the communications moon relay. This enabled reliable communications between Washington, DC, and Hawaii, and later the capability to communicate to ships at sea.16 Thus, what started as bycatch led to a search for the sources of stray signals, revealed adversary air- and missile-defense capabilities, and ultimately led to new communications capabilities for the Navy.

Extracting the Electromagnetic Terrain

Signals in the electromagnetic spectrum do not propagate in straight lines. Rather, they refract or bend on the basis of their frequency and variations in the atmospheric properties of humidity, temperature, and pressure. Signals can encounter conditions that direct them upward into space, bend them downward over the horizon, or trap them in ducts that act as wave guides. Knowing this electromagnetic terrain is critical to success in EMW, and can prove instrumental in countering adversary anti-access/area-denial capabilities.

Variation in electromagnetic propagation paths can lead to shortened or extended radar and communications ranges. Depending on the mission and the situation, this can be an advantage or a vulnerability. Shortened ranges may lead to holes or blind spots in radar coverage. This information could drive a decision for an alternate laydown of forces to mitigate these blind spots. It also could aid spectrum management, allowing multiple users of the same frequency to operate in closer proximity without affecting one another. Alternatively, extended radar ranges can allow one to “see” farther, pushing out the range at which one can detect, classify, and identify contacts. Signals of interest could be collected from more distant emitters. However, the adversary also can take advantage of extended ranges and detect friendly forces at a greater distance via radar, or passively collect friendly emissions. Identifying this situation could prompt one to sector, reduce power, or secure the emitter.

As the weather constantly changes, so too does signal propagation and the resultant benefit or vulnerability. Understanding these effects is critical to making informed decisions on managing emitters and balancing sensor coverage against the signature presented to the adversary. However, all these applications rely on sufficient meteorological data, which typically is sparse in space and time. More frequent and more distributed atmospheric sampling would give the U.S. Navy more-complete awareness of changing conditions and increase its competitive advantage.

Luckily, Navy radar sensors already collect a meteorological bycatch. Normally it is filtered out as noise, but emerging systems can extract it. The Hazardous Weather Detection and Display Capability (HWDDC) is a system that takes a passive tap from the output of the SPS-48 air-search radar (located on most big-deck amphibious ships and carriers) and repurposes it like a Doppler weather radar.17 Besides providing real-time weather information to support operations and flight safety, it can stream data to the Fleet Numerical Meteorology and Oceanography Center in Monterey, California, to feed atmospheric models. With this data, the models can generate better weather forecasts and drive electromagnetic propagation models for prediction of radar and communications-system performance.18 The Tactical Environmental Processor (TEP) will perform the same function by extracting atmospheric data from the SPY-1 radar.19

By passively using the existing radar feeds, HWDDC and TEP provide new capabilities while avoiding additional requirements for power, space, frequency deconfliction, and overall system integration that would be associated with adding a new radar, antenna, or weather sensor. There also is the potential to extract refractivity data from the radar returns of sea clutter.20 The multitude of radar platforms in the Navy’s inventory represents an untapped opportunity to conduct “through the sensor” environmental data collection in support of battlespace awareness.

Likewise, the Global Positioning System (GPS) also collects meteorological bycatch. As GPS signals pass through the atmosphere, they are affected by the presence of water vapor, leading to errors in positioning. The receiver or processing software makes corrections, modeling the water vapor effect to compensate, thereby obtaining accurate receiver positions. However, water vapor is a key meteorological variable. If the receiver location is already known, the error can be analyzed to extract information about the water vapor, and by using multiple receivers, its three-dimensional distribution can be reconstructed.21 Instead of dumping the bycatch of water vapor, it can be (and is) assimilated into numerical weather prediction models for improved short-range (three-, six-, and twelve-hour) precipitation forecasts.22

Do Not Adjust Your Set

There is also great potential to harvest bycatch from routine broadcast signals. While a traditional radar system emits its own pulse of energy that bounces back to indicate the presence of an object, passive systems take advantage of signals already present in the environment, such as television and radio broadcasts or even signals from cell towers or GPS.23 These signals propagate, encounter objects, and reflect off. This leads to the “multipath effect,” in which a transmitted signal bounces off different objects, then arrives at the same receiver at slightly different times owing to the varied distances traveled. (This is what used to cause the “ghost” effect on television, in which an old image seemed to remain on screen momentarily even as the new image was displayed.) Variations in this effect can be used to infer the presence or movement of an object that was reflecting the signals.

In a related concept, “multistatic” systems collect these reflections with multiple, geographically separated receivers, then process the signals to detect, locate, and track these objects in real time.24 These systems have proved effective. In a 2002 demonstration, Lockheed Martin’s Silent Sentry system tracked all the air traffic over Washington, DC, using only FM radio and television signal echoes.25 More recently, another passive system went beyond simple tracking and actually classified a contact as a small, single-propeller aircraft by using ambient FM radio signals to determine its propeller rotation rate.26 This level of detail, combined with maneuvering behavior, operating profiles, and deviations from associated pattern-of-life trends, could even give clues to adversary intent.

Passive radar systems have many advantages. They emit no energy of their own, which increases their survivability because they do not reveal friendly platform location and are not susceptible to anti-radiation weapons. They do not add to a crowded spectrum, nor do they need to be deconflicted from other systems because of electromagnetic interference. The receivers can be mounted on multiple fixed or mobile platforms. Technological advances in processing and computing power have taken much of the guesswork out of using passive systems by automating correlation and identification. Moving forward, there is great potential to leverage radar-like passive detection systems.

That being said, operators of the passive radar systems described may require extensive training to achieve proficiency. Even though the systems are algorithm- and processing-intensive, they may require a significant level of operator interaction to select the best signals to use and to reconfigure the network of receivers continually, particularly in a dynamic combat environment when various broadcasts begin to go offline. Likewise, the acquisition, distribution, placement, and management of the many receivers for multistatic systems (and their associated communications links) is a fundamental departure from the traditional employment of radar, and will require new concepts of operations and doctrine for employment and optimization. These efforts could be informed by ongoing work or lessons learned from the surface warfare community’s “distributed lethality” concept, which also involves managing dispersed platforms and capabilities.27

Challenges and Opportunities

Among the services, the Navy in particular has the potential to gain much from harvesting the electromagnetic bycatch. During war or peace, the Navy operates forward around the world, providing it unique access to many remote locations that are particularly sparse on data. Use of ships provides significant dwell time on station without requiring basing rights. Navy platforms tend to be sensor intensive, and so provide the means for extensive data collection. This extends from automated, routine meteorological observations that feed near-term forecasts and long-term environmental databases to preconflict intelligence-gathering applications that include mapping out indigenous signals for passive systems to use later.28 The mobility of Navy platforms allows for multiple units to be brought to bear, scaling up the effect to create increased capacity when necessary.

However, there are many challenges to overcome. The Navy soon may find itself “swimming in sensors and drowning in data”; managing this information will require careful consideration.29 Returning to the fishing analogy, to avoid wasting bycatch fishermen need to identify what they have caught in their nets, find someone who can use it, temporarily store it, transport it back to port, and get it to the customer before it spoils. Likewise, the Navy needs to dig into the sensor data and figure out exactly what extra information it has gathered, identify possible applications, determine how to store it, transfer it to customers, and exploit it while it is still actionable.

This hinges most on the identification of electromagnetic bycatch in the first place. As automation increases, sensor feeds should be monitored continuously for anomalies. Besides serving to notify operators when feeds are running outside normal parameters, such anomalous data streams should be archived and analyzed periodically by the scientists and engineers of the relevant systems command (SYSCOM) to determine the presence, nature, and identity of unexpected signals. Once a signal is identified, the SYSCOM team would need to cast a wide net to determine whether the signal has a possible application, with priority given to satisfying existing information needs, intelligence requirements, and science and technology objectives.30 

History has shown that this is a nontrivial task; remember that the original discovery and proposed application of radar were dismissed. If the unplanned signal is determined to have no current use, it should be noted for possible future exploitation. Subsequent sensor upgrades, algorithm improvements, and software patches then should strive to eliminate the signal from future incidental collection. If there is potential value in the incidental signal, upgrades, algorithms, and patches should optimize its continued reception along with the original signal via the same sensor, or possibly even demonstrate a requirement for a new sensor optimized for the new signal. The identified uses for the electromagnetic bycatch will drive the follow-on considerations of what and how much data to store for later exploitation and what data needs to be offloaded immediately within the limited bandwidth owing to its value or time sensitivity.

The analogy to fisheries bycatch also raises a regulatory aspect. Much as a fisherman may find that he has caught a prohibited catch (possibly even an endangered species) that he cannot retain, the same holds true for electromagnetic bycatch. It is possible that an incidental signal might reveal information about U.S. citizens or entities. Once the signal is identified, intelligence oversight (IO) requirements would drive subsequent actions. Navy IO programs regulate all Navy intelligence activities, operations, and programs, ensuring that they function in compliance with applicable U.S. laws, directives, and policies.31 IO requirements likely would force the SYSCOM to alter the sensor’s mode of operation or develop upgrades, algorithms, and patches to avoid future collection of the signal.

The Role of the Information Warfare Community

The Navy’s IWC is ideally suited to play a key role in responding to these challenges. Its personnel have experience across the diverse disciplines of intelligence, cryptology, electronic warfare, meteorology and oceanography (METOC), communications, and space operations, and assembling these different viewpoints might reveal instances in which one group can use another’s bycatch for a completely different application. IWC officers now come together to make connections and exchange expertise in formal settings such as the Information Warfare Basic Course and the Information Warfare Officer Milestone and Department Head Course. Further cross-pollination is increasing owing to the cross-detailing of officers among commands of different designators. Recent reorganization of carrier strike group staffs under the Information Warfare Commander construct has increased and institutionalized collaboration in operational settings. Restructuring has trickled down even to the platform level, where, for example, the METOC division has been realigned under the Intelligence Department across the carrier force. As a net result of these changes, the IWC has a unique opportunity to have new eyes looking at the flows of sensor data, providing warfighter perspectives in addition to the SYSCOM sensor review described above.

The Navy also can capitalize on the collective IWC’s extensive experience and expertise with issues pertaining to data collection, processing, transport, bandwidth management, archiving, and exploitation. Furthermore, the different components of the IWC share a SYSCOM (the Space and Naval Warfare Systems Command, or SPAWAR); a resource sponsor (OPNAV N2/N6); a type commander (Navy Information Forces); a warfighting-development center (the Navy Information Warfighting Development Center); and a training group (the Navy Information Warfare Training Group will be established by the end of 2017). This positions the IWC to collaborate across the doctrine, organization, training, materiel, leadership and education, personnel, and facilities  (DOTMLPF) spectrum. This will support shared ideas and unified approaches regarding the employment of emerging capabilities such as the machine-learning and “big-data” analytics that will sift through future electromagnetic bycatch. Ultimately, the members of the IWC can forge a unified way forward to develop the next generation of sensors, data assimilators, and processors.

Conclusion

While the Navy might not recognize exactly what it has, its sensors are collecting significant amounts of electromagnetic bycatch. The Navy’s forward presence positions it to collect volumes of unique data with untold potential. The associated electromagnetic bycatch is being used now, previously has yielded game-changing capabilities, and could do so again with future applications. Instead of stripping and discarding it during data processing, the Navy needs to take an objective look at what it can salvage and repurpose to gain competitive advantage. The fishing bycatch dumped every year could feed millions of people; the Navy needs to use its electromagnetic bycatch to feed new capabilities. Don’t dump it!

Tim McGeehan is a U.S. Navy Officer currently serving in Washington.  

The ideas presented are those of the author alone and do not reflect the views of the Department of the Navy or Department of Defense.

[1] Magnuson-Stevens Fishery Conservation and Management Act of 1976, 16 U.S.C. § 1802 (2) (1976), available at www.law.cornell.edu/.

[2] United Nations, International Guidelines on Bycatch Management and Reduction of Discards (Rome: Food and Agriculture Organization, 2011), p. 2, available at www.fao.org/.

[3] Ibid., p. 13; Lee R. Benaka et al., eds., U.S. National Bycatch Report First Edition Update 1 (Silver Spring, MD: NOAA National Marine Fisheries Service, December 2013), available at www.st.nmfs.noaa.gov/.

[4] Laine Welch, “Gulf Bycatch Will Help Feed the Hungry,” Alaska Dispatch News, June 4, 2011, www.adn.com/; Laine Welch, “Bycatch to Food Banks Outgrows Its Beginnings,” Alaska Fish Radio, August 3, 2016, www.alaskafishradio.com/.

[5] Sydney J. Freedberg Jr., “Tablets & Tomahawks: Navy, Marines Scramble to Innovate,” Breaking Defense, April 13, 2015, breakingdefense.com/.

[6] Sam Lagrone, “SECDEF Carter Confirms Navy Developing Supersonic Anti-Ship Missile for Cruisers, Destroyers,” USNI News, February 4, 2016, news.usni.org/; Missile Defense Agency, “MDA Conducts SM-6 MRBM Intercept Test,” news release, December 14, 2016, www.mda.mil/.

[7] Amanda Keledjian et al., “Wasted Cash: The Price of Waste in the U.S. Fishing Industry,” Oceana (2014), p. 1, available at oceana.org/.

[8] David Kite Allison, New Eye for the Navy: The Origin of Radar at the Naval Research Laboratory, NRL Report 8466 (Washington, DC: Naval Research Laboratory, 1981), p. 39, available at www.dtic.mil/.

[9] Ibid, p. 40.

[10] “Development of the Radar Principle,” U.S. Naval Research Laboratory, n.d., www.nrl.navy.mil/.

[11] David K. van Keuren, “Moon in Their Eyes: Moon Communication Relay at the Naval Research Laboratory, 1951–1962,” in Beyond the Ionosphere, ed. Andrew J. Butrica (Washington, DC: NASA History Office, 1995), available at history.nasa.gov/.

[12] Ibid.

[13] Ibid.

[14] Frank Eliot, “Moon Bounce ELINT,” Central Intelligence Agency, July 2, 1996, www.cia.gov/.

[15] Van Keuren, “Moon in Their Eyes.”

[16] Pennsylvania State Univ., From the Sea to the Stars: A Chronicle of the U.S. Navy’s Space and Space-Related Activities, 1944–2009 (State College, PA: Applied Research Laboratory, 2010), available at edocs.nps.edu/; Van Keuren, “Moon in Their Eyes.”

[17] SPAWAR Systems Center Pacific, “Hazardous Weather Detection & Display Capability (HWDDC),” news release, n.d., www.public.navy.mil/; Timothy Maese et al., “Hazardous Weather Detection and Display Capability for US Navy Ships” (paper presented at the 87th annual meeting of the American Meteorological Society, San Antonio, TX, January 16, 2007), available at ams.confex.com/.

[18] Tim Maese and Randy Case, “Extracting Weather Data from a Hybrid PAR” (presentation, Second National Symposium on Multifunction Phased Array Radar, Norman, OK, November 18, 2009), available at bcisensors.com/.

[19] Hank Owen, “Tactical Environmental Processor At-Sea Demonstration,” DTIC, 1998, www.handle.dtic.mil/.

[20] Ted Rogers, “Refractivity-from-Clutter,” DTIC, 2012, www.dtic.mil/.

[21] Richard B. Langley, “Innovation: Better Weather Prediction Using GPS,” GPS World, July 1, 2010, gpsworld.com/.

[22] Steven Businger, “Applications of GPS in Meteorology” (presentation, CGSIC Regional Meeting, Honolulu, HI, June 23–24, 2009), available at www.gps.gov/; Tracy Lorraine Smith et al., “Short-Range Forecast Impact from Assimilation of GPS-IPW Observations into the Rapid Update Cycle,” Monthly Weather Review 135 (August 2007),  available at journals.ametsoc.org/; Hans-Stefan Bauer et al., “Operational Assimilation of GPS Slant Path Delay Measurements into the MM5 4DVAR System,” Tellus A 63 (2011), available at onlinelibrary.wiley.com/.

[23] Lockheed Martin Corp., “Lockheed Martin Announces ‘Silent Sentry(TM)’ Surveillance System; Passive System Uses TV-Radio Signals to Detect, Track Airborne Objects,” PR Newswire, October 12, 1998, www.prnewswire.com/; Otis Port, “Super-Radar, Done Dirt Cheap,” Bloomberg, October 20, 2003, www.bloomberg.com/.

[24] Lockheed Martin Corp., “Silent Sentry: Innovative Technology for Passive, Persistent Surveillance,” news release, 2005, available at www.mobileradar.org/.

[25] Port, “Super-Radar, Done Dirt Cheap.”

[26] F. D. V. Maasdorp et al., “Simulation and Measurement of Propeller Modulation Using FM Broadcast Band Commensal Radar,” Electronics Letters 49, no. 23 (November 2013), pp. 1481–82, available at ieeexplore.ieee.org/.

[27] Thomas Rowden [Vice Adm., USN], Peter Gumataotao [Rear Adm., USN], and Peter Fanta [Rear Adm., USN], “Distributed Lethality,” U.S. Naval Institute Proceedings 141/1/1,343 (January 2015), available at www.usni.org/.

[28] “Automated Shipboard Weather Observation System,” Office of Naval Research, n.d., www.onr.navy.mil/.

[29] Stew Magnuson, “Military ‘Swimming in Sensors and Drowning in Data,’” National Defense, January 2010; www.nationaldefensemagazine.org/.

[30] U.S. Navy Dept., Naval Science and Technology Strategy: Innovations for the Future Force (Arlington, VA: Office of Naval Research, 2015), available at www.navy.mil/.

[31] “Intelligence Oversight Division,” Department of the Navy, Office of Inspector General, n.d., www.secnav.navy.mil/.

Featured Image: ARABIAN GULF (March 4, 2016) Electronics Technician 3rd Class Jordan Issler conducts maintenance on a radar aboard aircraft carrier USS Harry S. Truman (CVN 75). (U.S. Navy photo by Mass Communication Specialist 3rd Class Justin R. Pacheco/Released)

Will Artificial Intelligence Be Disruptive to Our Way of War?

By Marjorie Greene

Introduction

At a recent Berkshire Hathaway shareholder meeting Warren Buffett said that Artificial Intelligence – the collection of technologies that enable machines to learn on their own – could be “enormously disruptive” to our human society. More recently, Stephen Hawking, the renowned physicist, predicted that planet Earth will only survive for the next one hundred years. He believes that because of the development of Artificial Intelligence, machines may no longer simply augment human activities but will replace and eliminate humans altogether in the command and control of cognitive tasks.

In my recent presentation to the annual Human Systems conference in Springfield, Virginia, I suggested that there is a risk that human decision-making may no longer be involved in the use of lethal force as we capitalize on the military applications of Artificial Intelligence to enhance war-fighting capabilities. Humans should never relinquish control of decisions regarding the employment of lethal force. How do we keep humans in the loop? This is an area of human systems research that will be important to undertake in the future.       

Self-Organization

Norbert Wiener in his book, Cybernetics, was perhaps the first person to discuss the notion of “machine-learning.” Building on the behavioral models of animal cultures such as ant colonies and the flocking of birds, he describes a process called “self-organization” by which humans – and by analogy – machines learn by adapting to their environment. Self-organization refers to the emergence of higher-level properties of the whole that are not possessed by any of the individual parts making up the whole. The parts act locally on local information and global order emerges without any need for external control. The expression “swarm intelligence” is often used to describe the collective behavior of self-organized systems that allows the emergence of “intelligent” global behavior unknown to the individual systems.

Swarm Warfare

Military researchers are especially concerned about recent breakthroughs in swarm intelligence that could enable “swarm warfare” for asymmetric assaults against major U.S. weapons platforms, such as aircraft carriers.  The accelerating speed of computer processing, along with rapid improvements in the development of autonomy-increasing algorithms also suggests that it may be possible for the military to more quickly perform a wider range of functions without needing every individual task controlled by humans.

Drones like the Predator and Reaper are still piloted vehicles, with humans controlling what the camera looks at, where the drone flies, and what targets to hit with the drone’s missiles. But CNA studies have shown that drone strikes in Afghanistan caused 10 times the number of civilian casualties compared to strikes by manned aircraft. And a recent book published jointly with the Marine Corps University Press builds on CNA studies in national security, legitimacy, and civilian casualties to conclude that it will be important to consider International Humanitarian Law (IHL) in rethinking the drone war as Artificial Intelligence continues to flourish.

The Chinese Approach

Meanwhile, many Chinese strategists recognize the trend towards unmanned and autonomous warfare and intend to capitalize upon it. The PLA has incorporated a range of unmanned aerial vehicles into its force structure throughout all of its services. The PLA Air Force and PLA Navy have also started to introduce more advanced multi-mission unmanned aerial vehicles. It is clear that China is intensifying the military applications of Artificial Intelligence and, as we heard at a recent hearing by the Senate’s U.S. – China Economic and Security Review Commission (where CNA’s China Studies Division also testified), the Chinese defense industry has made significant progress in its research and development of a range of cutting-edge unmanned systems, including those with swarming capabilities. China is also viewing outer space as a new domain that it must fight for and seize if it is to win future wars.

Armed with artificial intelligence capabilities, China has moved beyond just technology developments to laying the groundwork for operational and command and control concepts to govern their use. These developments have important consequences for the U.S. military and suggest that Artificial Intelligence plays a prominent role in China’s overall efforts to establish an effective military capable of winning wars through an asymmetric strategy directed at critical military platforms.

Human-Machine Teaming

Human-machine teaming is gaining importance in national security affairs, as evidenced by a recent defense unmanned systems summit conducted internally by DoD and DHS in which many of the speakers explicitly referred to efforts to develop greater unmanned capabilities that intermix with manned capabilities and future systems.

Examples include: Michael Novak, Acting Director of the Unmanned Systems Directorate, N99, who spoke of optimizing human-machine teaming to multiply capabilities and reinforce trust (incidentally, the decision was made to phase out N99 because unmanned capabilities are being “mainstreamed” across the force); Bindu Nair, the Deputy Director, Human Systems, Training & Biosystems Directorate, OASD, who emphasized efforts to develop greater unmanned capabilities that intermix with manned capabilities and future systems; and Kris Kearns, representing the Air Force Research Lab, who discussed current efforts to mature and update autonomous technologies and manned-unmanned teaming.

DARPA

Finally, it should be noted that the Defense Advanced Projects Agency (DARPA) has recently issued a relevant Broad Agency Announcement (BAA) titled “OFFensive Swarm-Enabled Tactics” – as part of the Defense Department OFFSET initiative.  Notably, it includes a section asking for the development of tactics that look at collaboration between human systems and the swarm, especially for urban environments. This should certainly reassure the human systems community that future researchers will not forget them, even as swarm intelligence makes it possible to achieve global order without any need for external control.

Conclusion

As we capitalize on the military applications of Artificial Intelligence, there is a risk that human decision-making may no longer be involved in the use of lethal force. In general, Artificial Intelligence could indeed be disruptive to our human society by replacing the need for human control, but machines do not have to replace humans in the command and control of cognitive tasks, particularly in military contexts. We need to figure out how to keep humans in the loop. This area of research would be a fruitful one for the human systems community to undertake in the future.  

Marjorie Greene is a Research Analyst with the Center for Naval Analyses. She has more than 25 years’ management experience in both government and commercial organizations and has recently specialized in finding S&T solutions for the U. S. Marine Corps. She earned a B.S. in mathematics from Creighton University, an M.A. in mathematics from the University of Nebraska, and completed her Ph.D. course work in Operations Research from The Johns Hopkins University. The views expressed here are her own.

Featured Image: Electronic Warfare Specialist 2nd Class Sarah Lanoo from South Bend, Ind., operates a Naval Tactical Data System (NTDS) console in the Combat Direction Center (CDC) aboard USS Abraham Lincoln. (U.S. Navy photo by Photographer’s Mate 3rd Class Patricia Totemeier)