Tag Archives: ASW

Chinese Evaluations of the U.S. Navy Submarine Force, Pt. 2

This article originally featured in The Naval War College Review in 2008 and is republished with permission. Read it in its original form here. Read Part One of the republication here.

By Gabriel Collins, Andrew Erickson, Lyle Goldstein, and William Murray

Sensors, Systems, Research, Development, and Training

American efforts at exploiting advancements in commercial off-the-shelf technology have received attention. One article observes that “the updated (COTS) CCS MK II [fire control] system is not only used on the Los Angeles and Ohio classes, but is also used on the new Seawolf and Virginia class submarines”;44 another points out that “92% of the hardware and 90% of the software used in non-publicly available projects in fact come from popular commercially available technologies.”45 China’s intense interest in the U.S. Navy’s use of COTS may stem in part from Beijing’s effort to develop a world-class commercial information technology industry and to incorporate its products into the PLA.

Chinese analysts also monitor American submarine sensor development. One article notes, “At present, the U.S. is the world leader in developing periscope technology and using it on its submarines.”46 U.S. efforts to bolster the submarine force’s mine warfare capabilities receive particular attention.47 Moves to develop and acquire the Long Term Mine Reconnaissance System (LMRS) have been noted, with one researcher stating that “the U.S. is now buying 8 long-range mine scouting systems to be put on the Los Angeles and Virginia class nuclear attack submarines.”48

Chinese observers pay fairly close attention to American submarine-related research and development efforts. For example, websites on Chinese naval matters frequently report on the awarding of Defense Advanced Research Projects Agency (DARPA) and Office of Naval Research (ONR) contracts.49 Chinese journals take advantage of these announcements and also scour the U.S. open press for sources that can be exploited. For example, a rather lengthy article in the June 2002 issue of 现代舰船 (Modern Ships) reprinted the “Submarine of the Future” briefing slides (complete with a logo in the upper left-hand corner of each) generated by the DARPA-sponsored, Lockheed Martin–led industrial consortium “TEAM 2020.” These slides depict futuristic hull forms, sonar configurations, propulsors, weapons storage ideas, interfaces for unmanned underwater vehicles, and other elements of advanced submarine designs and concepts.50 It seems that little, if any, publicly released information regarding U.S. submarine-related research and development escapes the attention of Chinese analysts.

In keeping with the technological dynamism of U.S. platforms and their constant improvement, Chinese analysts also credit the American submarine force with an extremely rigorous selection and training process for commanding officers. In a coauthored article in Modern Navy, Rear Admiral Yang Yi, a PLA expert on the United States and former naval attaché in Washington, emphasizes that “the U.S. Navy’s selection process for the commanding officers of nuclear submarines is very strict.” Yang details the numerous education and training programs that successful candidates must attend, as well as the periodic qualifying tests they must undergo. A major emphasis of his article is the extent to which submarine commanders must periodically update their “specialized [technical] knowledge.”51

Historical Issues

Although China is emerging as a submarine power, its submarine force, and indeed its navy overall, generally lacks blue-water experience, to say nothing of a combat history. Of course, this paucity of experience stands in stark contrast to the U.S. submarine force, and PLA Navy analysts are acutely aware of that disparity. In fact, Chinese naval analysts have expressed particular admiration for the record of American submarines in World War II, pointing out that “the U.S. submarine force had the fewest losses” of any major submarine force “but had high combat effectiveness. According to statistics, the U.S. submarine force destroyed 1,314 enemy ships during the war.”52 Moreover, Chinese sources indicate an appreciation for the accumulated knowledge that the U.S. Navy has achieved through decades of intense submarine operations. Another Chinese source observes: “The U.S. is a country with 100 years of experience in building submarines, and with so many years of experience the USN constantly emphasizes the ability of a submarine to take punishment [and survive].”53

While there are numerous Chinese writings on the U.S. Navy’s submarine force’s campaign against Japan, this article focuses on the Chinese perceptions of American submarine operations during the Cold War. Some of the observations made in this context may explain aspects of contemporary PLA Navy submarine doctrine. For example, an article in Modern Ships relates an anecdote of a “Soviet Type 627 [known in the West as “November”] nuclear attack submarine [that] once went all out in a race with a U.S. Navy aircraft carrier, revealing the Soviet attack submarine’s capabilities. [This revelation] apparently has had a major impact on the development of a new class of American submarines.”54 This appraisal of the peacetime interaction between the two navies may suggest that overly aggressive tactics employed by the Soviet Navy yielded too much information to the U.S. Navy. In general, it is quite clear that Chinese sources understand that a “main mission of [U.S.] nuclear attack submarines [during the Cold War] was to deal with the Soviet Navy’s SSBNs.”55

With respect to the Cold War at sea, one Chinese book published in 2006 is worthy of particular note.56 The translation of a Russian book, Secrets of Cold War Undersea Espionage, states that “U.S. nuclear and conventional submarines would often lurk along the routes of Soviet warships, and even within Soviet territorial waters, conducting intelligence activities.”57 It is noted that “the SOSUS [Sound Surveillance] system substantially helped the U.S. to cope with the capabilities of the Soviet submarine force.”58 The subject of acoustic signatures is also raised: “In the ocean, there are simply too many sources of noise. . . . In order to cope with this problem, the U.S. decided to build an acoustic signature catalogue (resembling a fingerprint) for Soviet submarines.”59

Chinese ASW and the U.S. Navy Submarine Force

When considering Chinese views of the American submarine force, it is certainly relevant to consider how China appraises its own antisubmarine warfare forces. Generally, China considers its ASW forces to be weak. One Chinese naval analyst observes: “[Chinese] people are focused on China’s submarine force (both conventional and nuclear) development, but often neglect the threat we face from [U.S. Navy] submarines.”60 It is, moreover, suggested that “there is still a relatively large gap between [China’s] ASW technology level and that of the world’s advanced level.”61 In appraising the ASW capabilities of its own surface forces, another naval analyst notes, “Across the world, most naval ships are now equipped with towed array sonars, which has increased their ASW capabilities, but most of our ships only have hull mounted sonars.”62 Finally, there is a concern that these antisubmarine assets are themselves highly vulnerable: “Submarines can carry out ferocious missile attacks from tens or even 100–200km ranges, causing the submarine hunting vessels to become the hunted targets.”63

Chinese aerial ASW is also highlighted as a particular weakness. One Chinese analyst judges that the Z-9 helicopter lacks adequate range and internal space for the ASW mission.64 A second argues that while the Z-8 has better range and capacity, it is too big for most surface combatants to carry and chronic engine troubles have limited production.65 The Russian-import Ka-28 ASW helicopter is reported to be capable but few in numbers.66 As for Chinese maritime patrol aircraft, some designs have apparently been developed, including a variant of the Y-7 Fearless Albatross, but the outlook is said to remain bleak.67 Thus, one evaluation of Chinese aerial ASW concludes, “Our country at the present stage does not have an ASW maritime patrol aircraft . . . but the number of submarines in our peripheral seas is increasing, and their technological sophistication is also increasing. This contradiction is becoming more obvious every day, creating a grim situation.”68

In Chinese discussions of Russian ASW systems, there is a pointed recognition that the Soviets leaned heavily toward the use of tactical nuclear weapons (e.g., nuclear depth charges and torpedoes) in ASW operations.69 Tactical nuclear weapons are also mentioned in the context of mine warfare. An article in the July 2006 issue of Modern Navy, in discussing possible PLA Navy use of sea mines, suggests the potential combat value of nuclear-armed versions.70 It will be important to watch closely for any sign of Chinese efforts in this direction.

While the overall impression is that of Chinese ASW weakness, there is one notable exception. Significant prioritization appears to be given to the use of sea mines for the antisubmarine mission, as if to produce a “poor man’s ASW capability.”71 One discussion explains, “Because of a tremendous change in the maritime strategic environment, since the early 1990s the PLA has made mobile ASW sea mines a focal point of weapons development.” The analysis continues, “[China] is energetically undertaking the research mission [of] using [mobile ASW sea mines] against U.S. nuclear submarines.”72 The same discussion also hints at a review possible PLA Navy ASW role: “The major mission of self-guided sea mines is to isolate American nuclear submarines outside the First Island Chain.”73

It is noteworthy for the future development of Chinese antisubmarine warfare that hydroacoustics has been called a “key point” technology for state investment.74 The conventional wisdom has long been that the Chinese submarine force is focused entirely on the anti-surface ship mission. This assumption may have become outdated, perhaps especially after the PLA Navy received the last of eight new Kilo-class diesel submarines (and accompanying weaponry) from Russia in 2006. According to Professor Li Daguang of China National Defense University, these new Kilos have four missions: to blockade Taiwan, threaten carrier battle groups, employ land-attack cruise missiles as a “strategic weapon,” and “form an underwater threat to the U.S. nuclear submarine force.”75 There is also preliminary evidence that China is moving toward deploying antisubmarine rocket weapons on its newest surface combatants.76 This system is no “silver bullet,” as the Chinese would still have severe, perhaps insurmountable, targeting and cueing problems, but successful acquisition and deployment of ASROCs would extend the engagement range of Chinese ASW weapons significantly. It is also worth noting that Chinese sources discuss “many openly published dissertations concerning underwater targeting for a homing depth charge.”77

To reverse the equation: How do Chinese naval analysts appraise American ASW, and in particular the submarine force’s part in it? Clearly, the PLA Navy understands the overall centrality of SSNs in U.S. antisubmarine warfare. Thus an article in Modern Navy states: “The nuclear attack submarine . . . is the most effective tool for ASW.”78 However, some PLA Navy observers appear rather unimpressed by American efforts in ASW. The same official Chinese Navy journal observes: “The U.S. Navy actually has not had sufficient exercises in the [ASW arena] and also lacks experience.”79 In the same article, it is likewise noted that “conducting ASW in the littorals represents a special difficulty for the USN” and that “the combat advantage of the U.S. Navy nuclear submarine force in the littoral areas is far from obvious.”80 On this note, Campaign Theory Study Guide, a 2002 textbook written by China National Defense University scholars that draws on a variety of high-quality doctrinal publications, emphasizes that “nuclear powered attack submarines have difficulty operating in close proximity to shore due to natural conditions.”81 Another Chinese naval analysis suggests that “up to 2005, the USN has altogether 350 ASW platforms, just 11% of the number of [ASW] platforms it fielded in 1945. Moreover, many of these current naval and air platforms are not specialized for ASW, but more often are multi-mission platforms.”82 This quantitative comparison across historical periods is crude in some ways, but there is no denying that inherent physical principles combined with the vast geographical area of the Pacific Ocean will likely keep ASW an asset-intensive mission, even in the age of “net-centric warfare.”

The U.S. Navy Submarine Force-Level Trajectory

Chinese discussions of the American submarine force focus heavily on the continuing decline in its size. As one article from a People’s Republic of China (PRC) naval interest publication states, “The decline of U.S. submarine strength is inevitable.”83 Indeed, that a wide variety of Chinese naval sources share this evaluation suggests that this “decline” now passes for conventional wisdom within the PLA Navy. The Chinese naval community is likely paying close attention to internal U.S. debates, knowing that investments made (or forgone) today in submarine fleet modernization shape the future fleet.

Some Chinese assessments of the Seawolf program appear to point out indirectly the internal political tensions that hold down American submarine build rates now and perhaps in the future. One volume notes: “Although the Sea Wolf– class SSN gathers the era’s most advanced technology in a single hull, and possesses beyond-first-class performance, the appraisals of ‘Sea Wolf’ by American public figures from all walks of life differ, with a roughly half-and-half split between praise and condemnation.”84

Taking the long view, Chinese naval strategists recognize that force levels have dropped drastically from Cold War levels. One source observes, “Since 1989, the U.S. Navy’s nuclear-powered attack submarine [force] has been reduced by half.”85 A more recent Chinese naval press article estimates that “[U.S.] nuclear attack submarines will decline in number by close to 40%, eventually reaching 30 boats.”86 This calculation is roughly consistent with a projection in Modern Navy that anticipated a sustained build rate of one boat per year.87 Rear Admiral Yang Yi, writing in 2006 on the future size of the American submarine force, quoted one American analysis as follows: “China already exceeds [U.S. submarine production] five times over. . . . 18 [USN] submarines against 75 or more Chinese navy submarines is obviously not encouraging [from the U.S. perspective].”88

A Reputation for Mastery?

This article demonstrates that Chinese strategists are keenly interested in the U.S. Navy’s submarine force. Thousands of articles have reviewed various aspects of American submarine capabilities, operations, and developmental trends. There is clear evidence that Chinese naval analysts have enormous respect for U.S. submarines, submariners, and their weapons. Certainly, China aspires to be a submarine power and hopes to emulate certain aspects of American experience. However, it is equally clear in these writings that the U.S. submarine force is seen as a key challenge in any military confrontation between Beijing and Washington. It is significant in that regard especially that Chinese analysts are increasingly drawing attention to, and seeking to remedy, their antisubmarine warfare deficiencies. The study also reveals an apparent assumption within Chinese naval analytic circles that American submarine force levels are on a downward trajectory.

The authors are research faculty in the Center for Naval Warfare Studies at the Naval War College in Newport, Rhode Island. They are members (Dr. Goldstein is the founding director) of the College’s China Maritime Studies Institute. The opinions expressed in this report are those of the authors alone and not the assessments of the U.S. Navy or any other entity of the U.S. government.

References

  1. “美国雷声公司拟用商用流行技术更新潜 艇作战系统” [U.S. Raytheon Corporation Draws Up a Plan to Use COTS to Upgrade Subs’ Systems], 情报指挥控制系统与仿真 技术 [Intelligence, Command, Control, and Simulation Technology], no. 10 (2003), p. 19.
  2. 戴维 [Dai Wei], “ESM 对潜艇支持的新 作用” [ESM’s New Role in Submarine Support], 情报指挥控制系统与仿真技 术 [Intelligence, Command, Control, and Simulation Technology], no. 7 (1999), p. 19. 46. 李平, 陆炳哲 [Li Ping, Lu Bingzhe], “美 国虚拟潜望镜研究及进展” [Research and Progress of the American Virtual Periscope], 船舶电子工程 [Ship Electronic Engineering] 26, no. 5 (2006), p. 199.
  3. This article does not analyze Chinese examinations of U.S. sonar, navigation, combat control, ESM, or radio systems.
  4. 李书甫 [Li Shufu], “水下无人航行器” [UUVs], 舰载武器 [Shipborne Weapons], (April 2003), pp. 57–60.
  5. See, for example, the “US Submarines, Antisubmarine Warfare and All News” section of the China Defense.com Forum at www .china-defense.com/forum/index.php ?showtopic=1541.
  6. 王绪智 [Wang Xuzhi], “潜艇大革命—近岸 作战催生美国下—代多用途核潜艇” [The Submarine Revolution: Littoral Warfare Will Drive the Multirole Nature of America’s Next Generation Nuclear Submarine], 现代舰 船 [Modern Ships] (June 2002), pp. 30–33.
  7. 杨毅, 赵志军 [Yang Yi and Zhao Zhijun], “美国核潜艇艇长是怎样选拔的?” 17 Collins et al.: 85 [How Are American Submarine Commanding Officers Selected?], 当代海军 [Modern Navy] (December 2001), p. 17.
  8. 杜朝平 [Du Zhaoping], “美国为什么不装 备常规潜艇” [Why the U.S. Is Not Equipped with Conventional Submarines], 舰载武器 [Shipborne Weapons] (January 2004), p. 19.
  9. Qi Yaojiu, “Reflecting Again on the San Francisco,” p. 41.
  10. Ibid.
  11. Du Zhaoping, “Why the U.S. Is Not Equipped with Conventional Submarines,” p. 21.
  12. 拜科夫, 济科夫 [Zykov and Baikov—in Russian], 水下间谍战的秘密 [Secrets of Undersea Espionage] (Shanghai: Shanghai Translation, 2006).
  13. Ibid., p. 10.
  14. Ibid., p. 12.
  15. Ibid.
  16. Tai Feng, “Does China Need Antisubmarine Patrol Aircraft?” p. 70.
  17. 管带 [Guan Dai], “走向未来的中国反潜作战” [Looking toward Future PLA Navy Antisubmarine Warfare], 舰载武器 [Shipborne Weapons] (August 2005), p. 33.
  18. 蓝杰斌 [Lan Jiebin], “中国反潜装备的发展” [China’s ASW Equipment Development], 舰载武器[Shipborne Weapons] (February 2004), p. 29.
  19. 巡抚 [Xun Fu], “中国海军反潜武器的发展” [PLA Navy Antisubmarine Weapons Development], 舰载武器 [Shipborne Weapons] (August 2005), p. 29.
  20. Tai Feng, “Does China Need Antisubmarine Patrol Aircraft?” p. 73.
  21. Xun Fu, “PLA Navy Antisubmarine Weapons Development,” p. 30.
  22. Tai Feng, “Does China Need Antisubmarine Patrol Aircraft?” p. 73.
  23. Ibid., p. 75.
  24. Ibid., p. 73.
  25. See, for example, ibid., p. 72; and Xun Fu, “PLA Navy Antisubmarine Weapons Development,” p. 30.
  26. 刘衍中, 李祥 [Liu Yanzhong and Li Xiang], “实施智能攻击的现代水雷” [Carrying Out Intelligent Attacks with Modern Mines], 当 代海军 [Modern Navy] (July 2006), p. 29.
  27. For a much more detailed discussion of this issue, see Andrew Erickson, Lyle Goldstein, and William Murray, “China’s Undersea Sentries: Sea Mines Constitute Lead Element of PLA Navy’s ASW,” Undersea Warfare (Winter 2007), pp. 10–15.
  28. Lin Changcheng, “The Hidden Dragon in the Deep,” p. 30.
  29. Ibid., p. 31. The “first island chain” comprises Japan, its northern and southern archipelagoes, South Korea, Taiwan, the Philippines, and the Greater Sunda Islands. See Xu Qi, “Maritime Geostrategy and the Development of the Chinese Navy in the Early Twenty-first Century,” trans. Andrew S. Erickson and Lyle J. Goldstein, Naval War College Review 59, no. 4 (Autumn 2006), pp. 47–67, esp. note 11.
  30. Xun Fu, “PLA Navy Antisubmarine Weapons Development,” p. 28.
  31. 陈位吴 [Chen Weiwu], “解放军新基洛” [The PLA’s New Kilos], 国际展望 [World Outlook] (July 2006), p. 25.
  32. Xun Fu, “PLA Navy Antisubmarine Weapons Development,” p. 29.
  33. Ibid., p. 32.
  34. 许世勇 [Xu Shiyong], “美海军实施网络反潜 新战略” [The U.S. Navy’s New Network ASW Strategy], 当代海军 [Modern Navy] (September 2006), p. 44.
  35. Ibid. For an equally unimpressed American view, see John R. Benedict, “The Unraveling and Revitalization of U.S. Navy Antisubmarine Warfare,” Naval War College Review 58, no. 2 (Spring 2005), pp. 93–120.
  36. Xu Shiyong, “The U.S. Navy’s New Network ASW Strategy,” p. 44.
  37. 薛兴林 [Bi Xinglin, ed.], 战役理论学习指南 [Campaign Theory Study Guide] (国防大 学出版社 [National Defense University Press], 2002), vol. 3, p. 261.
  38. 石江月[Shi Jiangyue], “‘中国潜艇威胁’与美 军反潜战的复兴” [“The Chinese Submarine Threat” and the Revival of the U.S. Military’s ASW], 现代舰船 [Modern Ships] (May 2007), p. 17.
  39. 胡锦洋 [Hu Jinyang], “外媒: 中国海上‘狼 群’挑战美军潜艇霸权” [Foreign Media: China’s “Wolf Pack” at Sea Challenges American Submarine Hegemony], 海事大 观 [Maritime Spectacle] (July 2006), p. 45.
  40. Wang Yu and Yao Yao, eds., World Naval Submarines, p. 127.
  41. 孟昭珍, 张宁 [Meng Zhaozhen and Zhan Ning], “潜艇承担的新任务” [Submarines Assuming New Missions], 情报指挥控制系统 与仿真技术 [Intelligence, Command, Control, and Simulation Technology] (April 2003), p. 12.
  42. 石江月[Shi Jiangyue], “美国海军需要什么样 的舰队?” [What Kind of Fleet Does the U.S. Navy Require?], Navy Require?], 现代舰船 [Modern Ships], (December 2006), p. 12. 87. 张晓东, 王磊 [Zhang Xiaodong and Wang Lei], “美国海军未来 20 年发展规划” [The 20-Year Development Program of the U.S. Navy], 当代海军 [Modern Navy] (August 2006), p. 51. 88. Yang Yi, “Who Can Estimate the Future Number of Submarines?” p. 28.

Featured Image: Virginia-class submarine Indiana (SSN-789) Departs for Sea Trials, May 2018. (via Navsource)

The Dimensions of Russian Sea Denial in the Baltic Sea

By Tobias Oder

Introduction

Over the last few years, the Russian Federation pursued an increasingly assertive foreign policy in Eastern Europe. Geopolitical infringements on Crimea and Eastern Ukraine are coupled with hybrid warfare and aggressive rhetoric. The buildup and modernization of the Russian armed forces underpins this repositioning and Russia has taken major steps in increasing its conventional and nuclear capabilities.

The significant rearmament of its Western exclave Kaliningrad requires special attention.1 The recent buildup of Russian A2/AD forces in Kaliningrad, coupled with increasingly assertive behavior in the Baltic Sea, poses a serious challenge for European naval policy. Should Russia make active use of its sea denial forces, it could potentially shut down access to the Baltic Sea and cut maritime supply lines to the Baltic states. The full range of Russia’s A2/AD capabilities in Kaliningrad comprises a wide array of different weapon systems, ranging from SA-21 Growler surface-to-air missiles2 to a squadron of Su-27 Flanker fighters and another squadron of Su-24 Fencer attack aircraftsthat can be scrambled at a moment’s notice to contest Baltic Sea access.4 German naval capabilities to counter the SS-C-5 Stooge anti-ship missile system,Russia’s mining of sea lanes, and its attack submarines are of particular interest in retaining Baltic sea control.

Russian A2/AD Systems

The K300 Bastion-P system includes in its optional equipment a Monolit-B self-propelled coastal radar targeting system.6 This radar system is capable of, according to its manufacturer, “searching, detection, tracking and classification of sea-surface targets by active radar; over-the-horizon detection, classification, and determination of the coordinates of radiating radars, using the means of passive radar detection and ranging.”7The manufacturer further states that sea-surface detection with active radar ranges up to 250 kilometers under perfect conditions, while the range of sea surface detection with passive detection reaches 450 kilometers.8

With regard to its undersea warfare capabilities, the Russian Baltic Fleet currently only operates two Kilo-class submarines. Of these diesel-powered submarines, only one is currently operational with the other unavailable due to repairs for the foreseeable future.However, the entire Russian Navy’s submarine fleet is currently undergoing rapid modernization and the Baltic Fleet will receive reinforcements consisting of additional improved Kilo-class submarines.10 Despite the fact that the Baltic fleet remains relatively small in size, these upgrades amount to “a level of Russian capability that we haven’t seen before” in recent years.11

With its formidable ability to float through waters largely undetected and versatile missile equipment options capable of attacking targets on water and land, the Kilo-class presents a serious threat to naval security in the region.12 In fact, its low noise level has earned it the nickname “The Black Hole.”13

The Baltic Sea is relatively small in size and has only a few navigable passageways that create chokepoints. Therefore, it resembles perfect terrain for the possible use of sea mines.14 While often underestimated, sea mines can have a devastating impact on naval vessels. Affordable in price and hard to detect, they can be an effective area-denial tool if spread out in high quantities.15 Russia still possesses the largest arsenal of naval mines, and according to one observer, Russia has “a good capability to put weapons in the water both overtly and covertly.”16 The versatility of possible launch platforms, ranging from full-sized frigates to fishing boats, makes an assessment of current capabilities in Kaliningrad a difficult endeavor.

A Possible Scenario for Russian A2/AD Operations in the Baltic Sea

Given Russia’s long-term strategic inferiority to western conventional capabilities, a realistic scenario will bear in mind that Russia is not interested in vertical conflict escalation. Instead, it is primarily interested in exploiting its temporary regional power superiority.17 Thus, its endgame will not be to destroy as many enemy vessels as possible, but rather to send a signal to opponents and deter them from navigating their ships east of German territorial waters as long as needed.18 Ultimately, A2/AD capabilities only have to inflict so much damage to make defending the Baltic States appear unattractive or too costly to decision makers, especially if those measures can create the perception of Russian escalation dominance.19

Russia is very inclined to use means that offer plausible deniability, to possibly include sea mines.20 The Baltic Sea is still riddled with sea mines from both World Wars21 and if Russia manages to lay sea mines undetected, it can make the argument that any incidents in the Baltic Sea involving sea mines were simply due to old, leftover mines instead of newly deployed Russian systems.

Should measures to deploy sea mines in the Baltic Sea fail, Russia may consider use of a  more overt, multi-layered approach to sea denial. We can expect that a realistic scenario will feature a mixture of above-mentioned approaches that include submarine warfare as well as the use of anti-ship missiles. Russia could also make use of its naval aviation assets and other missile capabilities stationed in Kaliningrad.

Strategic Implications and NATO’s Interests

It is difficult to interpret the deployment of these weapon systems and missiles as anything different than an addition to Russia’s A2/AD capabilities. Russia is actively trying to improve it strategic position to deter possible troops movements on land as well as on the water.22 They mirror Russia’s claims to its sphere of influence in Eastern Europe and serve as an example of Russia’s attempts to exert authority over its periphery, effectively giving Russia the potential to deny access to the Baltic Sea east of Germany.

If Russia increases its A2/AD capabilities in the Baltic Sea, it complicates NATO’s access to the Baltic states during a potential crisis. This is especially startling due to the fact that NATO troops are currently stationed in the Baltics and cutting off maritime supply routes would leave those troops extremely vulnerable. If Russia can effectively cut off NATO’s access to the Baltic states, it increases the “attractiveness to Russia of a fait-accompli.”23 Ben Hodges, then-commanding general of the United States Army in Europe, shared these concerns: “They could make it very difficult for any of us to get up into the Baltic Sea if we needed to in a contingency.”24 In case regional states will be called to fulfill its alliance commitments in the Baltic Sea, Russian submarine blockades, along with mining and missile deployments, will be a major roadblock and possibly threaten safe passage for European vessels.

NATO has an immense national interest in maintaining freedom of navigation in the Baltic Sea and ensuring free access. On average, 2,500 ships are navigating the Baltic Sea at any time and its shipping routes are vital to European economic activity.25 In the 2016 German Defence White Paper, this is clearly identified: “Securing maritime supply routes and ensuring freedom of the high seas is of significant importance for an exporting nation like Germany which is highly dependent on unimpeded maritime trade. Disruptions to our supply routes caused by piracy, terrorism and regional conflicts can have negative repercussions on our country’s prosperity.”26 Thus, if Russia impedes freedom of navigation in this area with its A2/AD capabilities, it will significantly damage Germany’s and other European nations’ export potential. However, vulnerabilities are not limited to shipping routes but also include the Nord Stream gas pipeline and undersea cables upon which a large part of European economies depend.27

A map of the Nord Stream infrastructure project (Gazprom)

In sum, Russia’s A2/AD systems, along with updated submarine capabilities and the potentially disastrous effects of disrupted undersea pipelines and communication cables, enhance Russia’s strategic position and makes hybrid warfare a more realistic scenario. This kind of instability would have serious security and economic implications for NATO.

Recommendations

Should the Baltic Sea fall under de facto authority of the Russian Federation or witness conventional or hybrid conflict, then NATO would face dire economic consequences and live with a conflict zone at its doorstep. This is especially concerning given the poor state of Germany’s naval power in particular. The German Navy lacks most capabilities that would qualify it as a medium-sized navy, and its strategy is mostly agnostic of a threat with significant A2/AD capabilities just East of its own territorial waters.28 Since it is in Germany’s vital interest to maintain freedom of navigation in the Baltic Sea and plan for a potential use of Russian A2/AD capabilities, the German Navy should shift its operational focus to the Baltic Sea. Having outlined the means through which Russia can deny access to the Baltic Sea, specific recommended actions can follow.

Effectively countering the effects of anti-ship missiles stationed in Kaliningrad requires two measures. First, it requires the German Navy to equip its ships and submarines with standoff strike capabilities that enable them to engage Russian radars and anti-ship missiles from outside their A2/AD zone.29 In practice, this requires the procurement of conventional long-range land-strike capabilities for the German Navy. To this day, the entire German fleet lacks any form of long-range land-attack weapon for both surface vessels and submarines.30 Second, if the German Navy has to operate within Russia’s A2/AD environment, it should equip its surface ships with more advanced electronic warfare countermeasures that disrupt sensing and enable unit-level deception.

Russia’s submarines are traditionally hard to detect, but they can be countered by Germany’s own class of 212A submarines. Those feature better sonars and are even quieter, giving them an advantage over Russia’s submarines.31 However, in order to fully exploit this advantage, Germany has to do a better job of committing resources to the maintenance of its submarines as all six of its active submarines are currently not operational due to maintenance.32

German Type 212A submarine U-32. (Bundeswehr/Schönbrodt)

A large part of the effectiveness of anti-mine operations hinges on preemptive detecting. If Germany and other NATO allies can catch Russia in the act of laying mines, it will actively decrease the possible damage those mines can do to vessels in the future and thus their effect on sea denial.33 It can do so by increasing its sea patrols in the region. These patrols can include minimally armed vessels such as the Ensdorf and Frankenthal classes in order to avoid incidental confrontations and to assume a non-threatening stance toward Russia. If preventive action fails, Germany should be ready to employ a NATO Mine Countermeasure Group in order to clear as many mines as possible and to ensure safe passage of ships.

Conclusion

The buildup of forces on Russia’s Western border is paired with a more aggressive stance by the Russian military. Over the last months, the Baltic Sea became “congested” with Russian military activity, leading to increasingly closer encounters.34 In April 2014, an unarmed Russian Su-24 jet made several low-passes near a U.S. missile destroyer, the USS Donald Cook in the Baltic Sea.35 Later in 2014, a small Russian submarine navigating in Swedish territorial waters spurred a Swedish military buildup along its coast due to “foreign underwater activity.”36 And during July 2017, Russia conducted joint naval exercises with China in the Baltic Sea. By conducting a joint naval drill with China in these waters, the Russian military demonstrated strength and flexed its military muscle in a message specifically directed at NATO.37 These actions by the Russian military all point toward conveying the message that Russia does not want the presence of foreign militaries in Baltic Sea waters and is capable of taking countermeasures to exert its sovereignty in the region.

Tobias Oder is a graduate student in International Affairs at the Bush School of Government and Public Service at Texas A&M University. He focuses on international security, grand strategy, and transatlantic relations

References

[1]  “The Baltic Sea and Current German Naval Strategy,” Center for International Maritime Security, last modified July 20, 2016, accessed September 22, 2017, https://cimsec.org/baltic-sea-current-german-navy-strategy/26194.

[2] Also known as S-400 Triumf.

[3]  “Chapter Five: Russia and Eurasia,” The Military Balance 117, no. 1 (2017), 183-236.

[4]  “Entering the Bear’s Lair: Russia’s A2/AD Bubble in the Baltic Sea,” The National Interest, last modified September 20, 2016, accessed September 24, 2017, http://nationalinterest.org/blog/the-buzz/entering-the-bears-lair-russias-a2-ad-bubble-the-baltic-sea-17766?page=show.

[5] Also known as K-300P Bastion-P.

[6]  “K-300P Bastion-P System Deliveries Begin,” Jane’s, last modified March 5, 2009, accessed November 20, 2017, https://my.ihs.com/Janes?th=janes&callingurl=http%3A%2F%2Fjanes.ihs.com%2FMissilesRockets%2FDisplay%2F1200191.

[7]  “Monolit-B,” Rosoboronexport,, accessed November 20, 2017, http://roe.ru/eng/catalog/naval-systems/stationary-electronic-systems/monolit-b/.

[8] Ibid.

[9]  Kathleen H. Hicks et al., Undersea Warfare in Northern Europe (Washington, D.C.: Center for Strategic and International Studies, 2016).

[10]  Karl Soper, “All Four Russian Fleets to Receive Improved Kilos,” Jane’s Navy International 119, no. 3 (2014).

[11]  “Russia Readies Two of its most Advanced Submarines for Launch in 2017,” The Washington Post, last modified December 29, 2016, accessed September 23, 2017, https://www.washingtonpost.com/news/checkpoint/wp/2016/12/29/russia-readies-two-of-its-most-advanced-submarines-for-launch-in-2017/?utm_term=.2976db8c1710.

[12]  “The Kilo-Class Submarine: Why Russia’s Enemies Fear “the Black Hole”, The National Interest, last modified October 23, 2016, accessed November 21, 2017, http://nationalinterest.org/blog/the-kilo-class-submarine-why-russias-enemies-fear-the-black-18140.

[13]  “Silent Killer: Russian Varshavyanka Project 636.3 Submarine,” Strategic Culture Foundation, last modified July 14, 2016, accessed November 21, 2017, https://www.strategic-culture.org/news/2016/07/14/silent-killer-russian-varshavyanka-project-636-3-submarine.html.

[14]  Stephan Frühling and Guillaume Lasconjarias, “NATO, A2/AD and the Kaliningrad Challenge,” Survival 58, no. 2 (April-May, 2016), 95-116.; Alexander Lanoszka and Michael A. Hunzeker, “Confronting the Anti-Access/Area Denial and Precision Strike Challenge in the Baltic Region,” The RUSI Journal 161, no. 5 (October/November, 2016), 12-18.; Hicks et al., Undersea Warfare in Northern Europe.

[15]  “Sea Mines: The most Lethal Naval Weapon on the Planet,” The National Interest, last modified September 1, 2016, accessed November 21, 2017, http://nationalinterest.org/blog/the-buzz/sea-mines-the-most-lethal-naval-weapon-the-planet-17559. In fact, even a small number of sea mines have the capability to disrupt marine traffic due to the perceived risk of a possible lethal encounter (Caitlin Talmadge, “Closing Time: Assessing the Iranian Threat to the Strait of Hormuz,” International Security 33, no. 1 (Summer, 2008), 82-117.).

[16]  “Minefields at Sea: From the Tsars to Putin,” Breaking Defense, last modified March 23, 2015, accessed November 21, 2017, https://breakingdefense.com/2015/03/shutting-down-the-sea-russia-china-iran-and-the-hidden-danger-of-sea-mines/.

[17]  Frühling and Lasconjarias, NATO, A2/AD and the Kaliningrad Challenge, 95-116, 100.

[18]  Lanoszka and Hunzeker, Confronting the Anti-Access/Area Denial and Precision Strike Challenge in the Baltic Region, 12-18 Specifically, commentators outline various scenarios that all share the basic notion that the ultimate goal is to deny NATO forces access to its eastern flank (“Anti-Access/Area Denial Isn’t just for Asia Anymore,” Defense One, last modified April 2, 2015, accessed November 20, 2017, http://www.defenseone.com/ideas/2015/04/anti-accessarea-denial-isnt-just-asia-anymore/109108/).

[19]  Andrew F. Krepinevich, Why AirSea Battle? (Washington, D.C.: CSBA, 2010). For a more detailed discussion of potential Russian escalation dominance, see David A. Shlapak and Michael W. Johnson, Reinforcing Deterrence on NATO’s Eastern Flank (Santa Monica, CA: RAND Corporation, 2016); “Demystifying the A2/AD Buzz,” War on the Rocks, last modified January 4, 2017, accessed September 24, 2017, https://warontherocks.com/2017/01/demystifying-the-a2ad-buzz/.

[20]  Rod Thornton and Manos Karagiannis, “The Russian Threat to the Baltic states: The Problems of Shaping Local Defense Mechanisms,” The Journal of Slavic Military Studies 29, no. 3 (2016), 331-351. The idea behind plausible deniability states that Russia will only make use of means to disrupt Western forces if they cannot explicitly trace their origins back to Russia and that they cannot hold Russia accountable for these actions. This, in turn, leads to insecurity among NATO allies and prevents the alliance from taking collective action.

[21]  “German Waters Teeming with WWII Munitions,” Der Spiegel, last modified April 11, 2013, accessed November 25, 2017, http://www.spiegel.de/international/germany/dangers-of-unexploded-wwii-munitions-in-north-and-baltic-seas-a-893113.html.

[22]  Martin Murphy, Frank G. Hoffman and Gary Jr Schaub, Hybrid Maritime Warfare and the Baltic Sea Region (Copenhagen: Centre for Military Studies (University of Copenhagen), 2016), 10.

[23]  “The Russia – NATO A2AD Environment,” Center for Strategic & International Studies, last modified January 3, 2017, accessed September 23, 2017, https://missilethreat.csis.org/russia-nato-a2ad-environment/.

[24]  “Russia could Block Access to Baltic Sea, US General Says,” Defense One, last modified December 9, 2015, accessed September 23, 2017, http://www.defenseone.com/threats/2015/12/russia-could-block-access-baltic-sea-us-general-says/124361/.

[25]  Frank G. Hoffman, Assessing Baltic Sea Regional Maritime Security (Philadelphia: Foreign Policy Research Institute, 2017), 6.

[26]  Federal Ministry of Defence, White Paper on German Security Policy and the Future of the Bundeswehr (Berlin: Federal Ministry of Defence, 2016), 50.

[27]  Murphy, Hoffman and Schaub, Hybrid Maritime Warfare and the Baltic Sea Region.

[28]  Bruns, The Baltic Sea and Current German Naval Strategy.

[29]  Andreas Schmidt, “Countering Anti-Access/Area Denial: Future Capability Requirements in NATO,” JAPCC Journal 23 (Autumn/Winter, 2016), 69-77.

[30]  Hicks et al., Undersea Warfare in Northern Europe.

[31]  Hicks et al., Undersea Warfare in Northern Europe.

[32]  “All of Germany’s Submarines are Currently Down,” DefenseNews, last modified October 20, 2017, accessed November 21, 2017, https://www.defensenews.com/naval/2017/10/20/all-of-germanys-submarines-are-currently-down/.

[33]  Talmadge, Closing Time: Assessing the Iranian Threat to the Strait of Hormuz, 82-117, 98.

[34]  “Russian Warships in Latvian Exclusive Economic Zone: Confrontational, Not Unlawful,” Center for International Maritime Security, last modified May 15, 2017, accessed September 23, 2017, https://cimsec.org/russian-warships-latvias-exclusive-economic-zone-confrontational-not-unlawful/32588.

[35]  “Russian Jet’s Passes Near U.S. Ship in Black Sea ‘Provocative’ -Pentagon,” Reuters, last modified April 14, 2014, accessed September 23, 2017, https://www.reuters.com/article/usa-russia-blacksea/update-1-russian-jets-passes-near-u-s-ship-in-black-sea-provocative-pentagon-idUSL2N0N60V520140414.

[36]  “Sweden Steps Up Hunt for “Foreign Underwater Activity”,” Reuters, last modified October 18, 2014, accessed September 23, 2017, https://www.reuters.com/article/us-sweden-deployment/sweden-steps-up-hunt-for-foreign-underwater-activity-idUSKCN0I70L420141018.

[37]  “Russia Says its Baltic Sea War Games with Chinese Navy Not a Threat,” Reuters, last modified July 26, 2017, accessed September 23, 2017, https://www.reuters.com/article/us-russia-china-wargame/russia-says-its-baltic-sea-war-games-with-chinese-navy-not-a-threat-idUSKBN1AB1D6.

Featured Image: Russian troops load an Iskander missile. (Sputnik/ Sergey Orlov)

The Battle of Locust Point: An Oral History of the First Autonomous Combat Engagement

Fiction Topic Week

By David R. Strachan


TOP SECRET/NOFORN

The following classified interview is being conducted per the joint NHHC/USNI Oral History Project on Autonomous Warfare. This is the first of an eight-part series with Admiral Jeremy B. Lacy, USN (Ret), considered by many to be the father of autonomous undersea warfare, where we discuss the development of the Atom-class microsubmarine, and its role in the first combat engagement of the autonomous era, the Battle of Locust Point.

November 17, 2033

Annapolis, Maryland

Interviewer: Lt. Cmdr. Hailey J. Dowd, USN


The last twenty-five years have witnessed extraordinary developments in naval warfare. Ever smaller, smarter, more lethal vehicles have revolutionized the way navies fight, and the way nations project power beyond their borders. Historians agree that the genesis of this “micronaval revolution” can be traced to the year 2016, when a disabled Russian Istina-class microsubmarine was recovered off the coast of Cape Charles, Virginia. The Chesapeake Bay Incident, as it became known, was a harbinger of things to come, for just ten weeks later, as crowds descended on Baltimore Harbor for Fleet Week and the commissioning of the U.S. Navy’s newest destroyer, USS Zumwalt (DDG 1000), Russian and U.S. microsubmarines would square off just beneath the surface in what would be the first combat engagement of the autonomous era, the Battle of Locust Point.

Historians also agree that the micronaval revolution can be traced to a single individual, an individual whose name, like Hyman Rickover, is virtually synonymous with the bold thinking that has come to define the modern U.S. Navy.

Admiral Jeremy Baynes Lacy, USN (ret.) graduated from the United States Naval Academy in 1989, earning a Bachelor of Science in Mechanical Engineering. He served at sea aboard the USS Pennsylvania (SSBN 735), USS Henry M. Jackson (SSBN 730), USS Springfield (SSN 761), and the USS Pogy (SSN 647), deploying to the North Atlantic, Arctic, and Western Pacific, as well as conducting numerous strategic patrols. Ashore, Lacy earned a Masters Degree from the Naval Postgraduate School in Naval/Mechanical Engineering, and served as Major Program Manager for Undersea Project 7, the Atom-class microsubmarine program. Following his work on the Atom-class, he established and commanded Strikepod Group (COMPODGRU) 1, eventually serving as Commander, Strikepod Forces, Atlantic (COMPODLANT). His personal decorations include the Distinguished Service Medal, the Legion of Merit (three awards), the Meritorious Service Medal (two awards), the Joint Service Commendation Medal, the Navy and Marine Corps Commendation Medal (five awards), and Navy and Marine Corps Achievement Medal (two awards), in addition to numerous unit and campaign awards.

Admiral Lacy is currently enjoying his “retirement” as the Corbin A. McNeill Endowed Chair in Naval Engineering at the United States Naval Academy. He was interviewed at his home in Annapolis, Maryland.

Would you tell us a little of your background? How did you end up in the Navy?

I was born and raised in the rural New Jersey hamlet of Port Murray, nestled among cornfields and cow pastures many people can’t believe exist the Garden State. My mother was a secretary at the local elementary school, and my father managed a printing plant just outside New York City. He grew up dirt poor on a farm in New Hampshire without a whole lot of options, so he enlisted in the Navy the day after he graduated from high school. After basic, he ended up in crypto school in California, then a Naval Security Group detachment in Turkey where he eavesdropped on Soviet communications. When I was little he used to make these veiled references here and there to his time in the service, but he never elaborated on anything. He took his secrecy oath very seriously, and it wasn’t until the mid 80s, when I was a curious teenager, that he felt comfortable opening up about what he did. I was totally captivated by the stories he would tell, and the meaning that the work gave him. As luck would have it, I was a pretty good student, and managed to get accepted to the Academy. Fast forward four years and I’ve got a degree in mechanical engineering, and five years of submarine service waiting for me.

Why did you choose submarines?

Never in a million years did I expect to end up choosing submarines. It was the time of Top Gun, and boy I was gonna fly jets! But during my summer service orientation I went for a cruise on the Nebraska, and that was it. I was hooked, and fifteen months later I’m on the Pennsylvania for my junior tour.

Would you say it was the submarine service that spurred your interest in unmanned vehicles?

Oh, definitely. When I was on the Pogy we worked with some very early prototypes sent up from [Naval Undersea Warfare Center] Newport for arctic testing. Nothing too sexy – ocean survey, bathymetry. But I guess at that time I was intrigued with the idea, and started imagining the possibilities, the implications. What if these things could think for themselves? What if they were weaponized?  And what if the bad guys had them? After my tour on Pogy, I ended up at the Naval Postgraduate School working on my masters, and actually wrote my thesis on UUVs – a survey of current architecture, an examination of future technologies and how these could be leveraged for unmanned systems, and how UUVs could be integrated into fleet operations.

Legend has it DOD wanted to classify it.

[Laughs] Well, not really. It was nothing more than a skillful integration of open sources, some analysis, and extrapolation. It did manage to attract some interest, though.

From ONR? DARPA?

Well, actually it was the folks at Newport who reached out to me initially. My advisor at NPS was friendly with the CO there, and at the time – around early 1999 – they were working with APL, SPAWAR, and some other folks on crafting the Navy’s UUV master plan. So they called me up, asked if I’d like to come aboard, and next thing I know I’m on a plane to Rhode Island.

What was your contribution to the 2000 UUV Master Plan?

Well, by the time I entered on duty, the bulk of the heavy lifting was pretty much complete. But I did manage to contribute some perspective on the vision, CONOPS (especially in ASW), as well as technology and engineering issues. But where I think I added the most value was regarding the feasibility of the SWARM [Shallow Water Autonomous Reconnaissance Modules] concept – the idea of utilizing large numbers of small AUVs to create a dynamic, autonomous sensor grid for wide area mine countermeasures.

Was the SWARM concept a precursor to the Strikepod?

Conceptually, yes. It was an early articulation of an undersea battle group, the idea of numerous autonomous vehicles cooperating together to complete a mission. But while the idea was entirely feasible, I felt that SWARM was rather narrow in its scope. As an MCM platform, I suppose it made sense, with scores of small, relatively inexpensive nodes spread across hundreds of square miles, air dropped from B-2s or Hornets. But what we needed was an entirely new class of vehicle that was flexible, adaptive, and capable of carrying out multiple missions, whether in networks of two or two thousand. So, then, I guess you could say that SWARM inspired both Strikepods and the Atom-class submarine, but for different reasons.

Can you talk about how the Atom-class program originated, and how the Strikepod concept evolved?

I’d been having discussions with some of the Newport and MIT folks while working on the Master Plan, and we were all pretty much in agreement on the core elements of a UUV pod structure – connectivity, redundancy and expendability. We were also in agreement that small is beautiful, if you will, but all of the work on miniaturization was being done in the universities. Long story short, not only did ONR find the funding, but agreed to bring the university people on board, and next thing we have a lovely, windowless compartment in the basement of the Navy Lab. And we had a nice, nondescript name: Undersea Project 7.

It was an exciting time, and it was a genuine privilege working with some of the brightest minds around, people who could have easily been making five times their salaries at Google, or JP Morgan. 

The technology was complex, and the work could be pretty tedious. Lots of highs and lows – two steps forward one step back. For some of the top brass it was hard to justify the expense, pouring all that money into a system that seemed unnecessarily complicated, and, for them, pure science fiction. Do we really need roaming schools of killer fish? Don’t forget, these were guys who came from the era of SOSUS. But that’s what we were offering – and more. A smart SOSUS that could be deployed anywhere, at any time.

We envisioned three variants – one for command & control, or what we called the Rogue, one for navigation and communications, which we called the Relay, and a third that could physically attach itself to vessels, mines, infrastructure. This we called the Remora. Together they could be organized in networks of any size, undersea strike groups capable of communicating with each other and, via the Relay, surface assets and ashore bases.

The Atom-class was under development for nearly fifteen years. Were you at all aware of what was happening with adversary developments, and did that play a role in the design?

Absolutely, and somewhat.  Over time, I became increasingly involved with the intelligence side of things – collection guidance, and analysis. There came a point where I was ping-ponging pretty regularly between Carderock and Suitland, especially by the late 2000s when we were really stepping up our efforts. We were well aware of Chinese interest in unmanned systems, and around 2010 we started receiving reports about the Shāyú program. We were also keeping close tabs on some tech transfer between North Korea and Iran, something reminiscent of their Yono and Ghadir cooperation. There was a real sense of urgency, that we needed to be out-innovating and out-classing our adversaries if we were going to stay ahead of the curve. But we believed strongly in the Atom and Strikepods, and while it was important to know what the other guys were up to, we didn’t let it distract us from our own vision.

The most intriguing stuff was the HUMINT coming out of Rubin [Central Design Bureau for Marine Engineering] – concerning a Project S3, or “Istina” – references to unmanned systems, miniaturization, and a breakthrough in energy production. And then there were reports of Russian vessels showing up unexpectedly during our boomer patrols. They seemed to just know where we were. The counterintelligence guys were in overdrive – this was eerily familiar to the red flag that plagued Richard Haver before the Walker ring was exposed. So we couldn’t just stand there and scratch our heads. But everything checked out internally. So, if there was no security breach, then, how could they know?

So, I started compiling data, and mapped it all out. CIA and DIA both believed it could be evidence of a non-acoustic sensor of some kind, and while this was certainly plausible, the evidence was mostly hearsay. We had imagery of SOKS sensors, and journal articles, and public statements by high ranking officials, but no hard data to substantiate the existence of a viable, working platform. We were, however, receiving quality product on the Istina program that suggested the Russians had developed some kind of miniaturized naval platform capable of lurking silently off Groton or King’s Bay, then trailing our boats to expose their positions to the Russian Fleet.

But you couldn’t sell it?

[Laughs] Well, no, which, admittedly, was pretty frustrating. But something that gets lost in all the scandals and the slanted reporting is the commitment to analytic rigor that permeates the intelligence community. These folks understand that their work has a direct impact not only on U.S. policy, but ultimately on human lives. The difference between right and wrong can mean the difference between life and death, and they carry that burden every day. So, no, I couldn’t sell it. And it was back to the drawing board.

And then Cape Charles happened.

And then Cape Charles happened.

Can you tell us about that day?

I remember it like it was yesterday. It was a Saturday morning, one of those heavy, dewy August mornings in D.C. I was out getting in my run before the heat of the day, when I get a call from Chandra [Reddy, the ONI liaison for Undersea Project 7]. He tells me I need to come in to the office. We were working weekends pretty regularly, but I’d blocked out that day for a round of golf with my dad. I kindly remind him of this, and all he says is, “Jay – we’ve got something.” An hour later I’m on an SH-60 out of Andrews with Chandra and four engineers from S&T, tracking the Potomac out to the Bay. 

They briefed me enroute. Apparently the Coast Guard in Cape Charles, Virginia got a call around 7:30 that morning from a fisherman about a mile off the coast who said he came across something that “looked military.” They send out an RB-M, and bring back what they believe is a U.S. Navy prototype submersible. They phone it in, and ninety minutes later we’re putting down on a grassy airfield in the middle of nowhere, where we’re greeted by an earnest seaman recruit who proceeds to leadfoot it all the way to the station.

It was being kept in a back room, sitting on a table under a blue tarp. When I first saw it, I thought it was just a radio-controlled sub, like someone’s weekend garage project had gone astray. It was basically a miniaturized Oscar II, maybe six or seven feet long, which I suppose shouldn’t be surprising, since the Oscar was built for capacity, and why go to the trouble of designing and developing a whole new hull form when you can just miniaturize one that’s already in the inventory? 

We didn’t know how long it had been disabled, or if the Russians were even aware. We did know that the [Vishnya-class intelligence ship] Leonov had been lurking offshore, and there were a couple of fishing boats we were keeping an eye on near Norfolk, but for all we knew the handlers were right nearby, somewhere on shore. We had to assume they would come looking, so we had to act quickly.

We cracked it open and took a look right there on the table. The guys from S&T were like pathologists, very careful and thorough. One of them had a video camera, which I eventually realized was patched in to the White House Situation Room. 

I don’t think I need to tell you that the intelligence value was immeasurable, a holy grail. It confirmed, of course, what I’d been speculating all along, but it also showed us just how far along the Russians were. The propulsion system alone was a quantum leap for them, and was very similar to what we had been developing for the Atom.

Too similar?

I’d say strikingly similar. Maybe alarmingly so. But there was so much information floating around in the public domain – academia, scientific journals – so much private sector R&D going on, the design could have originated anywhere. For sure there was plenty for the counterintelligence guys to lose sleep over, but at that moment we had bigger fish to fry.

Did you bring it back to Washington for further analysis?

Well, actually, no.

You see, during the autopsy, one of the tech guys notices something – a small explosive charge right against the hull, wired to the CPU. The damn thing had an autodestruct! It was right out of Mission Impossible, but it obviously had failed to activate. We’d been toying with just such an idea for the Atom-class – a small blast to punch a hole in the hull and allow it to disappear into the depths, then ping like a black box for eventual retrieval.

Chandra’s on the secure phone, presumably with the Situation Room, when he turns to me, pointing at the Istina. “They want us to blow it,” he says. “They want us to put it back.” Immediately I think – are they crazy? This is the biggest intelligence haul since K-129, and they want to just dump it?  But then I realize – of course!  The Bay is shallow enough that if the Russians come calling, they will expect to find it, and if they can’t, they’ll have to assume we did. We needed them to believe we were clueless, so we had to let them find it. That way they’d never know what we knew.

So we closed it up, drove it back out into the Bay, and scuttled it.

Was it then that the President authorized Operation Robust Probe?

The biggest question on everyone’s mind was: Is this an isolated penetration, or is it part of a larger operation? Prudence required that we take action to sanitize the Bay, so yes, Robust Probe was ordered, and the Navy immediately mobilized.

But as urgent as the situation was, there was also a need for discretion. We couldn’t exactly fill the Chesapeake Bay with destroyers. Even an increased presence of Coast Guard or small patrol craft would likely not go unnoticed, at least by the Russians. So, within hours the Navy had cobbled together a flotilla of private watercraft manned by cleared contractors and sailors in civies. They fanned out across the Bay, banging away with dipping sonar, fish finders, and whatever they could use.

Fortunately, we’d been putting Alpha, the first operational Strikepod, through its paces, and had been having a lot of success. So we fast-tracked sea trials, put a crew together, rigged up a mobile command post – the very first Strikepod Command – in what looks like a plain T.V. news van, and we’re in business. 

Within twenty-four hours Alpha had detected another Istina lurking just off Thomas Point Light. It was an odd mixture jubilation – knowing that the Atom-class was a success – and dread, the weight of knowing of what was at hand, that the Russians had not only designed, developed and deployed a sophisticated micro AUV, but they were using it to brazenly violate our territorial waters.

Was there any other reaction from the White House?

The President immediately convened the National Security Council, and, yes, yours truly was ordered to attend and provide the briefing. He was not happy. How did we not see this coming? I explained how we were aware of Russian efforts, but that our coverage had been spotty. And there were no indications that the Russians were on the brink of deploying a new vehicle to the fleet, much less inserting it into U.S. territorial waters. 

I remember how surreal it felt, sitting there in the Situation Room, the looks on the faces around me. 

Fear?

Not fear. More like a mixture of deep concern and disbelief as if no one could wrap his head around the fact that this was actually happening. And I think everyone in that room knew that things were about to change, that all of our theorizing, prognosticating, and preparing for the future of naval warfare was coming to a head. The future had arrived, right in our back yard. 

The prevailing opinion in the room was that we should move immediately to destroy it and contact the Russian government. The guys from CIA made a compelling argument for restraint – one with which I concurred – that this was more an opportunity than a threat. There was no reason to believe this was Russia’s opening move against the United States, and that if anything it was the latest example of resurgent Russian bravado and Putin’s longing for the Cold War days. This was an opportunity to gather as much intelligence as possible on a new foreign weapons platform. But there was also concern that, if weaponized, the Istinas could be used to stage a terror attack and sow further insecurity and political unrest in the United States. In the end, though, we managed to convince the President to hold off, but if at any point it was determined that there existed a threat to life or property, we would have to destroy it.

Did you personally have any theories as to its intentions?

Not many. There was Aberdeen [Proving Ground]. Theoretically an Istina could get in close enough to extract some SIGINT or MASINT, depending on the vehicle’s sensor capabilities. But who really knew? Maybe the Russians were just interested in ship spotting, or counting crabs.

And then it just kind of hit me. It was September – the following month was Fleet Week in Baltimore. The Navy would be showcasing its wares –warships, the Blues – which normally wouldn’t be such a big deal, except there was something else that year.

Zumwalt? 

Exactly. Zumwalt was on the agenda that year for commissioning. She’d be sailing up the Bay, and then docked for several days at Locust Point. We weren’t concerned with an Istina attacking Zumwalt, per se, but we knew that there was much to be had intelligence-wise. And while we had no desire to enable a Russian intelligence operation, we also wanted to collect as much as possible of our own.

When we examined the Istina in Cape Charles, we didn’t discover a warhead of any kind, so we assumed any others wouldn’t be weaponized either. And even if they were, it was unlikely that a single Istina could inflict any meaningful damage on an armored warship, unless the Russians had managed to develop a super compact, high yielding explosive, but there was no intelligence indicating such. Perhaps a group of Istinas detonating simultaneously could cause a problem, enough to raise some eyebrows or even provoke a crisis, but it would take dozens to equal the yield of even a single torpedo.

It was a delicate, rapidly unfolding situation that was unlike anything we’d ever experienced in the modern era. Of course, we’d ventured into Soviet waters in manned submarines during the Cold War, at great risk to both human life and the delicate balance that defined the Cold War. But had Parche or Halibut been detected or attacked and sunk during Ivy Bells, it would have provoked a political crisis that may well have triggered World War III. Were the stakes just as high now? It was anyone’s guess.

Were you able to deploy additional Strikepods?

Yes. Alpha had been working like a charm, but then abruptly it loses contact with the Istina as it moves under a passing tanker, which was of course disappointing, but not entirely unexpected. In the meantime, we’d deployed two more six-ship Strikepods – Beta to cover the central Bay, and Gamma the southern region. It was a lot of territory to cover, but that constituted the sum total of our Atom-class fleet at the time. There were eight currently in various stages of production, but it would be at least a day or two before we could deploy them.

Pretty soon we get word that Gamma has detected something down near Bloodworth Island.  At first we figured we’d reacquired the original, but an analysis of the acoustic data revealed that it was actually a new vehicle. It was alarming, for sure, knowing that there were now at least two Russian microsubmarines lurking in the Chesapeake Bay.

We tracked it for about two days, and then Beta manages to reacquire Istina number one. About twelve hours later, Alpha detects not one, but two more right at the mouth of the Patapsco River. That’s when everyone’s hackles went up. This was no longer a counterintelligence operation. 

Operation Robust Probe becomes Robust Purge?

Correct. Once we realized that we were dealing with at least four Istinas in the Bay, and they were lingering in Zumwalt’s path, the time for just being sneaky was over. We needed to at the very least disrupt, if not outright destroy them. 

By now the eight new Atoms have come off the line, so we fit them each with a makeshift warhead of C4, designate them Remoras, and deploy them immediately – four for Alpha, which was now tracking two separate targets, and two each for Beta and Gamma. They would only be employed if we felt that there was an immediate threat to life or property.

In the meantime, Zumwalt, Leyte Gulf, and Jason Dunham, and the other ships arrive, and as they transit the Bay, the Istinas take up position about 500 meters astern. Once the ships turn into the Patapsco, though, they back off and assume a position just outside the mouth of the river. They linger there for about twelve hours, until we get a burst from Alpha: One of the Istinas is headed up river.

So now we have a decision to make. Alpha is tracking two separate vehicles. Do we order Alpha to pursue, and break off contact with one of them? Turns out Sea Rays and Boston Whalers aren’t particularly effective ASW platforms, and Strikepods Beta and Gamma were both busy with their own tracks, well to the south, too far away to assist Alpha in time.

Then one of our brilliant engineers suggests splitting Alpha pod. We could repurpose one of the Remoras as a Rogue, and assign it an armed Remora and a Relay for coms. The engineers get on it, and in about fifteen minutes a small splinter pod breaks off and starts trailing the Istina up the Patapsco.  Things get increasingly tense as it nears the Key Bridge, and we decide that if the Istina begins moving toward the bridge supports, we would have no choice but to destroy it.

After a few anxious moments it passes under the bridge without incident, and continues on a path toward Locust Point, where the warships are docked. Word comes down from the Sit Room: The Istinas now present a clear and present danger, so immediately we order the splinter pod to attack. A minute later a Remora detonates about five meters below the surface, and we watch as it and the Istina disappear from the tactical display. Beta and Gamma attack as well, sending their respective contacts, as well as two Remoras, to the bottom of the Bay.

And just like that it was over?

It was over.

The Strikepods and surface vessels continued to prosecute Robust Purge until Zumwalt and the other ships made it safely to the Atlantic. By all accounts, Baltimore Fleet Week, including the commissioning of the Navy’s newest destroyer, came off without a hitch. No one had any idea that the first decisive battle of a new era in naval warfare had just occurred within throwing distance of Fort McHenry.

What were the takeaways?

Well, we had terabytes of data to analyze, of course, but perhaps even more importantly, there were myriad political, security, and even philosophical questions to consider. What exactly were AUVs? Were they vessels? Weapons? In a way they were like spies, but rather than round them up and expel them, or put them in jail, we’d have to disrupt them, or even kill them.

Perhaps the biggest takeaway, though, was the realization that a new form of conflict was dawning. Submarines had of course always been characterized by stealth and secrecy, and had engaged in high risk cat-and-mouse games in order to stay ahead of the adversary. But now that submarines were unmanned, and, like their stealthy manned cousins, operated far from the prying eyes of the public, a kind of limited war was now possible, a war with little or no risk of escalation, or political fallout, and most importantly, no loss of human life. A war characterized by secrecy, anonymity, and non-attribution.

In other words, as we sit here today in my living room, in the year 2033, with the benefit of hindsight, our vision of AUVs as merely an extension of the Fleet’s eyes and ears was really rather primitive.

And only the beginning of the story.

[End Part I]

David R. Strachan is a writer living in Silver Spring, MD. His website, Strikepod Systems, explores the emergence of unmanned undersea warfare via real-time speculative fiction. Contact him at strikepod.systems@gmail.com.

Featured Image: Arctic Sub Base by Jon Gibbons (via Deviant Art)

Hunters and Killers

Norman Polmar and Edward Whitman, Hunters and Killers: Volume 1 and Volume 2. Annapolis, Naval Institute Press, 2015/2016, $44.95.

By Joe Petrucelli

In their two-volume work, Norman Polmar and Edward Whitman have written the first comprehensive history of Anti-Submarine Warfare. As the authors note in their preface, there are histories of ASW campaigns as well as  both adversary and U.S. submarine operations, but no one has examined the discipline of ASW from its humble beginnings. Polmar and Whitman do just that in these two volumes, starting with the rudimentary ASW operations of the American revolution through the massive campaigns of the First and Second World War and finishing with the nuclear revolution and post-Cold War implications. Through their analysis, one can discern four factors that make ASW campaigns effective throughout history: numbers, technology, intelligence coordination, and organizational integration and concepts.

The most important conclusion that can be drawn from Polmar and Whitman’s analysis is that in ASW, numbers matter. While acknowledged as important, most navies do not appear to consider ASW as one of their most important capabilities and invest in it accordingly. Thus, during the interwar period, Polar and Whitman observe that the U.S. and Royal Navies drastically cut their ASW platforms both in absolute and relative terms, preferring to expend limited resources on larger, more prominent line combatants. Unfortunately, all the successful ASW campaigns they examined required presence over a large open-ocean area and a small number of highly capable combatants were not necessarily helpful, leaving the Allies to suffer severe losses until embarking on emergency building programs. To emphasize this point, in 1940 none other than Winston Churchill observed that large surface combatants (even if equipped with ASW weapons and sensors) were not effective escorts because they were valuable enough to become targets themselves. The most effective force structure during the ASW campaigns they examined consisted of long-range patrol aircraft and a large number of small, relatively expendable escorts.

The history of ASW is one of technological innovation by both submarines themselves and ASW forces. Polmar and Whitman do an excellent job explaining these complex technical developments in ASW (i.e. sound wave attenuation, convergence zones, etc) and translating them into layman-ese. However, it is important to note that they do not present technology as the solution for ASW dominance, but rather as a never-ending balance between offensive and defensive technologies. As ASW forces developed new technical capabilities such as depth charges, radar, and sonar, submarines countered with technologies such as snorkels, longer-range torpedoes and air-independent and nuclear propulsion. In the end, technology provided necessary tactical capabilities for an effective ASW campaign, but by itself was not sufficient to practice effective ASW.

Additionally, the authors explores the role of intelligence and cryptology in ASW, a vital factor in historical ASW campaigns. Allied cryptology efforts, known as ULTRA during WWII, were vital to cueing ASW forces and helping convoys avoid known U-boat patrol areas, while HF/DF capabilities deployed on escort ships gave ASW forces more tactical-level cueing. Polmar and Whitman describe a similar cueing role for U.S. undersea surveillance assets during the Cuban Missile Crisis. However, it was not just intelligence and cryptology capabilities by themselves that gave ASW forces an advantage, but the fusion of intelligence capabilities into operational forces. By devising employment schemes to utilize intelligence and cryptology windfalls in the short time window that they were relevant, the Allies gained critical advantages in the ASW fight.

Underlying all of these factors and capabilities is the awareness that ASW is a team sport. Integrating ASW platforms from multiple services, intelligence/cryptology sources, and new technical capabilities into an effective campaign required new organizations and employment concepts. The most well known ASW concept, one that was initially resisted during both World Wars, was the convoy system. While convoys probably had the biggest impact in reducing the effectiveness of enemy submarines, German submarines were able to at least partially adapt to it with their own “wolfpack” concept.  Other operational concepts that proved crucial to effective ASW included the development of hunter-killer groups (including escort carriers) to reinforce the convoys and the creation of dedicated ASW organizations (such as the WWII U.S. Tenth Fleet).

USS Providence (SSN-719) snorkeling at her berth in Groton, CT before having honors rendered by the Sloop Providence. (Source)

Although these volumes are a history of ASW and do not explicitly present policy recommendations, there are some lessons from Polmar and Whitman’s work that seem increasingly relevant today. First, reliance on a breakthrough technology to turn the oceans “transparent” is a risky proposition, as the Royal Navy discovered during World War II when their planned reliance on ASDIC (or active SONAR) for ASW proved not nearly as effective as hoped. Additionally, numbers matter, and effective ASW requires a force structure we lack today – namely small surface combatants and escorts (admittedly the LCS is small, but in this reviewer’s opinion it lacks range, combat capability, and is not designed as an escort). Lastly, ASW requires organizational integration in a way that has not been stressed in recent years. While the U.S. Navy (and close allies) have maintained ASW organizations and periodically exercised those capabilities since the end of the Cold War, convoys were last utilized during Operation EARNEST WILL in the Persian Gulf while the last ASW convoys appear to have been during World War II. It is not clear if we have truly exercised convoy tactics (much less having the merchant shipping in the current era to string together a convoy system) or have war-gamed a theater level war against dozens of commerce raiding submarines.

Overall, Polmar and Whitman’s two volumes are an amazingly comprehensive history of Anti-Submarine Warfare. This reviewer’s only complaint is that the analysis largely ends with the end of the Cold War. While the intensity of ASW operations declined at this time and more recent issues are admittedly difficult to research due to classification issues, there are a number of public ASW incidents that would have been worthy of including, from the 2007 incident where a Chinese submarine surfaced inside a U.S. carrier battle group to the 2009 deployment of a Russian Akula SSN in the Western Atlantic. These recent incidents, as well as changes in technology and command structures, would better complete their description of ASW. Despite that one critique, this is a very readable and informative set of books and one that should be required reading for every naval officer serving with surface combatants, submarines, maritime patrol aircraft, and undersea surveillance organizations.

Joe Petrucelli is a former submarine officer and current Naval Reserve officer. He is a PhD student at George Mason University and a Student Fellow at the school’s Center for Security Policy Studies. His opinions are his own and do not reflect the positions of the Department of Defense or his employer.

Featured Image: An allied ship is seen sinking through the periscope of a German U-Boat in WWII.