UUVs as Stealthy Logistics Platforms

Guest post for UUV Week by  Steve Weintz.

As potential adversaries sharpen their abilities to deny U.S. forces the freedom to maneuver, they concurrently constrain America’s traditional strength in supporting expeditionary power. Sea-bases bring the logistical “tail” closer to the expeditionary “teeth,” but they must stay outside the reach of A2/AD threats. Submarines remain the stealthiest military platform and will likely remain so for some time to come. In addition to their counter-force and counter-logistics roles, subs have seen limited service as stealth cargo vessels. History demonstrates both the advantages and limitations of submarines as transports. Submarine troop carriers, such as those used in SOF operations, are distinct from submarine freighters; the submarine’s role in supply and sustainment is addressed here. Unmanned Underwater Vehicles (UUVs) will revolutionize minesweeping, intelligence collection, and reconnaissance. But they may also finally deliver on the century-old promise of the submarine as a stealthy logistics platform.

PIC
Deutschland (Launched 1916)

Although early submarine pioneers like Simon Lake saw commercial advantage in subs’ ability to avoid storms and ice, submarines as cargo carriers were first used operationally to counter Britain’s A2/AD strategy against Germany in World War I. The Deutschland and her sister boat Bremen were to be the first of a fleet of submarine blockade-runners whose cargo would sustain the German war effort. Despite her limited payload – only 700 tons – the privately-built Deutschland paid for herself and proved her design concept with her first voyage. But the loss of Bremen and America’s turn against Germany scuttled the project.

Cargo subs were again employed in World War II. The “Yanagi” missions successfully transported strategic materials, key personnel, and advanced technology between Germany and Japan. The Japanese also built and used subs to resupply their island garrisons when Allied forces cut off surface traffic. Their efforts met with limited success – enough to continue subsequent missions but not enough to shift the outcome of the Allied strategy. The Soviet Union also used submarines to sustain forces inside denied areas at Sevastopol and elsewhere. These efforts inspired serious consideration of submarine transports that carried over well into the Cold War. Soviet designers produced detailed concepts for “submarine LSTs” capable of stealthily deploying armor, troops and even aircraft.

Dr. Dwight Messimer, an authority on the Deutschland, points out that cargo subs – with one notable exception – have never really surmounted two key challenges. They have limited capacity compared with surface transports, and their cost and complexity are far greater. If subs are made larger for greater capacity, they forfeit maneuverability, submergence speed, and stealth. If built in greater numbers their expense crowds out other necessary warship construction. The Deutschland and Japan’s large transport subs handled poorly and were vulnerable to anti-submarine attacks. Many cargo subs were converted into attack subs to replace attack-sub losses.

The one notable exception to these difficulties is “cocaine subs” so

A "narco-submarine" is apprehended off Honduras
A “narco-submarine” is apprehended off Honduras

frequently encountered by the US Coast Guard. These rudimentary stealth transports are simple and inexpensive enough to construct in austere anchorages, make little allowance for crew comfort, and have proven successful in penetrating denied US waters. The tremendous value of their cargoes means that only a few of these semi-subs need to run the blockade for their owners’ strategy to succeed.

Logistical submarine designers could potentially overcome their two primary challenges by drawing inspiration from smugglers and from nature. UUVs, like other unmanned platforms, enjoy the advantages gained by dispensing with crew accommodations or life-support

MSub's MASTT
MSub’s MASTT

equipment. Large UUVs built and deployed in large numbers, like cocaine subs and pods of whales, could transport useful volumes of cargo in stealth across vast distances. MSubs’ Mobile Anti-Submarine Training Target (MASTT), currently the largest UUV afloat, offers a glimpse at what such UUVs might look like. At 60 metric tons and 24 meters in length, MASTT is huge by UUV standards but very small compared to most manned subs.

3D printing technology is rapidly expanding, producing larger objects from tougher, more durable materials. Already, prototype systems can print multistory concrete structures and rocket engines made of advanced alloys. It will soon be possible to print large UUV hulls of requisite strength and size in large numbers. Indeed, printed sub and boat hulls were one of the first applications conceived for large-scale 3D printing. Their propulsion systems and guidance systems need not be extremely complex. Scaled-down diesel and air-independent propulsion systems, again mass-produced, should suffice to power such large UUVs. These long-endurance mini-subs would notionally be large enough to accommodate such power-plants.

10 large UUVs of 30 tons’ payload each could autonomously deliver 300 tons of supplies to forward positions in denied areas. 300 tons, while not a great deal in comparison to the “iron mountain” of traditional American military logistics, is nevertheless as much as 5 un-stealthy LCM-8s can deliver.

A “pod” of such UUVs could sail submerged from San Diego, recharging at night on the surface, stop at Pearl Harbor for refueling and continue on their own to forward bases in the Western Pacific.

Their destinations could be sea-bases, SSNs and SSGNs, or special forces units inserted onto remote islands. Cargoes could include food, ammunition, batteries, spare parts, mission-critical equipment, and medical supplies. In all these cases, a need for stealthy logistics – the need to hide the “tail” – would call for sub replenishment versus traditional surface resupply. Depending on the mission, large UUVs could be configured to rendezvous with submerged subs, cache themselves on shallow bottoms, or run aground on beaches. Docking collars similar to those used on deep-submergence rescue vehicles could permit submerged dry transfer of cargo. UUVs could also serve as stealthy ship-to-shore connectors; inflatable lighters and boats could be used to unload surfaced UUVs at night.

When confronted with anti-submarine attacks a “pod” or convoy of such UUVs could submerge and scatter, increasing the likelihood of at least a portion of their cumulative payload arriving at its destination. Some large UUVs in such a “pod” could carry anti-air and anti-ship armament for defense in place of cargo, but such protection entails larger discussions about armed seaborne drones.

A submarine – even a manned nuclear submarine – is not the platform of choice if speed is essential. Airborne resupply can deliver cargoes much more quickly. But not all cargoes need arrive swiftly. The water may always be more opaque than the sky, and larger payloads can be floated than flown. It remains to be seen if large stealthy unmanned transport aircraft can be developed.

While these notions seem fanciful there is nothing about the technology or the concept beyond the current state of the art. Large numbers of unmanned mini-subs could overcome both the capacity and expense limitations that limited the cargo submarine concept in the past. The ability to stealthily supply naval expeditionary forces despite A2/AD opposition would be a powerful force multiplier.

Steve Weintz is a freelance journalist and screenwriter who has written for War is Boring, io9 and other publications.

Find, Fix, Identify, Engage: How Today’s AUV Technology can Compress the Mine Warfare Kill Chain

By Terry Miller, Capt, USN Retired and John Rapp

A covert, in-mission, full kill chain, integrated, Mine Warfare Autonomous Underwater Vehicle (AUV) is described. It will significantly compress the kill chain beyond today’s overt detect to engage methods. It also eliminates or reduces costs associated with today’s multi-system approach. Over time, the MCM practice will inevitably evolve from overt to covert: this natural transition is discussed. The Navy asserts that time line improvements are urgently needed, but equally important is improved affordability. Cost savings for the integrated AUV are expected to be less than $5K per mine kill. The paper describes significant potential to reduce system costs using an integrated AUV solution instead of the multi-system approach of RMMV, AQS-20 and Archerfish. Such a AUV include the vehicle itself, with its associated power and propulsion and maneuvering systems, autonomous embedded intelligence, navigation system, sonar and other sensor systems, and weapon payload.

For the AUV’s primary sensor, Thales has developed the advanced SAMDIS (Synthetic Aperture sonar (SAS) Mine Detection Imaging System) which has onboard processing to autonomously detect, classify and localize stealthy mine targets with a high probability of detection and low probability of false alarm. SAMDIS processing also autonomously adapts behavior during the mission. SAS survey mode has 1.0 inch by 1.2 inch resolution out to 150 m range and multi-aspect classification mode 1.5 inch by 2 inch resolution out to 120 m range. SAMDIS’ autonomy enables a weapon payload to be added to the AUV for single sortie mine detection and neutralization. SAMDIS was fielded in FY 2014 on a 27 inch diameter TRL-9 AUV. It is an open architecture and modular system with future growth potential to incorporate new features via spiral development and it is currently in production.

A second essential technology is autonomous sonar and video perception processing. This technology has been developed both by Naval Special Warfare Center, Panama City Division (NSWC PCD) and by Thales to Technology Readiness Level (TRL) 6 and above. It is used on Autonomous Mine Disposal Vehicles (AMDV) such as Archerfish and K-Ster. This processing will be leveraged in the fire control module for a Hunter-Killer AUV to deliver a weapon or place an explosive charge.

Archerfish Mine Neutralization System
Archerfish Mine Neutralization System

A suitable weapon technology is a light-weight composite 30 mm launcher that would implant a round filled with either high explosives (HE) (for an explosive hard-kill) or reactive material (for a soft kill burn). Similar technology was developed by DTRA to counter roadside IEDs using .50 cal weapons. A 30 mm implant would be usefully larger and could integrate a 1316 compliant fusing device. Utilizing an EFI detonator enables digital fusing and affords either timed or controlled detonation, including detonation by an acoustically transmitted command. All these launch sensing, switch and fusing capabilities are currently “in-use” in penetrating darts that are already at TRL 6 and above. The launcher would weigh between 13 and 20 pounds. Its barrel could be constructed using a metal liner with composite over wrap to provide strength and rigidity while minimizing weight. To simplify the launcher and minimize weight a cartridge-less round using an electronic primer for its firing mechanism would be used. The launcher muzzle could be sealed with a frangible material that would allow it to operate at water depths exceeding 100m while allowing the projectile to be launched with minimal resistance. This launcher would be the only technology below TRL 6. However, three separate organizations 1) Naval Undersea Warfare Center (NUWC) Newport 20 mm water to water gun for torpedo defense, 2) DSG Technologies (www.dsgtec.com) and 3) AAC have matured in-water technology that operates stably using super-cavitation. A 30mm launcher provides sufficient terminal velocity to penetrate .5 inch cold rolled steel from a range of 30 feet. The key capability to penetrate and anchor a time delayed detonation device without setting off the target was demonstrated in 2014 by AAC and EMPI.

Screen Shot 2015-05-28 at 10.33.10 AM
Underwater Motion of Cavitating Core (Multipurpose Projectile) in Formed Cavity

Water, due to its density, has a profound impact upon the terminal velocity of the implant at the target; a large change in terminal velocity only needs a slight change in range. The currently achieved standoff range of 30 feet is not sufficient to ensure safety of the AUV should the shot detonate the mine. Shooting from longer ranges requires significant basic research and development, both in material strengths and in achieving precise sonar fire-control accuracies before truly safe standoff ranges are achievable. Both DSG and AAC have repeating fire 30 mm launcher concepts with a multi-kill per sortie capability. The figure illustrates the DSG 30 mm projectile.

The AUV communicates with the surface ship through radio and acoustic links for low volume tactical data; the detailed high volume sonar and navigation data are recorded onboard and downloaded post mission.

The concept of covertly mine clearing is to automatically reacquire the target, re-detect mine-like echoes in the area, and then approach using the best echoes. At a short range, the object is identified autonomously by the sonar and video perception processing; then if it is a mine, the AUV works through the risks and best approaches so as not to jeopardize the mission with any single mine kill , and would only then arm a weapon, place a charge, or fire a neutralization device. The neutralization device could provide delayed detonation if needed. The autonomy is most effective when the AUV engages multiple targets in a mission. This type of autonomy is achievable today.

An intermediate concept of operation would transition today’s overt practices into the covertly operating concept just described. In the near-term, the autonomous fire-control will send one compressed image wirelessly; that is used by an operator to assess and then commit to the target; then the operator would issue the wireless command to gate open the final arming stages that progress all the autonomous fires upon the target. The image payload is constrained by the limited bandwidth of such a wireless link. That means the autonomy must maneuver to make the best identifying image to compress and send. Methods for transmitting a still snapshot picture via an acoustic modem are already being practiced. For example, Thales has demonstrated this capability for the VAMA program in Europe.

An in-mission full kill chain integrated AUV would dramatically compress the kill chain from traditional Navy detect to engage approaches. It will also eliminate and reduce costs compared to their multi-system approach. Over time, the MCM practice will transition from overt to covert. The time line savings still need to be modeled and validated, but early estimates calculate 3000% improvement, or several orders of magnitude savings in operational time lines. Cost savings are similar because the mine kill per engagement with a 30 mm device are estimated to be less than $5K per mine kill. The reduction in system cost is potentially huge by scaling to one system that replaces the multi-system of RMMV, AQS-20 and MH-60S Archerfish neutralization placement.

Mine Kill Conop V1
Click on the image to enlarge

About the Authors

Terry Miller, Capt, USN Retired – Career Special Operations Diver with over 24 years in Mine Warfare, working for Advanced Acoustic Concepts (AAC) a joint venture company owned by DRS Technologies and Thales. He is a veteran of Desert Storm, USS Tripoli and USS Princeton mine strikes and conducted the first influence sweep in combat since the Korean War onboard USS Leader MSO 490. Terry has over 4000 hours of sonar contact time and ROV operations in combat, in training, and in simulated training against various mine shapes. He served on the Avenger MCM class as Division Officer, Executive Officer and Commanding Officer. He was the OPNAV Branch Head for Mine Warfare and ASN/RDA Acquisition Coordinator to JIDDO for Counter IED.

John Rapp – Systems engineer with 35 years experience in the defense industry, working for AAC as Director of Advanced Systems. He is a multi-disciplined inventor with 36 US patents awarded; one-third regard underwater weapons.

CIMSEC’s 2015-2016 Officers and 2015-2017 Board

Congrats to CIMSEC’s newly elected officers and board members!

If you’d like to see their goals for the org, you can see them here. The current officers and board will begin the process of turnover and transition to be completed by the end of June.

Position and Percentage of Votes of Submitted Ballots (missing percentage indicates abstentions)

Board:

Chairman, Board of Directors
Scott Cheney-Peters – 96%

Member, Board of Directors
Scott Cheney-Peters – 98%
Chris Rawley – 96%
William Allen – 80%
Mike Carroll – 84%
Mary Ripley – 90%
Andrea George – 86%
Ben Purser – 82%
Matt Hipple – 94%
Chris Wood – 80%
Jordan “Patsy” Klein – 74%


Officers:

President
Matt Hipple – 94%

Vice President
Roger Misso – 92%

Treasurer
Victor Allen – 90%

Secretary
Josh Tallis – 94%

Director of External Relations
Katherine Dransfield – 45%
Robert Holzer – 29%

Director of Membership
Bret Perry – 94%

Director of Online Content
Dmitry Filipoff – 94%

Director of Operations
Emil Maine – 96%

Director of Publications
Matt Merighi – 94%

Unmanned Underwater Vehicles: A Conversation with Chris Rawley

To start our UUV Week, we’re talking with Chris Rawley, owner of the website Naval Drones: Unmanned Naval Systems and author of Unconventional Warfare 2.0. Chris is a surface warfare officer in the US Navy Reserve.

Penguins: They Love UUVs. NSF-funded SeaBED shown.
Penguins: they love UUVs. NSF-funded SeaBED shown.

SD: Thanks for talking with us today, Chris. Let’s get right to it with some initial broad strokes. There’s clearly a great deal of potential out there for UUV platforms, but in a very general sense, what mission areas of those set out by the US Navy’s UUV Master Plan show the most promise in terms of cost effectiveness and practicality?

CR: Thanks Sally. Before I start, I have to provide the disclaimer that I am speaking here in my personal capacity and my comments and opinions do not reflect U.S. Navy or DoD policy. Also, I am by no means an expert in this field, though I have picked up some knowledge the past few of years writing for “Naval Drones,” which was initially established as a marketing tool for a UUV concept I developed. After some fits and starts, my company is currently working on this UUV design with a prototyping firm.

From my perspective, mine countermeasures is the mission area ripest for disruption by unmanned undersea vehicles. As CIMSEC’s readers know, mine clearance involves a painstaking, methodical process of hunting to rule out false positives detected by various sensors or using sweeping gear to activate the mines. Dedicated mine countermeasures ships, though still in service, will eventually be replaced multi-mission platforms embarking UUVs. Most readers know about the Littoral Combat Ship’s dedicated mine countermeasures payload, but pretty much any naval combatant or auxiliary with a margin of payload capacity such as the JHSV can launch UUVs or carry boats or unmanned surface vessels (USVs) that can launch UUVs directly into a mine field at a safe stand-off distance from the mother ship . Multiple UUVs operating together will eventually become faster at mine hunting than dedicated surface ships with sweeping gear or mine-detection sonars. ROVs and UUVs such as the SeaFox can also localize, identify, and neutralize the mines. Though I think the UUV Master plan specifically mentions nine mission areas, besides MCM, at some point UUVs will play a part in pretty much any kind of naval operation one could imagine.

While we continue to wait for the silver bullet of long-endurance propulsion systems, the three areas of UUV development with the most potential I see are payload miniaturization, payload modularity, and swarming algorithms.

USN sailors load a SeaFox MCM UUV (U.S. Navy photo by Lt. Colby Drake/Released)
USN sailors load a SeaFox MCM UUV (U.S. Navy photo by Lt. Colby Drake/Released)

SD: Let’s talk specifically about UUVs in an ASW capacity. A lot of readers (okay, especially me) are interested in what UUVs can bring to anti-submarine warfare (ASW). In all likelihood, such a platform would need to detect low-frequency signals, demanding a large array and a vehicle to support it. Will there have to be a trade off between the reasonable size of a notional platform (to support such an array) and such a platform’s detection capabilities? Are leave-behind arrays delivered as part of a UUV payload a more desirable option?

CR: Autonomous underwater vehicles such as gliders are already helping to characterize the water column, which as you know is one of the most important foundations of ASW. As far as sub-hunting goes, a large UUV towing a passive array might be one way to do it, though I’m not sure that is feasible for a variety of reasons. Or as you’ve alluded to, a larger UUV could basically become a means to more precisely deploy sonobuoys or emplace arrays on the bottom. What about smaller, more numerous UUVs each carrying a single hydrophone and operating at different depths? Or UUVs able to surface and act as non-acoustic data relays between bottom arrays and ASW aircraft? I think there is certainly room for some R&D and experimentation in this area.

SD: The idea of an UUV with the capacity to surface and communicate as a non-acoustic data relay with an MPRA asset is particularly promising and offers a solution to some of the major complexities of airborne prosecutions. Further, the idea of employing UUVs to deploy hydrophones or arrays at specific depths is a novel turn on a well-established technique. But perhaps getting those assets on-station at the appropriate times would present a difficulty; after all, one of MPRA/airborne ASW’s major advantages is speed and flexibility relative to the target. On to another ASW question: in an increasingly crowded underwater environment, do you think that submarine-launched UUVs will offer more or less stealth to launching platforms? Do you see any applicability for UUVs as a decoy, or would maintaining acoustic superiority for existing and future subs prove a more worthwhile, cost-effective pursuit?

CR: Unlike a sub-fired missile, I’m not sure a UUV will make a launching submarine any less stealthy. To my knowledge, most of the UUVs that have been tested have been “swim out,” so they wouldn’t add much extra acoustic signature to the launch platform. Some sort of acoustic or magnetic decoy UUV does seem like a viable and useful payload for a submarine.

SD: U.S. Submarine-launched UUVs may have somewhat of a compatibility crisis in the coming decades. SSGNs are uniquely suited for UUV operations, but as modified-Ohio class platforms reach the end of their service life in the coming decades, how do you think UUV platforms will fit into the Virginia Payload Module program?

A Naval Sea Systems Command illustration depicting the VPM concept.
A Naval Sea Systems Command illustration depicting the VPM concept.

CR: Though launching and recovering a UUV from a submarine certainly adds an element of “stealthiness” for the UUVs themselves, it also comes with several complications. There are trade-offs in a submarine’s limited tube space – be it torpedo tubes or the VPM – between UUVs and other payloads such as torpedoes and missiles. Moreover, as you note, more submersible vehicles will result in an increasingly crowded operating environment. A manned submarine operating in conjunction with a large number of friendly (and potentially, enemy) UUVs makes waterspace deconfliction challenging and puts a capital ship at risk for a collision, especially as the size and speed of UUVs grows.

But here’s the thing: a UUV is inherently stealthy. Why do we need to launch it from another low signature platform (a submarine) when it can be launched more cheaply and across wider areas (such as shallow water littorals) by more numerous surface vessels or even air platforms?   Where there is no other way to get a shorter ranged UUV into the water column, a submarine may be the answer. To answer your question, we should save limited submarine payload capacity for offensive weapons and insert the majority of UUVs into the battlespace using more affordable means.

SD: Interesting points. I hadn’t considered the idea of mutual interference, and it certainly makes sense to deploy UUV assets from surface or air assets, where space would not be as much of a premium. This is another broad question, but what role do you see for UUVs in developing a cogent strategy to counter A2AD?

CR: UUVs could potentially serve as fire control sensors, decoys, and deception tools during a counter-A2AD campaign. I’ll leave it at that.

SD: Fair enough. One of the most frequently cited criticisms of developing UUV platforms is the inherent difficulty of communication and navigation in an underwater environment, as well as limitations on data links and processing. What is your answer to these criticisms?

CR: The easiest solution is the surface the UUV every now and then to transmit its data and get its bearings. But advances in underwater data modems (both acoustic and non-acoustic), along with autonomy will mitigate some of these challenges

SD: If operating covertly in a denied area, surfacing might be detrimental to the UUVs mission, but no more so than other subsurface assets that might be required to surface to receive or transmit data. But, admittedly, this is a pretty narrow scope to view a very broad potential mission set, and such a concern would not apply to all those potential applications. Let’s talk autonomous vehicles. AUVs operating at a distance will undoubtedly carry the potential for loss or interception. Is there an acceptable level of platform loss or risk operators of UUVs will have to accept?

CR: Sure. I think we will need a variety of UUV types. Some, like Large Displacement Unmanned Underwater Vehicle (LDUUV), will be large, expensive, and multipurpose. Others will be designed to be single-purpose, affordable, and expendable, while some others will be somewhere in the middle.

SD: Specifically though, do you think that there might be inherent risks to doing business via UUVs that do not exist for manned counterparts? Not necessarily that these risks outweigh the benefits, but, if there are any, they’re worth discussing.

CR: Signal interception is a problem faced with pretty much any platform these days. Even manned aircraft are going to be hard pressed to operate without emissions given how networked everything is.  Many UUV atmospheric signals will be on commercial channels, so hard to differentiate from civilian traffic. As to the technology being recovered by an enemy, that is certainly possible too, and a much higher risk for unmanned vehicles. We’ve learned lessons from UAVs that are applicable in this area.

SD: Great point; the risk for signal interception would likely not be any greater for unmanned platforms, and could be mitigated in similar ways. Let’s scale down a bit. On your blog, you recently discussed possible applications of small-scale UUVs, such as those fielded by the University of Graz’s Collective Cognitive Robots project. What applications do you envision for small-scale UUVs like these operationally?

CR: Search and recovery, especially in inshore waters or the littorals, comes to mind. But also acoustic decoys, and maybe even small, mobile sonobuoys for ASW. I’d love to get some reader feedback on this one actually.

SD: I really look forward to reading what others have to say on this issue as well. I think the MPRA ASW applications are especially promising. Last but certainly not least, let’s discuss the LDUUV program. What is your take on pier-launched or even surface-ship based systems with longer endurance and on-station capabilities?

The U.S. Navy's LDUUV
The U.S. Navy’s LDUUV

CR: For some applications, a pier-launched UUV might be viable. But a Navy’s strength is based on its mobility. So yes, as we seem to agree, surface ships are a pretty viable launch platform for large UUVs. The Naval Special Warfare Command’s Swimmer Delivery Vehicle is an analogy. Of course, they are most stealthy when operated from a submarine, but can also be launched from ships and smaller combatant craft. And depending on the operational range of the LDUUV, surface ships would be fine for many mission profiles. And if you are looking for stealth, the stealthiest platform is the one that hides in plain sight, so not every launch platform has to be a naval vessel.

SD: This has been tremendously interesting discussion! Thank you, Chris, for your time; congratulations on your progress with your own UUV design. We look forward to following its development! Thanks as well to the CIMSEC readers who have followed along. Let’s continue this discussion in the comments section.

Sally DeBoer is an Associate Editor for CIMSEC.

Visit Chris Rawley’s blog at: blog.navaldrones.com

 

 

 

Fostering the Discussion on Securing the Seas.