Look Beyond the Fleet: Finding the Capability for Distributed Maritime Operations

Distributed Maritime Operations Topic Week

By Walker D. Mills

The United States is becoming increasingly challenged at sea. Last year the Admiral Philip Davidson, current commander of Indo-Pacific Command, told The New York Times that “In short, China is now capable of controlling the South China Sea in all scenarios short of war with the United States.”1 This increasing anxiety is echoed in the 2016 Surface Forces Strategy (SFS), which identifies a “new era” of threats and challenges.2 In response the United States Navy has been at work on new concepts to help bolster combat power like Distributed Lethality and Distributed Maritime Operations. While neither have been released to the public in full, unclassified versions, the gist of both are clear. The SFS ascribes three tenets to distributed lethality – increasing the offensive and defensive capability of all platforms, distributing platforms, and improving the survivability and complimentary nature of their systems. The Navy is on the right track but can achieve a much larger increase in distribution and offensive capability by looking beyond the surface assets it already owns. The Navy has argued that it requires a 355-ship fleet to perform all of its missions, but the current shipbuilding program will not meet that goal anytime in the next three decades.3 Recently the Under Secretary of the Navy lamented the state of the under-resourced fleet “no decrease in operational requirements, and yet there are not enough ships to do the mission.”4 The Navy needs to look for combat power elsewhere if it cannot soon build or buy the ships it needs.

In a fight for sea control, the Marine Expeditionary Units (MEUs) are currently a wasted asset. MEUs are powerful, mixed purpose units built around a Marine infantry battalion with significant additional ground capability in tanks, armored vehicles, and artillery with a full range of air combat and lift capability. But Marine doctrine and training emphasize only operations ashore, and operations in getting to shore. The Corps has traditionally failed to consider their role in maritime operations like sea control or sea denial and husbanded its resources for the terrestrial fight. This is changing slowly – the unreleased Expeditionary Advanced Base Operations (EABO) concept is expected to emphasize the Marine role in a maritime campaign, but EABO is a Marine-led concept. The Navy needs to push Marines back into a role where they support naval operations and stop allowing the Marines to build a capability focused only on power projection ashore.

Marines already have some capabilities that can contribute to a sea control fight. They had the first operational F-35 squadron, ahead of the Air Force and the Navy and they have experience training and operating their jets in rugged and austere environments. Marine rocket artillery (HIMARS) recently fired at their first floating targets and have also demonstrated a rapid infiltration and raid capability with the same platform.5,6 They are going further and investing in a new Group 5 Unmanned Aerial System (UAS) program called the MAGTF UAS Expeditionary (MUX) that would contribute to targeting, reconnaissance and strike architecture.7 The Marines need to focus their training and planning around employing these assets in support of maritime operations not operations ashore.

Furthermore, the Marines need to rapidly diversify their portfolio of weapons when it comes to sea control and denial. They need to move ahead with a longer range, anti-ship missile on a mobile platform – much like systems Poland has acquired for coastal defense that fire the Naval Strike Missile.8 Such a weapon would drastically increase the range and lethality with that the Corps could project over the water. Employed, on or near narrows, straits and other chokepoints, these missiles could deny an adversary passage or annihilate an amphibious force. The Army has been interested in the NSM and has made Long Range Precision Fires their top modernization priority.9,10 Continued integration with the Navy and Marines should lead to a joint littoral fires capability that provides the fleet more options for distributing their surface fires.

Marines can also increase their contribution by investing in a coastal or fast attack craft capability. Currently the Navy maintains a portfolio of brown water capability in Naval Expeditionary Combat Command (NECC) but it is primarily for supporting special operations and harbor defense. A new Marine force, employing Mk VI patrol boats armed with NSMs would be a potent threat to even the largest and best protected enemy vessels at a fraction of the cost of adding more destroyers and frigates the surface fleet.

The Marines should also identify opportunities to up-gun their existing platforms. The MV-22 Osprey, the Marines’ capable, medium, tilt-rotor craft is usually unarmed. It can mount door guns but it is a platform begging for armament like the Advanced Precision Kill Weapon System (APKWS) or other types of rockets and missiles – a match that has already been tested.11 Armed with its own precision fires, an Osprey or the Corps’ new CH-53K could hunt enemy small boats to protect larger surface vessels or better support Marine insertions. Other authors at CIMSEC and War on the Rocks have argued for arming L-Class amphibious ships and connectors like Landing Craft Air Cushion (LCAC).12,13

Another opportunity for increasing the Navy’s lethality and combat power is the Air Force. The Air Force recently acquired the Long Range Anti-Ship missile, a new, stealthy naval cruise missile that can be launched from B-1 bombers. This is a key capability that allows the Air Force to better support the Navy – a single B-1 bomber can carry 24 LRASMs, so a flight of four bombers can launch more anti-ship missiles that an Arleigh-Burke class destroyer and then return to do it again in hours.14  The Navy and the Air Force should continue to expand the number of aircraft capable of delivering LRSAMs and train for their employment jointly. Air-delivered, long range anti-ship missiles are a new capability for the U.S. military but one long employed by Russia and China.

Conclusion 

Sea control is a joint mission. No longer can the Navy alone get it done. America’s control of the sea is fundamental to our peace and security and it will require forces, capabilities, and support from the Marines, Army, and Air Force. In pursuit of new concepts like Distributed Lethality and Distributed Maritime Operations, the Navy needs to look beyond the fleet for ways to increase combat power. The 2016 SFS labels the “right mix of resources to persist in a fight” as one of the three tenets of Distributed Lethality.15 At a minimum that mix must include Marine and Army surface fires, fast attack craft, Air Force anti-surface warfare, and whatever else is needed to distribute firepower and sustain command of the seas.

1stLt Walker D. Mills is a Marine Corps infantry officer. He is currently a student at the Defense Language Institute in Monterey, California.

References

[1] Hannah Beech, “China’s Sea Control is a Done Deal ‘Short of War With the US’” New York Times (20 September, 2018) https://www.nytimes.com/2018/09/20/world/asia/south-china-sea-navy.html.

[2] United States Navy, Surface Forces Strategy (2016) https://www.public.navy.mil/surfor/Documents/Surface_Forces_Strategy.pdf.

[3] Goeff Ziezulewicz, “Budget watchdog questions Navy’s plan for 355-ship fleet” (24 October 2018) https://www.navytimes.com/news/your-navy/2018/10/24/budget-watchdog-questions-navys-plan-for-355-ship-fleet/.

[4] Gidget Fuentes, “Modly: Navy Needs to Radically Change How it Operates in New Era of Great Power Competition” USNI News (14 February 2019) https://news.usni.org/2019/02/14/modly-navy-needs-radically-change-operates-new-era-great-power-competition.

[5] Gidget Fuentes, “Marines Fire HIMARS From Ship in Sea Control Experiment with Navy” USNI News (24 October, 2017) https://news.usni.org/2017/10/24/marines-fire-himars-ship-sea-control-experiment-navy.

[6] Shawn Snow, “ The Corps’ HIMARS are going airborne as Marines bring them to targets via KC-130s” Marine Corps Times (28 December 2018) https://www.marinecorpstimes.com/news/your-marine-corps/2018/12/28/the-corps-himars-are-going-airborne-as-marines-bring-them-to-targets-via-kc-130s/.

[7] Meghan Eckstein, “Marines Zero In On Requirement for Unmanned Aerial Vehicle” USNI News (23 April 2018) https://news.usni.org/2018/04/23/marines-zero-requirements-future-mux-unmanned-aerial-vehicle.

[8] Jaroslaw Adamowski, “Poland Eyes Third Missile Squadron, Subs for Navy” Defense News (4 November 2016) https://www.defensenews.com/naval/2016/11/04/poland-eyes-third-missiles-squadron-subs-for-navy/.

[9] Joseph Trevithick, “The Army Eyes Getting Into the Ship Killing Business With This Cruise Missile” The Drive (12 February 2018) http://thedrive.com/the-war-zone/18427/the-army-eyes-getting-into-the-ship-killing-business-with-this-cruise-missile.

[10] David Vergun, “Long-range, precision fires modernization a joint effort, Army tech leader says” Army News Service (22 August 2018) https://www.army.mil/article/210198/long_range_precision_fires_modernization_a_joint_effort_army_tech_leader_says.

[11] Shawn Snow, “Marines consider forward-firing rockets for MV-22 Osprey” Marine Corps Times (21 March 2018) https://www.marinecorpstimes.com/news/your-marine-corps/2018/03/21/marines-consider-forward-firing-rockets-for-the-mv-22-osprey-fleet/.

[12] Chris O’Connor, “Distributed Leathernecks” CIMSEC (23 February, 2019) http://cimsec.org/distributed-leathernecks/22448.

[13] Douglas King and Brett Friedman, “Why the Navy Needs a Fighting Connector: Distributed Maritime Operations and the Modern Littoral Environment” War on the Rocks (10 November, 2017) https://warontherocks.com/2017/11/navy-needs-fighting-connector-distributed-maritime-operations-modern-littoral-environment/.

[14] Oriana Pawlyk, “B-1 Crews Prep for Anti-Surface Warfare in Latest LRSAM Tests” Military.com (3 January 2018) https://www.military.com/dodbuzz/2018/01/03/b-1-crews-prep-anti-surface-warfare-latest-lrasm-tests.html.

[15] Surface Forces Strategy.

Featured Image: Marines with Combat Logistics Battalion 11, Headquarters Regiment, 1st Marine Logistics Group, overlook the beach during a field exercise at Camp Pendleton, California, December 12, 2017 (U.S. Marine Corps photo by Lance Cpl. Adam Dublinske)

Distributed Maritime Operations Topic Week Kicks Off on CIMSEC

By Dmitry Filipoff

This week CIMSEC will be featuring articles on the U.S. Navy’s nascent Distributed Maritime Operations (DMO) concept. Below are the articles and authors that will be featured during the topic week and could be updated as prospective authors finalize additional submissions. 

Look Beyond the Fleet: Finding the Capability for Distributed Maritime Operations” by Walker D. Mills
Operationalizing Distributed Maritime Operationsby Kevin Eyer and Steve McJessy

Dmitry Filipoff is CIMSEC’s Director of Online Content. Contact him at Nextwar@cimsec.org

Featured Image: EAST CHINA SEA (Jan. 12, 2019) The amphibious transport dock ship USS Green Bay (LPD 20), amphibious assault ship USS Wasp (LHD 1), and Japan Maritime Self-Defense Force amphibious transport dock ship JS Kunisaki (LST 4003) transit in formation during a cooperative deployment. (U.S. Navy photo by Mass Communication Specialist 1st Class Daniel Barker/Released)

The Chinese Navy’s Marine Corps, Part 1: Expansion and Reorganization

This article originally featured on the Jamestown Foundation’s Chief Brief. Read it in its original form here

By Dennis J. Blasko and Roderick Lee

Editor’s Note: This is the first part of a two-part article discussing organizational reforms and evolving missions for the PLA Navy (PLAN) Marine Corps. The first part focuses on the growing order of battle for the PLAN Marines. The second part, which will appear will focus on the creation of a service headquarters for the PLAN Marines, and their expanding training for expeditionary warfare and other missions. Taken as a whole, this two-part article provides significant new information and analysis to update the December 3, 2010 China Brief article titled “China’s Marines: Less is More.

Introduction

On August 16, 2018, the Department of Defense Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China 2018, reported that “One of the most significant PLAN structural changes in 2017 was the expansion of the PLAN Marine Corps (PLANMC).” The PLA Marine Corps (中国人民解放军海军陆战队) has historically been limited in terms of personnel, geography, and mission—with a primary service focus on amphibious assault, and the defense of outposts in the South China Sea. However, under currently estimated plans for service expansion, “by 2020, the PLANMC will consist of 7 brigades, may have more than 30,000 personnel, and will expand its mission to include expeditionary operations on foreign soil.”1

The expansion of the PLANMC, which commenced in April 2017, is an important element of reforms to the PLA’s operational forces. For the past two decades, the Marine Corps consisted of only two brigades, the 1st and 164th Marine Brigades (each estimated to number from 5,000 – 6,000 personnel) assigned to the South Sea Fleet stationed in Zhanjiang, Guangdong. After recent reforms, the number of brigades now amounts to a total of eight, with four new Marine combined arms brigades, a Special Operations Forces (SOF) brigade, and the core of a shipborne aviation (helicopter) brigade added to the previously existing two brigades. The four new combined arms brigades were formed out of units transferred from the Army, while the SOF and helicopter brigades were created from standing Navy units. A corps-level headquarters for the Marine Corps also has been identified. Though the Chinese government has not officially explained these developments, this new structure probably amounts to a total of up to approximately 40,000 personnel distributed among eight brigades at full strength.

The expanded Marine Corps, supported by Navy long-range sealift, likely will become the core of the PLA’s future expeditionary force. Training that began in 2014 further indicates that the eventual objective for the Marine Corps is to be capable of conducting operations in many types of terrain and climates – ranging beyond the PLANMC’s former, and continuing, focus on islands and reefs in the South China Sea. The manner by which the force has expanded, however, suggests that the PLA leadership was not motivated by an immediate need for a larger amphibious capability; rather, it appears to be consistent with several new missions undertaken by the Chinese military over the past decade that have provided impetus for the addition of new Marine units. It will likely take several years for all of the Marine Corps’ new units to reach full operational readiness as measured by personnel, equipment, and training.

Expanded Order of Battle

After “below the neck” reforms and restructuring implemented throughout PLA in 2017, Marine units are now found along China’s eastern seaboard from Shandong in the north, to Fujian and Guangdong in the east opposite Taiwan, to Hainan in the South China Sea. In northern Shandong, a former Army motorized infantry brigade of the old 26th Group Army has been transformed into a new Marine brigade (Jiefangjun Bao Online, September 30 2017). On Shandong’s southern coast, a second new brigade has been formed from what likely was a former Army coastal defense regiment located near Qingdao (Qingdao Television, February 12 2018). Further south, an Army coastal defense division stationed around Jinjiang, Fujian was the basis for a third new brigade that remains in that same locale; and may also have provided manpower and resources for a fourth new brigade that recently moved to Jieyang in eastern Guangdong province  (Anxi, Fujian Government website, August 1 2017; Jieyang News, August 17 2018). Although the PLA has not widely publicized either the creation of these new brigades or their true unit designators, the emergence of photos and new military unit cover designators associated with the Marine brigades both suggest a 1st through 6th brigade numbering scheme.2

As the new Marine brigades are being organized and equipped for their new missions, the two previously existing brigades also appear to have been reorganized. Most significantly, to streamline their chain of command, the former amphibious armored regiment headquarters appear to have been eliminated: command is now passed directly from brigade level to the newly established combined arms battalions (similar to the Army’s brigade command structure). Marine combined arms battalions are distinguished between amphibious mechanized and light mechanized combined arms battalions. Some, if not all, Marine brigades also have, or will likely have, units trained for air assault operations (Jiefangjun Bao Online, December 10 2017), and will be reinforced by operational support battalions.3

It is likely that in coming years older equipment will be retired and all Marine units will be issued new amphibious vehicles—such as the tracked ZBD05 Infantry Fighting Vehicle (IFV), tracked ZTD05 Assault Vehicle, PLZ07 122mm Self-Propelled Howitzer, the eight-wheeled ZBL09 IFV, the eight-wheeled ZTL11 assault vehicle, and the Mengshi Assault Vehicle. (The latter three vehicles have been observed deployed to the Djibouti Support Base). Some reconnaissance units are also receiving light 8×8 all-terrain-vehicles for terrain that is inaccessible to larger vehicles (Chinaso.com, April 9, 2018).

In total, the Army probably transferred over 20,000 personnel to the Navy’s new Marine units, while retaining its own amphibious capability. The Army’s two former amphibious infantry divisions—one previously stationed in the Nanjing Military Region near Hangzhou and the other in the Guangdong Military Region near Huizhou—were both transformed into two combined arms brigades each, while keeping their amphibious weapons and capabilities. A fifth former amphibious armored brigade also was converted into a new Army combined arms brigade located in Fujian. The decision to maintain these amphibious units in the Army reflects that service’s continued role in building capabilities to deter further steps toward Taiwan independence—one of the missions of foremost importance to the PLA.

Had the senior PLA leadership perceived the need to increase rapidly the Navy’s amphibious capacity, it could have decided to transfer to the Marine Corps those existing Army amphibious units, all of which were equipped and trained for assault from the sea. But by transforming a motorized infantry brigade and multiple coastal defense units—none of which were outfitted with amphibious equipment, nor trained extensively in amphibious operations—the PLA leadership understood that it would take multiple years for these units to be equipped, and even more annual training cycles before they would be fully trained to undertake amphibious operations. So, while the Marine Corps has been expanded in size, its actual amphibious capabilities will increase gradually over the next several years.

The new Marine special operations force (SOF) brigade has been formed out of the Navy’s existing SOF Regiment stationed in Hainan, which includes the Jiaolong (“Dragon”) commando unit (China Central Television, December 12 2017). The former Navy SOF Regiment’s missions and capabilities overlapped with that of the Marine Corps, and therefore their transfer is a logical evolution as the Marine Corps expands. Eventually, the new brigade will likely number approximately one thousand personnel more than the old regiment (estimated to have been about 2,000 strong). Some of those personnel may have been transferred from the 1st and 164th Marine Brigades’ structure, each of which probably included SOF elements in their former reconnaissance battalions. Of all the new Marine units within the expanded force structure, the SOF Brigade currently is the most combat ready.

The 2018 DOD report on the Chinese military also noted the creation of an independent aviation capability for the PLA Marines, stating that the expanding PLANMC “may also incorporate an aviation brigade, which could provide an organic helicopter transport and attack capability, increasing its amphibious and expeditionary warfare capabilities.”4 The new Marine Shipborne Aviation (helicopter) Brigade apparently has been built out of elements from all three PLAN independent air regiments (Weibo, January 27 2018). These regiments have been busy since 2009, provided the aircraft for 15 of 30 of the Navy’s deployments to the Gulf of Aden escort mission (PLA Daily, July 16 2018).

Currently, the new Marine helicopter unit likely has considerably less than a full contingent of aircraft compared to an Army Aviation Brigade, which when fully equipped probably consists of over 70 helicopters. The Military Balance 2018 estimates the Navy’s entire helicopter fleet at slightly over 100 aircraft, with about half being transport helicopters—while the others are anti-submarine warfare, early warning, and search and rescue aircraft needed to support the rest of the Navy’s operations.5 Heretofore the Navy apparently has experimented with only a few armed Z-9 helicopters (People’s Navy, July 31 2012). Until additional attack helicopters are added to the force, as a stop gap measure it would be possible for the Army to temporarily assign a few of its attack helicopters to the Marines to assist in training and doctrine development for amphibious operations. Thus, it is likely that it will take several more years to add additional transport and attack helicopters and train the pilots and crews before the new Marine helicopter brigade is at full strength and combat ready.

This article will continue in the next issue of China Brief, with “The Chinese Navy’s Marine Corps, Part 2: Chain-of-Command Reforms and Evolving Training.”

Dennis J. Blasko, Lieutenant Colonel, U.S. Army (Retired), was an army attaché in Beijing and in Hong Kong from 1992-1996 and is the author of The Chinese Army Today: Tradition and Transformation for the 21st Century, second edition (Routledge, 2012). 

Roderick Lee is an analyst with the United States Navy. His work focuses on Chinese maritime forces and strategy. He earned his Master of Arts degree from The George Washington University’s Elliott School of International Affairs.

The views and opinions expressed herein by the authors do not represent the policies or position of the U.S. Department of Defense or the U.S. Navy, and are the sole responsibility of the authors.

Notes

[1] U.S. Department of Defense, Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China 2018, p. 28. https://media.defense.gov/2018/Aug/16/2001955282/-1/-1/1/2018-CHINA-MILITARY-POWER-REPORT.PDF#page=11&zoom=auto,-85,733.

[2] Military unit cover designators (MUCDs) are serial numbers (consisting of five digits) employed by the People’s Liberation Army to identify specific military units, and are frequently employed in official communications in the place of the true unit designators. 

[3] People’s Navy, January 23, 2018 and February 9, 2018.

[4] U.S. Department of Defense, Annual Report to Congress: Military and Security Developments Involving the People’s Republic of China 2018, p. 28. https://media.defense.gov/2018/Aug/16/2001955282/-1/-1/1/2018-CHINA-MILITARY-POWER-REPORT.PDF#page=11&zoom=auto,-85,733.

[5] International Institute for Strategic Studies, The Military Balance 2018, p. 254.

Featured Image: PLAN Marine Corps command and staff personnel examine maps in the course of a cold weather training exercise in Inner Mongolia, March 2015. (Source: Xinhua)

The Gulf of Guinea is Ready for Maritime Technology

By Dr. Ian Ralby, Dr. David Soud, and Rohini Ralby

Few regions of the world have seen more improvement in maritime security institutions over the last five years than the Gulf of Guinea. At the same time, however, maritime security threats across West and Central Africa have continued to evolve and are increasingly difficult to address. Ironically, the region is becoming a victim of its own success: improved maritime law enforcement drove criminals to become both more brazen and more innovative in how they pursue illicit profit. These heightened challenges, however, are no longer as insurmountable as even basic ones were a decade ago. Having built one of the most sophisticated and promising sets of maritime security architecture in the world, the Gulf of Guinea is actually well-placed to take on the new challenges it faces.

To maximize the efficiency and effectiveness of this architecture in confronting these threats, a new element has to enter the conversation: technology. States, zones, regions, and the wider interregional mechanisms must all explore ways of leveraging technology to realize their respective mandates in the most cost effective way. Five years ago, discussing maritime technology would have been of limited value, as the state and cooperative mechanisms across West and Central Africa were too nascent to take advantage of it. Now, however, the Gulf of Guinea is primed to make better use of maritime security technology. 

The Gulf of Guinea Has Momentum

While progress in developing functional maritime security in the Gulf of Guinea may not have been as fast as some would prefer, it is now moving rapidly, and its trajectory is unmistakable. The signing of the 2013 Code of Conduct Concerning the Repression of Piracy, Armed Robbery against Ships, and Illicit Maritime Activity in West and Central Africa – known informally as the Yaoundé Code of Conduct – catalyzed an intensive process of national, zonal, regional, and interregional improvement that continues to gain momentum. As Article 2 of the Code states, “the Signatories intend to co-operate to the fullest possible extent in the repression of transnational organized crime in the maritime domain, maritime terrorism, IUU fishing, and other illegal activities at sea.” This initiative has given rise to a multi-tiered effort.

The Gulf of Guinea (Osservatorio Strategico 2017 – Year XIX issue IV)

At the national level, states are working to establish interagency processes for maritime governance, and to develop and implement national maritime strategies. States will remain the fundamental building blocks of maritime security in the Gulf of Guinea. Only through the national laws of the regional states can maritime crimes be effectively prosecuted. Beyond these national efforts, however, the states are engaging in an increasingly integrated, multilateral architecture that facilitates seamless cooperation.

The states, including the landlocked signatories to the Yaoundé Code of Conduct, are grouped by their respective Regional Economic Communities (REC) into maritime Zones. The Economic Community for Central African States (ECCAS) has Zones A and D (there is neither a B nor a C) and the Economic Community for Western African States (ECOWAS) has Zones E, F, and G. The national groupings are as follows, with an asterisk indicating each country that hosts a Zonal Multinational Coordination Center (MCC):

  • Zone A: Angola, Democratic Republic of Congo, Congo
  • Zone D: Cameroon*, Equatorial Guinea, Gabon, São Tomé and Príncipe
  • Zone E: Nigeria, Benin*, Togo, Niger
  • Zone F: Ghana*, Côte d’Ivoire, Burkina Faso, Sierra Leone, Liberia, Guinea
  • Zone G: Cabo Verde*, Senegal, the Gambia, Guinea Bissau, Mali

Each REC also has a corresponding Regional Coordination Center – CRESMAC for ECCAS based in Pointe Noir, Congo, and CRESMAO for ECOWAS based in Abidjan, Côte d’Ivoire. The two regional centers interact and share information with the MCCs to ensure operational cooperation across their respective areas of responsibility.

At the apex of the architecture is the Inter-regional Coordination Center (CIC) in Yaoundé – the intersection of the operational, strategic, and political aspects of maritime safety and security in the Gulf of Guinea. CIC both coordinates and supports the work of the two regional centers, the five zones, and the 25 member states. At the same time, it has the important role of engaging both with international partners and national governments to build political will and ensure the Gulf of Guinea’s momentum continues.

Importantly, the Yaoundé Architecture for Maritime Safety and Security (YAMSS), as the institutional framework is often called, is not merely a nice idea on paper; it is increasingly producing real results on the water. Furthermore, the community of maritime professionals involved in implementing this architectural design are increasingly connected with each other and working collectively to make maritime safety and security a reality in the Gulf of Guinea. As perhaps the most notable example, Zone D already serves as a leading example of how to conduct systematic combined operations at sea for maritime security, not just in Africa but around the world. CRESMAC and CRESMAO are becoming increasingly operational in sharing information across their regions and with each other. And CIC is beginning to garner the attention needed to be successful. At every level, there are encouraging signs of growing momentum and increased community among the maritime professionals in West and Central Africa.

Most technology for maritime law enforcement is procured at the national level. Given the extent of the integration within the Yaoundé architecture, however, there is also an opportunity for technology to be procured at the zonal, regional or inter-regional levels to ensure harmonization, to streamline access to common, inherently interoperable systems and provide a uniform operating picture. 

Technology, some procured within the Gulf of Guinea and some provided by international partners, has been a part of this process from the start. Most of it has involved enhancing visibility to improve maritime domain awareness (MDA). But with the growing coordination across states and regions, and the problem-solving and advance thinking that expansion has generated, key stakeholders have crossed a threshold: they can now discern with confidence what technologies will actually help maximize the impact of maritime operations. The lessons learned along the way merit careful attention from anyone seeking to leverage technology for improved maritime security. What follows are some of those insights.1

Avoiding Information Overload 

Improving MDA has been a major focus for years in Africa. But there is a balance to strike: being aware of everything is almost as challenging as being aware of nothing. Efficiency and effectiveness therefore begin with how information is selected and packaged for use on and off the water. Operators from across different maritime agencies share a keen interest in technology that highlights useful, actionable information, and not only collects but also filters input, helping them focus on key areas of concern rather than providing blanket visibility of all maritime activity. Given the region’s limited human as well as financial resources, such technology could guide them toward confidently engaging in targeted interdiction. This holds true for maritime criminal activity as well as fisheries protection.

But to be used consistently and effectively, the technology must be user-friendly as well. Simplicity is an important differentiator between technology that would improve general maritime domain awareness and technology that would actually help operations in law enforcement, fisheries protection, or search and rescue. For instance, artificial intelligence has now made it possible to have an MDA platform that not only shows ship positions and makes recent AIS anomalies visible, but also aggregates a wide range of real-time and historic data and filters them according to selected parameters, providing instant alerts to suspected illegal activity. That array of functions would allow for both launching decisive interdictions and detecting patterns of illicit activity.

Technology Can Facilitate Inter-Regional Harmonization 

When any one state or even zone is perceived to be weaker than its neighbors, in terms of either its laws or its capacity for law enforcement, that state or zone becomes a magnet for criminality. Consequently, a major focus of the YAMSS is on harmonization to ensure consistency in deterring and addressing maritime crime throughout the Gulf of Guinea. Depending on how it is chosen, distributed and applied, technology could either exacerbate the problem or help resolve it.

When one state has a significant technological advantage over its neighbors, the neighboring states are likely to suffer. Conversely, when shared technologies are deployed across neighboring zones and regions, new possibilities arise for communication, coordination, interoperability, and even harmonization of legal and regulatory frameworks. Some technologies, for example, could provide insight across the region as to where IUU fishing and illicit transshipment most frequently occur, or call attention to ships on erratic or otherwise suspicious courses. This could in turn inform legislative or regulatory action as well as operational decision-making at the national or zonal levels to help address maritime problems where they are most acute. Such an approach can therefore help CIC with building the political will to harmonize, as well as help the operators in their planning and execution of law enforcement activities. The more seamlessly technology is deployed across a region, the more difficult it becomes for criminals to find venues for illicit activity. As the name suggests, transnational crime is borderless; a common operating picture across the regions is therefore vital to identifying that illicit activity.

Not only have the maritime institutions evolved in recent years, the available maritime technology has developed greatly. Surveillance systems to identify illicit activity on the water – from illegal fishing to illicit transshipment to trafficking and smuggling – have improved dramatically. Employing this technology means that operators are not merely patrolling on the off chance they encounter illicit activity. The confidence of law enforcement agencies that they will not be wasting fuel and other resources is greatly enhanced by engaging in targeted interdiction of vessels reasonably certain to be committing offenses based on real-time information.

If law enforcement agencies can show that their efficiency is such that they have successful interdictions nearly every time they deploy assets, that success can become contagious. It can help energize the maritime agencies, deter criminal actors, and at the same time build the political will to ensure the longer-term safety and security of the maritime domain. Politicians are persuaded by success, and technology can greatly increase the odds of operational success.

Culprits Do Not Have to be Caught Red-Handed

In addition to facilitating targeted interdiction, advanced surveillance technologies can offer a further benefit. Just as a robber could be arrested at home for a heist caught on closed caption television (CCTV), it is now possible for vessels to be arrested in port for illicit actions committed at sea and recorded using sophisticated maritime surveillance platforms. Though CCTV is not a possibility on the water, other technologies including the use of the vessels’ Automated Information System (AIS), Synthetic Aperture Radar (SAR), and Electro Optical Imaging (EO) can produce high degrees of certainty regarding illicit activity. While states must ensure that their rules of evidence allow for such electronic and digital data to be used in court, this leveraging of historic surveillance data is another way the technology available today can greatly amplify the impact of limited maritime law enforcement resources. 

Technology that helps counter smuggling will inherently benefit two states simultaneously – the state that is losing the smuggled good, and the state that is losing the tax on the importation of that smuggled product. If implemented effectively, technology could disincentivize the smuggling of certain goods. One crucial example of this is fuel: the cost of doing business in illicit fuel could, with effective law enforcement, become higher than that of selling it legally, thereby making it an unattractive business proposition. A suite of technologies such as molecular marking, GPS tracking of shipments, digital documentation, and state-of-the-art metering, strategically implemented across the Gulf of Guinea, would alter the risk-reward calculus and help West and Central Africa eradicate most cross-border smuggling of fuel. These and related technologies could also appreciably mitigate other modalities of illicit trade, including counterfeit tobacco and pharmaceuticals.

Technology that Pays for Itself Sells Itself

For states and multinational bodies working to secure and govern vast maritime spaces that seldom command the political attention they deserve, investments in technology have to bring returns that justify initial and ongoing expenditure. Technologies that enable more streamlined and cost-effective operations, that combat activities that lead to substantial economic losses, or that actively generate revenue in the form of taxes, fees or various kinds of penalties are preferable to those that run at ongoing cost.

Countering IUU fishing, prosecuting environmental crimes, and combating fuel smuggling are three efforts that could hold precisely this kind of appeal. Acquiring new technology that can stem economic losses from depleted fisheries and degraded marine spaces, elicit substantial financial penalties for illegal fishing or environmental, dumping, recover revenues previously lost to fuel smuggling or prevent subsidies fraud may well find more support among decision-makers than procuring more patrol vessels that need to be crewed, fueled, and maintained. And when the technology begins to pay for itself and lead to more success on the water, investing in new patrol vessels that can amplify that success also begins to look more attractive.

If the political classes can see financial return on investment as well as improved maritime safety, security, and sustainability, wider adoption of the technology becomes more likely. Furthermore, if the procurement approach does not put all the economic burden on the purchaser, but rather balances investment and return, the Gulf of Guinea states are more likely to proceed.

Maritime Safety, Security and Resource Protection Can Share Technology 

The Gulf of Guinea Code of Conduct not only laid the groundwork for an inter-regional security architecture, it also established IUU fishing as a crime coequal with piracy, trafficking, oil theft, and other illicit activities. This move made it possible to establish far more effective legal deterrents than the administrative penalties that often accompany fisheries-related crimes. It also allows for more sharing of technology and information across agencies that combat the full range of illicit maritime activities. In light of how such criminal enterprises as IUU fishing, trafficking, and oil theft often overlap, sharing technology in this fashion can close gaps in law enforcement that criminals have all too often exploited.

Given that limited resources become even more limited when they are divided among multiple agencies trying to accomplish similar tasks, this sort of integration could have an immediate impact on maritime safety, fisheries protection and maritime security. Such sharing of resources, however, necessitates a functional interagency mechanism for maritime governance. Thus the state-level work on both whole-of-government approaches to maritime security and integrated maritime strategy development and implementation go hand-in-hand with the prospects for effective use of such technology. 

Technology Can Both Help and Complicate Legal Finish 

One of the most difficult challenges for the Gulf of Guinea, and indeed for any region, is translating operational successes into legal finish. If no prosecutorial or regulatory action is taken to penalize illicit activity, maritime law enforcement becomes a matter of catch and release. Technology can play an important role in assisting with maritime interdiction, but it also has an essential role to play in effectuating legal finish.

That said, a challenge must first be overcome. Not all legal systems have provisions for technological, digital, or electronic evidence. In order to be able to use the evidence provided by the MDA and monitoring, control, and surveillance (MCS) technologies now emerging, the state’s evidentiary rules must be amended to ensure that technology can be used in court. If those evidentiary rules are more permissive, however, there is another possibility for assisting law enforcement.

Traditionally, in the maritime space, perpetrators have to be caught in the act. But, as noted above, technology that provides evidence of illicit activity at sea could potentially be used to arrest vessels at the pier and on their return from a voyage that involved a breach of the law. In other words, limited vessels or a lack of fuel would not be a barrier to arrest and prosecution. Furthermore, regardless of where a vessel was caught, historical data could be used to increase the charges and penalties for prior offenses as indicated by the technology.

Conclusion 

The Gulf of Guinea is ready to more effectively use technology to enhance the work done to develop and operationalize the cooperative maritime security architecture in West and Central Africa. Cost-neutral or even revenue generating technology is most likely to garner the necessary political will, but from an operator’s standpoint, simplicity is also key. In addition to aiding targeted interdiction, technology can help provide the evidence for pier-side arrests and even enhance charges and penalties based on prior illicit activity. That said, legal systems must account for such technological evidence in court. Harmonized legal finish across the Gulf of Guinea must be a central focus, as that is the only way to change the risk-reward calculus and ensure that no state or zone becomes a magnet for crime.

In a larger, more strategic sense, the individual states and regional bodies pursuing greater maritime security and development in the Gulf of Guinea must also work together to harmonize their more foundational approaches to the challenges facing the region. Too often stakeholders presented with the chance to cooperate or collaborate in confronting such issues fall into the trap of viewing that effort in terms of false dichotomies. They may rightly be keen to exercise autonomy in light of a history in which their sovereignty has been compromised. But they may also unhelpfully misinterpret the cooperative and collaborative harmonization of approaches as being a threat to sovereignty. In an effort to maintain their autonomy, they may therefore isolate themselves, and consequently become more of a magnet to the highly cooperative, transnational criminals they face.

Exercising autonomy Losing sovereignty
Isolating Cooperating and collaborating

This diagram reveals how the terms of a dichotomy are never simply binary, but actually part of a cluster of related terms that are often conflated, or defined in varying ways.2 Failing to get outside the “box” formed by these choices can narrow vision and obstruct communication, and thus frustrate efforts at progress. The stakeholders in the Gulf of Guinea must clarify for themselves and each other the difference between exercising autonomy and isolating themselves, and between cooperating or collaborating and losing sovereignty. If everyone can achieve this “outside-the-box” clarity, progress can happen quickly and effectively. While many of the maritime operators recognize these nuanced dynamics, they have a challenge to overcome in convincing their political leadership to move past a limiting dichotomy centered on autonomy, and instead embrace cooperation and recognize the value in sharing resources and technology to secure, govern, and develop the maritime space in the Gulf of Guinea.

The work of maritime professionals in West and Central Africa to pursue safety, security, and sustainability in the maritime domain has already led to some notable successes. Now it is in a position to begin realizing the ambitious vision of successfully securing, governing, and developing the region’s maritime domain. This is where new, better, and more effectively used technology can play a pivotal role by enabling individual states and regional bodies to make far more effective use of their resources to control the maritime space. Stakeholders must now select the right tools for the job – those that provide the necessary precision, simplicity of use, cost-effectiveness, and ability to link efforts across both agencies and maritime boundaries.

Ian Ralby is a recognized expert in maritime law and security, serving as Adjunct Professor of Maritime Law and Security at the US Department of Defense’s Africa Center for Strategic Studies; a Maritime Crime Expert for UNODC; and as CEO of I.R. Consilium, a family business that works matters of security, governance and development.

David Soud is Head of Research and Analysis at I.R. Consilium and works on issues at the intersection of fisheries governance and transnational organized crime.

Rohini Ralby is Managing Director of I.R. Consilium and works on strategy development and implementation.

References

1. A recent public-private conference organized by the US firm I.R. Consilium, LLC in Freetown, Sierra Leone explored this topic and served as the basis for the key points of this article.

2. The diagram is an example of the “fourchotomy,” a strategic tool devised by Rohini Ralby.

Featured Image:  GULF OF GUINEA (April 2, 2014) A U.S. Coast Guard law enforcement detachment member and a Ghanaian navy sailor inspect a fishing vessel suspected of illegal fishing during the Africa Maritime Law Enforcement Partnership. The partnership is the operational phase of Africa Partnership Station and brings together U.S. Navy, U.S. Coast Guard, and respective Africa partner maritime forces to actively patrol that partner’s territorial waters and economic exclusion zone with the goal of intercepting vessels that may have been involved in illicit activity. (U.S. Navy photo by Kwabena Akuamoah-Boateng/Released)

Fostering the Discussion on Securing the Seas.