The US Navy’s strike capacity is shrinking. As highlighted in Congressional testimony with senior leaders, the Surface Navy is set to lose 788 Vertical Launch System (VLS) cells through the end of the Davidson Window in 2027. This 8.85% of current Surface Navy VLS capacity represents the equivalent of eight Arleigh Burke-class destroyers leaving the fleet as the Ticonderoga cruisers are retired. However, even the most aggressive and expensive shipbuilding alternative would not return equivalent VLS numbers to the surface fleet until the late 2030s. Present maritime infrastructure capacity further strangles efforts to buy additional Arleigh Burke destroyers, Constellation-class frigates, and Virginia-class submarines. These complex multi-mission ships cost billions of dollars and years of investment in build times, and yet service life extension proposals are equally unsavory. From extending aging Ticonderoga cruisers to arming merchants or Expeditionary Fast Transports, none are cheap, scalable, or sustainable in the long-term. All this while the world’s largest navy, the People’s Liberation Army Navy (PLAN), continues its building spree at speed and scale, delivering combatants equipped with long-range anti-ship missiles meant to challenge America’s role as balancer in Eurasia.
Figure 1. Click to expand. Surface Ship VLS Data, Adopted from the CBO’s analysis of the Navy’s FY23 Shipbuilding Plan.
Where can the Surface Navy focus its efforts for future growth given the financial constraints and maritime industrial base capacity? What capabilities are most likely to enable a replaceable, lethal force to deter or deny Chinese aggression from the Taiwan Strait to the Second Island Chain?
The Surface Navy must build and deploy the Large Unmanned Surface Vehicle (LUSV) at scale as small surface combatants, to economically restore and grow VLS capacity over the next decade. A concept for its implementation and other USVs like it, “Every Ship a SAG,” proposes a distributed future force architecture, where every manned ship can operate far afield from each other, while each is surrounded by multiple VLS-equipped and optionally manned LUSVs. Doctrinally, a Surface Action Group (SAG) is defined as a temporary or standing organization of combatant ships, other than aircraft carriers, tailored for a specific tactical mission. Together, these manned-unmanned teams will form more lethal SAGs than a single ship or manned surface action group operating alone. Led by Surface Warfare Lieutenants as Unmanned Task Group Commanders, this USV-augmented SAG offers a lethal instantiation of the next-generation hybrid fleet.
“Every Ship a SAG” provides a scalable and flexible model for incorporating current and future unmanned systems with the existing surface fleet. The fleet could rapidly up-gun conventional platforms and even amphibious ships, Littoral Combat Ships (LCS), or Expeditionary Staging Bases (ESB) with more lethal USVs as teammates. Lastly, “Every Ship a SAG” offers mitigation for many of the concerns levied at Navy USV concepts, including Hull, Mechanical, and Electrical (HM&E) reliability, maintenance, and spare parts; force protection; C5I/Networks; autonomy; and the role of USVs in deterrence. Mutual support from a manned ship reduces operational risk and will enable the small crew led by the Surface Warfare Early Commander to embark on their USV to execute critical manned operations during dangerous or restricted waters evolutions. These small teams then debark to a designated mothership and perform USV mission integration when the USV is in an unmanned mode. “Every Ship a SAG” offers a critical next step between today’s nascent USV capability and a more advanced, USV-forward, and independent future.
Now is a critical moment in history. LUSVs must be scaled to meet the Navy’s warfighting mission, and Congress must resource the supporting pillars to ensure effective outcomes. When every manned US Navy ship is a Surface Action Group, this distributed hybrid fleet will be more lethal, survivable, and ready to fight and win maritime wars against peer adversaries.
The “Every Ship a SAG” construct offers a vision for weaponized USVs that is easily understood; from the average fleet sailor to senior leaders to (maybe most critically) Congress. In addition, the concept acknowledges the current fleet design both in Strike Groups and Surface Action Groups, while facilitating the introduction of unmanned ships within a task organization framework common to manned units. Operationally, LUSVs will meet specific, near-term needs in support of national strategies via distributed sea denial and strike, while enhancing the lethality of the surface fleet through increased missile magazine distribution and capacity. When integrated into the force, LUSVs will increase the survivability of the fleet by complicating an adversary’s ability to target and attack surface forces. What does this look like in practice?
In a peacetime environment and workup cycle, the Unmanned Operations Center (UOC) and USV Divisions in Port Hueneme, California, or a local Fleet Maritime Operations center, would manage the traditional “manning,” training, and equipping functions of ship workup cycles towards integrating into Strike Groups and SAGs. These LUSV Divisions would be led by Early Command Junior Officers. In fact, the Surface Community has already begun selecting officers for Unmanned Task Group Early Command roles both in Port Hueneme and in Bahrain with Task Force 59.
Having been assigned to units for scheduled deployments, LUSVs would attach to the designated ships in the deployment group, providing greater flexibility to Combatant Commanders in force packages. Just as the MH-60 Romeo community deploys expeditionary detachments of pilots and aircrew to cruisers and destroyers, these Early Command officers and a small crew would embark a ship, or series of ships, serving in a variety of modalities as expert controllers, emergency maintainers, and expeditionary operators. A key distinction between the helicopter detachment concept and command is the interchangeability of USVs, moving from independent expeditionary command with a manned crew, to embarking on a mothership or series of motherships supporting unmanned operations.
Figure 2: A top-level view comparing USV employment models with generalized benefits and limitations. (Author-generated graphic)
As demonstrated in Figure 2, LUSVs would operate at distances where the manned ship can provide mutual support and respond if needed. This might include periods within the visible horizon but also episodic surges well over the horizon for specific missions. From a lethality perspective, the additional VLS cells and sensors (in the Medium Unmanned Surface Vehicle) offer enhanced battlespace awareness and depth of fire than is available with a single ship. While others have argued for pushing attritable USVsfar forwardtowards threats, treating every manned ship as a SAG with its LUSVs in escort will address many of the issues highlighted by leaders, including Congressional representatives.
Concerning reliability and maintenance, the Navy has based LUSV prototypes on existing commercial ship designs while conducting further land and sea-based testing and validating its critical technologies and subsystems. While designed to operate for extended periods without intervention, the Unmanned Expeditionary Detachment will be able to support emergent repair or troubleshooting if necessary.
For concerns of autonomy or ethical use of weapons from unmanned units, LUSVs will rely on human-in-the-loop (HITL) for command and control of weapons employment decisions. Therefore an on-scene commander simplifies network and communications requirements between the manned fleet and its LUSV escorts. Others have also arguedfor unmanned systemsto be attritable, and to be sure, it would be preferable to lose an LUSV to a manned ship. However, these will still be multi-million dollar combatants with exquisite technology that should not fall into an adversary’s hands – much in the same way how Fifth Fleet dealt with Iranian attempts to capture a US Saildrone in 2022. Having a local manned combatant nearby will support kinetic and non-kinetic force protection of the LUSV, regardless of the theater or threat.
USVs Ranger and Nomad unmanned vessels underway in the Pacific Ocean near the Channel Islands on July 3, 2021. (US Navy Photo)
Finally, treating an LUSV as a force multiplier with a certain number of VLS cells is in line with previous arguments to count the fleet via means other than ship hulls, and simplifies the LUSV’s deterrent value as just another ship that delivers a specific capability at a discount, just as other manned ships do.
Sequencing and Scaling “Every Ship a SAG”
No vision for USV integration into the Surface Force would be complete without considering how these systems would fit into the career pipeline of current and future Surface Warfare Officers and their enlisted teams. In an “Every Ship a SAG” model, LUSV ships would start as individual early commands for post-Division Officer Lieutenants, whereas multiple LUSVs would be organized into a Squadron, led by a post-Department Head Early Command Officer. The Surface Community executed this model with its Mark VI Patrol Craft before their recent retirement, and similarly these squadrons would be organized under the nascent USV Divisions, who have a direct line to the experimentation and tactical development done by the Surface and Mine Warfighting Development Center (SMWDC), and specifically for unmanned systems, in Surface Development Squadron One (SURFDEVRON).
Cmdr. Jeremiah Daley, commanding officer, Unmanned Surface Vehicle Division One, Secretary of Defense Lloyd J. Austin III, and Capt. Shea Thompson, commodore, Surface Development Squadron One, tour USV Sea Hunter at Naval Station Point Loma, California, (Sept. 28, 2022, DOD photo by Chad J. McNeeley)
The surface community is leading the charge towards a hybrid fleet by advancing USV operational concepts and integrating unmanned experience into a hybrid career path. The first salvo in this career movement was launched in 2021, with the establishment of the Unmanned Early Command positions, but scaling this hybrid model is both critical and beneficial. The community will only benefit from commanding officers with expertise and insights in employing a hybrid surface fleet. As pipelines are clarified and unmanned opportunities grow, officers would transition from one expeditionary tour leading a detachment controlling and maintaining an LUSV, back into Division Officer, Department Head, Executive, and Commanding Officer roles in traditional at-sea commands directing the employment of the same LUSVs. Just as the SWO Nuke community develops expertise in both conventional and nuclear fields at each level of at-sea tours, a future hybrid fleet necessitates competencies in fields like robotics, engineering, applied mathematics, physics, computer science, and cyber.
Lastly, SWO professional experiences and investments in training and education for the use of unmanned systems would further Navy and Department of Defense objectives around Artificial Intelligence, Big Data, and Digital Transformation. With unmanned systems, deploying new HM&E or weapons payloads may be a simpler task compared to accelerating fleet data collection and its subsequent use in software development and delivery. Task Force 59 explicitly linked these issues as the Fifth Fleet Unmanned and Artificial Intelligence Task Force.
“Every Ship a SAG” on a Digital Ocean
Some may question whether “Every Ship a SAG” aligns with the already successful work of Task Force 59, directed by Vice Admiral Brad Cooper, Commander, Naval Forces Central Command, and Captain Michael Brasseur, the Task Force’s Commodore. Captain Brasseur has long advocated for increased AI and Unmanned Integration into the Navy, going back to his time as Co-Founder and first Director of NATO’s Maritime Unmanned Systems Innovation and Coordination Cell (MUSIC^2). He convincingly argued for a “Digital Ocean” Concept where drones:
“Propelled by wind, wave, and solar energy… carry sensors that can collect data critical to unlocking the untapped potential of the ocean…. [to] exploit enormous swaths of data with artificial intelligence- enhanced tools to predict weather patterns, get early warning of appearing changes and risks, ensure the free flow of trade, and keep a close eye on migration patterns and a potential adversary’s ships and submarines.”
Vice Adm. Brad Cooper, left, commander of U.S. Naval Forces Central Command, U.S. 5th Fleet and Combined Maritime Forces, shakes hands with Capt. Michael D. Brasseur, the first commodore of Task Force (TF 59) during a commissioning ceremony for TF 59 onboard Naval Support Activity Bahrain, Sept. 9. TF 59 is the first U.S. Navy task force of its kind, designed to rapidly integrate unmanned systems and artificial intelligence with maritime operations in the U.S. 5th Fleet area of operations. (Photo by Mass Communication Specialist 2nd Class Dawson Roth)
Captain Brasseur has implemented his prudent and innovative vision in the Fifth Fleet Area of Responsibility. Task Force 59 is a success whose model is likely to be adopted in other theaters. Rather than conflict with the “Digital Ocean” model, “Every Ship a SAG” complements this work in line with missions of the US Navy as Congressman Mike Gallagher recently updated and codified in the 2023 National Defense Authorization Act. The Wisconsin Representative edited the Title 10 mission of the Navy such that the service “shall be organized, trained, and equipped for the peacetime promotion of the national security interests and prosperity of the United States and prompt and sustained combat incident to operations at sea.” In short: a “Digital Ocean” and all it enables serves the peacetime promotion of American national security interests and prosperity, especially in coordination with our allies and partners.
“Every Ship a SAG” postures the Navy for prompt and sustained combat operations incident to the sea. Both missions have been a part of the U.S. Navy since its inception, and both visions are applicable as unmanned ships enter our fleets. Further, LUSVs retain additional utility below the level of armed conflict. To support UOC training, experimentation, and manned ship certifications, LUSVs would serve as simulated opposition forces during high-end exercises, reducing demand on manned sustainment forces, or enabling higher-end threat presentations. Precisely in these scenarios are the venues whereby the fleet can integrate new systems and networks while bridging toward operational concepts for unmanned systems as LUSVs earn increased confidence. In the interim and foreseeable future, however, “Every Ship a SAG” remains the scalable, flexible model for deployed LUSVs within current fleet operations.
Sober Acknowledgement of Critical Pillars
Unmanned ships and various other transformational technologies are not a panacea for the current and future threats facing the US Navy. Even the promises and methodologies proposed here rely upon critical readiness pillars, each of which could warrant deep individual examinations but are worth mentioning.
Even if the US Navy built a certain number of LUSVs to replace lost VLS capacity, failure to resource them or manage them effectively would still likely doom the program. The fleet must understand and plan for the “total cost of ownership” of a hybrid fleet. These units will still require manpower at various levels and a maintenance infrastructure to sustain them in fleet concentration areas. Nor can the fleet avoid at-sea time to test, integrate, and experiment with these systems, much in the same way that RADM Wayne E. Meyer emphasized, “build a little, test a little, learn a lot,” with the success of the Aegis Weapons System. The Navy has made efforts to assuage Congressional concerns about reliability through investment in land-based testing. Yet the Surface Navy will need continued, reliable resourcing to continue that testing afloat while integrating LUSVs with traditional forces and experimenting with future concepts.
Characterizing those costs are beyond what is available in open-source, but wide-ranging demand for talent is imposing costs across the public and private sectors. Similarly dire is the state of munitions, as highlighted at the Surface Navy Association National Symposium by Commander, Fleet Forces Command, Admiral Caudle who “noted that [even] if the Navy had ready its 75 mission-capable ships, ‘their magazines wouldn’t all be full.’” Put simply: no amount of LUSVs built at economic costs will be worth anything if they lack the appropriate weapons to place in their launchers.
Lastly, the adaption of agile practices to implement better software, data, AI models, etc., is critical for the fleet to field increasingly capable and autonomous USVs. The Department of Defense and the Navy have made various investments in this direction. These include but are not limited to the Program Executive Office for Integrated Warfare Systems (PEO IWS) “The Forge” working to accelerate ship combat system modernizations and development of the Integrated Combat System; to the Naval Postgraduate School’s new Office of Research and Innovation, to the type-command AI Task Forces. Each is working to provide value across various programs in the digital space. Resourcing, integration, and acceleration of those efforts are crucial.
Figure 3: Proposed priority pillars for success for the LUSV program, paired with a collection of Wayne Hughes’ Cornerstones of Naval Operations from Fleet Tactics and a posthumous article.
Individually, each pillar is a wicked problem, but we must take a sober look at those requirements while examining the same realities in the maritime industrial base. The reality appears that little can be done in the near term to accelerate new ship deliveries of complex multi-mission combatants built in Bath, Maine, and Pascagoula, Mississippi. At present, Fincantieri Marine in Wisconsin is the sole yard for FFG-62, while the remaining large shipyards pursue some collection of ESBs, littoral connectors, and generally, more multi-mission units. Fundamentally, a ship like LUSV is the only near-team option to accelerate a pre-war ship buildup given the PLAN’s construction speed.
As the world’s only Navy with a near-term plan and resourcing to meet and exceed 355 ships, the PLAN along with its fellow services has delivered longer-range weapons at greater capacities than the United States for years. By all available open-source data, the US Navy is falling behind the PLAN in the marathon of naval power while the PLAN accelerates toward future advantages.
Figure 4: Comparison of U.S. to PLAN fleet count totals, based on Congressional Research Service reporting on Chinese Military Modernization since 2005.i
Naval writers and thinkers can parse arguments about quantity versus quality, what the right metric is to assess fleet strength, or whether in a joint, Navy vs. Anti-Navy fight, a pure-maritime comparison is warranted. These are valuable discussions. Regardless, the US Navy’s Surface Forces onboard strike and anti-surface warfare capacities will continue to shrink in the near-term while Chinese threats accelerate. Furthermore, the Chinese industrial base capacity far exceeds American capacity at present. The relationship between US Navy leaders and industry could be described as frosty at best, with recent comments from the Chief of Naval Operations to industry including statements to “Pick up the pace… and prove [you have extra capacity]” and from the Commander of Fleet Forces Command stating that he is “not forgiving” industry’s delays.
Given the long-term buys of multi-mission combatants, national shipyards appear unlikely to generate increased efficiencies, accelerated timelines, or better-quality ships if they continue to build only the multi-billion dollar multi-mission combatants they have previously built. Accelerating LUSV procurement across the six shipyards solicited for LUSV concepts would provide increased capital and demand signal for the shipbuilding industry while providing complementary capabilities to the fleet. Yet while the LUSV can and should be a domestic program for growth, corvette-sized unmanned ships with VLS could easily fall into cooperative build plans with the various allies and partners who have frigate-sized, VLS-equipped combatants. The Australia-United Kingdom-United States (AUKUS) technology-sharing agreement could provide an additional avenue for foreign construction. Further US coordination with Japan and South Korea could also prove fruitful, as the two East Asian allies represent the second and third largest global commercial shipbuilders behind China.
While refining broader LUSV programs, it is worth considering the differences in shipbuilding costs between choosing LUSVs in a SAG compared to traditional manned combatants. Figure 5 provides a table of notional Surface Action Groups based on the fleet of today through 2027, while Figure 6 presents a table with the future ship programs and their costs.
Figure 5: Hypothetical future SAG LUSV force packages and VLS comparisons with current fleet combatants.Figure 6: Hypothetical future SAG LUSV force packages and VLS comparisons with future fleet combatants.
Congressional Budget Office estimates for future programs like SSN(X) and DDG(X) present stark realities. The next-generation programs could run costs up to $6.3 billion and $3.3 billion, respectively. By comparison, if the Surface Navy chose to pursue an expanded LUSV buy to recapitalize the 788 VLS cells planned to disappear through 2027, this would require 25 32-cell LUSVs, totaling 800 cells. At $241 million per LUSV, the total (shipbuilding-only) costs would be $6.025 billion, or approximately less than a single SSN(X) or two DDG(X)s. While LUSV has a reduced collection of mission sets by comparison to future submarines and destroyers, it remains a ship that can conceivably be built in at least six American shipyards. Further, future LUSVs purpose-built to support Conventional Prompt Strike (CPS) could hypothetically resolve the issue of the margin of the DDG-51 hull form being “maxed out” in space, weight, air, power, and cooling. Rather than a future large surface combatant required to have each capability resident in a single hull, as in DDG(X), a CPS LUSV in escort with a Flight III DDG may represent a proven ship design and better value, that other companies are attempting to support.
Ultimately, there are myriad ways to frame budgetary realities, but LUSV is the only cost-effective method for the surface force to quickly scale VLS capacity within existing force structure and given the present maritime industrial base.
Conclusion
The Surface Navy has a crucial opportunity to strengthen its capabilities and enhance its readiness by building and deploying LUSVs at scale. The “Every Ship a SAG” concept remains rooted in the intellectual work going back nearly a decade to “Distributed Lethality,” “Hunter-killer SAGs,” and their incorporation into Distributed Maritime Operations – only now with unmanned combatants. This manned-unmanned model provides a feasible solution for incorporating unmanned systems into the Surface Warfare Officer career path and forming more lethal Surface Action Groups for the future fight.
“Every Ship a SAG” addresses the concerns raised about Navy USV concepts and presents a clear vision for the future of wartime maritime operations. As the global security situation continues to evolve, the Surface Navy must take decisive action and invest in LUSVs to ensure it is prepared to meet its warfighting mission. It is time for Congress to fully support this effort by providing the necessary resources to bring the “Every Ship a SAG” model to life. Act now and make every ship a Surface Action Group.
Lieutenant Kyle Cregge is a U.S. Navy Surface Warfare Officer. He is the Prospective Operations Officer for USS PINCKNEY (DDG 91). The views and opinions expressed are those of the author and do not necessarily state or reflect those of the United States Government or the Department of Defense.
References
i. O’Rourke, Ronald. “China Naval Modernization: Implications for U.S. Navy Capabilities—Background and Issues for Congress.” December 1, 2022.
ii. O’Rourke, Ronald. “Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress.” 2011. Pages 6, 12, and 25. Average Costs for New Flight IIA Destroyers based on averaging multi-year procurement of DDGs 114-116, coming to $1,847 Million per ship.
iii. O’Rourke, Ronald. “Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress.” 2022. Page 25. Table A-1. Per ship cost determined based on “Estimated Combined Procurement Cost of DDGs 1000, 1001, and 1002” in millions as shown in annual Navy budget submissions, using the FY23 Budget submission dividing the three ships’ cost by three.
vi. O’Rourke, Ronald. “Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress.” 2022. Page 9.
vii. Congressional Budget Office. “An Analysis of the Navy’s Fiscal Year 2023 Shipbuilding Plan”. 2022. https://www.cbo.gov/publication/58447 Table 7, “Average Costs per Ship Over the 2023–2052 Period for Flight III DDG”.
viii. Ibid, for FFG-62 Frigates.
ix. O’Rourke, Ronald. “Navy Constellation (FFG-62) Class Frigate Program: Background and Issues for Congress”. 2021. Congressional Research Service.https://sgp.fas.org/crs/weapons/R44972.pdf
x. CBO. Navy FY23 Shipbuilding Plan Analysis. Table 7. “Average Costs” DDG(X).
xiii. O’Rourke, Ronald. “Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress.” 2022. Page 9.
xiv. O’Rourke, Ronald. “Navy DDG(X) Next-Generation Destroyer Program: Background and Issues for Congress” 2022. Page 2.
Featured Image: The guided missile destroyers USS Mustin (DDG 89), foreground, and USS Curtis Wilbur (DDG 54) steam through the Philippine Sea during a replenishment at sea Sept. 18, 2013. (U.S. Navy photo by Mass Communication Specialist 3rd Class Paul Kelly/Released)
Dr. Lawrence Okechukwu Udeagbala joins the program to discuss the composition and performance of the Nigerian and Biafran navies during the 1967-1970 Nigerian Civil War. Dr. Udeagbala is a Research Fellow in the Centre for Critical Thinking, Teaching and Learning and a Lecturer in the Department of History and War Studies, Nigerian Defence Academy, Kaduna.
This article is part of the Irregular Warfare Initiative’s Project Maritime, a series exploring the intersection of irregular warfare and the maritime domain. It is republished with permission. Read it in its original form here.
By Walker Mills
The Dnipro River runs more than 1,300 miles, beginning near Smolensk in Russia and emptying into the Black Sea. It is the third-largest river in Europe and is nearly two miles across at its widest points. It cuts across Ukraine for over six hundred miles, from north to south, and bisects several of Ukraine’s largest cities, including the capital, Kyiv.
The Dnipro and its reservoirs power no less than six major hydroelectric stations that together comprise one of the “largest hydropower systems in the word.” It provided water for the reservoirs at the Zaporizhzhia nuclear power plant on the banks of the river and one of its tributaries, the Pripyat River, provided water for the cooling at Chernobyl. It is difficult to understate the importance of the river in Ukraine’s history, where it was a key part of the trade networks for luxury goods like walrus ivory and amber, linking the Baltic and Black Seas as far back as the Vikings and the ancient Greeks. The Dnipro River is a defining geopolitical and historical feature of Ukraine.
In many places, rivers and adjacent infrastructure have become key terrain in the conflict. The New York Times reported that the battles in southern Ukraine have “revolved around rivers and bridges” since the opening days of the conflict. In May, a Russian unit attempting a river crossing on a pontoon bridge in eastern Ukraine took “significant” losses, an embarrassing setback for the Russian military. In October, Ukrainian forces surrounded as many as twenty-five thousand Russian troops in Kherson, where they were pushed up against the western bank of the Dnipro River and the crossing points could be targeted by artillery. More recently, Ukraine accused Russia of planning a “false flag” attackon the dam over the Dnipro at the Kakhovka Hydroelectric Power Plant, which would flood dozens of Ukrainian towns and villages downstream. A canal from the Dnipro in Kherson also provides some of the only freshwater supplies to Russian-occupied Crimea, making it a critical objective of the invasion. And in November, Ukrainian forces launched an amphibious assault on the Kinburn Peninsula in Crimea, which dominates the mouth of the Dnipro River, showing the interplay between riverine and coastal operations. In the Dnipro estuary, Ukrainian and Russian special operations forces are still struggling for control of key islands.
The importance of river systems in Ukraine highlights the disappointing reality that the United States is neglecting its own riverine capability and, by extension, its ability to control key terrain in future conflicts, even as the US government helps support Ukrainian riverine forces. Competency in riverine warfare will continue to be important in Ukraine whether the conflict continues with high intensity or dampens to a low boil because it can enable high-end combat operations, resistance, or local security operations. Despite clear lessons from Ukraine on the importance of riverine capability, the United States military does not have adequate forces that specialize in riverine or fluvial operations and security. In many military operations, rivers are seen only as obstacles to be crossed, despite the opportunities they present for maneuver and sustainment. However, properly trained and equipped units can use river systems to penetrate behind enemy lines and carry out targeted raids, sustain forces, or secure population centers. Riverine capability is especially important in irregular warfare and asymmetric conflicts because rivers are often key terrain for the military but also support critical infrastructure for civilian populations.
While the US military is equipped to conduct “wet gap” crossings and cross rivers (despite the Marine Corps’s divestment of its bridging companies), it is not adequately prepared to use rivers as a maneuver space—or prevent adversaries from doing the same—and it has not been for years. The US military should maintain a dedicated riverine capability in its conventional forces that can be employed in irregular warfare and beyond, and that can be exported to allies and partners in need. The Army and the Marine Corps have largely abandoned their own riverine capability, and the Navy has precious little left. The Navy’s special boat teams are capable, but only one of the three teams, Special Boat Team 22, is focused on riverine operations and operates a riverine-specific platform, the Special Operations Craft–Riverine (SOC-R). On the conventional side, the Navy’s Maritime Expeditionary Security Forces are chronically underresourced and focused on coastal rather than riverine environments. In a rare bit of good news for riverine capability, Marine Forces Reserve has been moving toward reestablishing a small craft capability for the Marine Corps, though it remains to be seen if the effort will be successful.
Ignoring Our History
Historically, the US military has assembled riverine units in an ad hoc manner when they were needed—usually for counterinsurgency operations. The US Navy, in particular, has a “long and varied but episodic history of riverine operations,” according to a Center for Naval Analyses report. The Army and Navy both have experience in riverine warfare dating back to the American Revolution and inherited experience from even earlier colonial conflicts along North American inland waterways. In the years before and after World War II, the US Navy had a dedicated “Yangtze Patrol” of riverine gunboats conducting security operations in China. Vietnam saw large numbers of soldiers and sailors working to provide security on the Mekong River and elsewhere in the country as part of the Mobile Riverine Force, which was inactivated in 1969. After the invasion of Iraq, Marines in a special riverine company were tasked with providing security for critical infrastructure along the Tigris and Euphrates Rivers, responsibilities that were later taken up by the Navy’s new (at the time) Coastal Riverine Force, which executed thousands of missions and helped train Iraqi police when the Marine unit was disbanded in order to free up personnel for other units. Around the same time an Army unit found the need for riverine capability so critical that it used local fishing boats to patrol Iraqi waterways. But today, there is almost nothing. The Navy has recently rebranded the Coastal Riverine Force as Maritime Expeditionary Security Forces because “riverine warfare is no longer an assigned mission area for the United States Navy, and the legacy name no longer captures the roles and missions of our force.” The change was also part of a shift from irregular warfare to great power competition.
Paradoxically, some of the best American riverine expertise is at the Naval Small Craft Instruction and Technical Training School (NAVSCIATTS), under United States Special Operations Command, but the school only instructs international students from allied and partner nations. NAVSCIATTS is a critical organization that helps the United States export riverine expertise to partners around the world where coastal and riverine forces are not only key to defense, but also to internal security and stability. The Pentagon recognizes that riverine expertise is important enough that we pay to bring hundreds of foreign students per year to the United States to learn it and related skills, but the US military doesn’t maintain adequate riverine capability itself. Worse, NAVSCIATTS is at risk of closure, a move that would also rob many US allies and partners of a key riverine training resource and further gut the US military of resident expertise in riverine operations.
Rivers Aren’t Going Away: The Joint Force Needs More Riverine Capability
The Pentagon needs dedicated riverine warfare capability focused on irregular warfare, but also valuable in other types of operations and in other contexts. Recent US wars have shown the enduring value of brown-water navies in irregular warfare in Iraq and Vietnam and Ukraine is continuing to demonstrate the value of riverine capability in high-intensity conflict. And exporting riverine expertise to allies and partners through training exercises with conventional US riverine forces and schools like NAVSCIATTS is valuable for all of the above.
Exporting US riverine expertise to allies and partners improves American relationships and interoperability. Colombia is one of the best examples of a country that has benefitted from US expertise in riverine warfare, and from US investments in Colombian equipment and training, to the level where Colombia is now a world leader in such operations. Rivers are critical in Colombia because the country relies on over 7,000 miles of navigable rivers for everything from transportation to border security and hydroelectric power. The Colombian military has sent dozens, if not hundreds, of sailors, soldiers, and marines to NAVSCIATTS as students, which has helped transform the Colombian Marine Corps into one of the most capable riverine warfare organizations in the world. Today, the Colombian Marine Corps boasts thirteen riverine battalions supported by indigenously designed and built riverine gunboats and naval aviation—units that were critical in beating back the FARC insurgency and forcing the group to the negotiating table in 2016. Much of Colombia is only accessible by river, and the Colombian Navy and Marine Corps are not just guarantors of security, but the only presence of the state in remote communities where they also help provide basic services like health care. Today, Colombia actually exports riverine expertisefrom its Centro Internacional de Excelencia Avanzada Fluvial (International Center of Advanced Riverine Excellence) to other countries from inside and outside the region, including Costa Rica, Ecuador, and Mozambique, and has designed a family of purpose-built riverine patrol vessels built by COTECMAR, a domestic shipbuilder.
Riverine environments present a dichotomy. On the one hand, recent research from Stanford University shows that navigable rivers historically played a large role in the foundations of economic and political development and are linked with prosperity and democracy. However, riverine environments are also more likely to suffer from insecurity than other environments as they “are susceptible to the greatest shock in security terms.” They are often adjacent to population centers and supply irrigation systems, drinking water, and power generation. Compounding the risk of insecurity, they are also vulnerable to severe weather events, including flooding and drought—both of which are projected to increase due to climate change.
From the Seminole Wars to Vietnam and Iraq, American riverine capability has been critical for irregular warfare and beyond, but assembling the brown-water navy has always been an ad hoc process. The ongoing conflict in Ukraine has demonstrated how important rivers and the riverine environment are to larger, more conventional conflicts in today’s era, characterized by strategic competition as well as irregular conflict. Recognizing this, the US government has announced multiple transfers of dozens of riverine patrol boats, including some likely from its own stocks—a move that ironically emphasizes both the importance of riverine capability and simultaneously, the US military’s disinterest in it. Unlike DoD’s donations of HIMARS, Javelins, and other weaponry, the patrol boats will not be replaced. The US military cannot again wait until riverine capability is in high demand before bringing it back; it needs to establish an enduring conventional riverine capability that can support irregular operations or a large-scale conventional conflict, and everything in between.
Walker D. Mills is a Marine Corps infantry officer and nonresident fellow at Marine Corps University’s Brute Krulak Center for Innovation and Future War and a nonresident fellow with the Irregular Warfare Initiative. The views expressed are those of the author and do not reflect the official position of the United States Military Academy, Department of the Army, or Department of Defense.
Featured Image: JOHN C. STENNIS SPACE CENTER, Mississippi (April 29, 2019) Naval Small Craft Instruction and Technical Training School (NAVSCIATTS) students participate in a Patrol Craft Officer Riverine (PCOR) training exercise on John C. Stennis Space Center, Mississippi, April 29, 2019. (U.S. Navy photos by Michael Williams/RELEASED)
Read Part 1 on defining distributed maritime operations.
By Dmitry Filipoff
Introduction
As navies look to evolve during the missile age, much of their ability to threaten other fleets will come down to how well they can mass missile firepower. The ability to combine fires against warships heavily depends upon the traits of the weapons themselves. These traits offer a valuable framework for defining the aggregation potential of individual weapons and the broader force’s ability to mass fires.
In the following breakdowns of tactical dynamics and weapon capabilities, it should become clear that virtually all of the U.S. military’s current anti-ship missiles are lacking crucial traits that are essential for massing fires. The consequence is a force with few good options for sinking ships with missiles, and how this could remain the case through the next decade. But new game-changing weapons are on the way, and DMO is the concept that is poised to harness a major transformation in the U.S. Navy’s firepower.
How Mass Fires Define Limits of Distribution
There is a fundamental tension in looking to spread forces out yet still combine their firepower. The range of weaponry is a critical factor that limits the extent to which forces can distribute from another while still being able to combine their fires. This core tension between distribution and aggregation has a strong influence over the tactics and dispositions of a distributed force.
Longer-ranged weapons allow for the broader distribution of launch platforms, while shorter-ranged weapons will force greater concentration. This dynamic can be illustrated using range rings that show the area forces must reside within if they are to combine their fires against a shared target. Range rings are typically used to show the range of a weapon and are centered on the weapon’s launch platform. In this different method of using “reverse” range rings (for lack of a better term), the ring is centered on the target, and shows the area from where the target can be hit by a given weapon. In other words, to strike a target within the range of the Tomahawk missile, a launch platform must be within a 1,000-mile ring of the target.1 Other platforms using the same weapon must also be within this ringed area, highlighting the extent of distribution that is possible while still combining fires. By comparison, platforms using SM-6 or Harpoon have to distribute within much tighter spaces to combine fires (Figure 1).
Figure 1. Click to expand. Range rings centered on a target illustrate the scope of distribution that is possible with various weapons while still being able to combine fires. (Author graphic)
Launch platforms using different weapons with different ranges must have the rings overlap with one another, at least by the time their fires are combining over the target. These reverse range rings show how longer-range weapons allow for the broader distribution of launch platforms, and how shorter-range weapons, especially versions of the common Harpoon missile, force much tighter concentration around a target (Figure 2).
Figure 2. Click to expand. “Reverse” range rings featuring all U.S. anti-ship missiles. (Author graphic)
The specific ranges of missiles are strongly affected by their flight profiles and are not always a linear, set amount in practice. Missiles and aircraft that fly higher earn longer range, partly through the thinner air at higher altitudes.2 But this comes at the expense of being more detectable and potentially less survivable. Low altitude sea-skimming flight maximizes the element of surprise at a significant cost to range and fuel economy. Different flight profiles can be programmed into missiles depending on the tactical circumstances, and many anti-ship missiles can be programmed with non-linear flight paths and waypoints.3 It is often unclear in publicly available information what kind of flight profile is associated with the published range of the missile.
These factors make range rings more elastic than they appear. This variability of flight profiles adds another dimension of complexity to combining fires. For the sake of consistency in the graphics used here, it is assumed that all missiles of the same type are using the same flight profile in linear attacks. Another elastic factor is the maximum effective range of a weapon, which is not the same as the maximum flying range. The distance a missile can be effectively targeted can be less than how far the missile can travel. Maximum flying ranges are used here for consistency.
Having long-range weaponry is extremely valuable in modern naval warfare because weapon range helps shifts the burden of maneuver from the slower platform to the faster payload. This advantage is especially critical to navies because of the significant speed differential between ships and missiles. A warship with a short-ranged anti-ship missile would have to maneuver for hours and even days to strike multiple targets spread across an ocean. But a warship with a long-ranged weapon could hold all those same targets at risk simultaneously with no maneuver. A single warship with Tomahawk can hold targets near Luzon, Taiwan, and Okinawa at risk simultaneously, while a ship with SM-6 could only hold one of those areas at risk at a time. The warship with SM-6 would have to spend significant time maneuvering to eventually hold all of these areas at risk, and only in sequence (Figure 3).
Figure 3. Click to expand. Conventional range rings centered on the launch platform highlight the ability of longer-ranged weaponry to hold many more targets at risk simultaneously compared to shorter-ranged weaponry. (Author graphic)
This relationship between range and maneuver highlights the critical dynamic of how one force’s distribution can make the adversary’s stretched thin or concentrated. If one force package has shorter-ranged weapons than its adversary, it has less space it can distribute within and still combine fires. The short-ranged force package is more concentrated than its opposition, and may only be able to threaten one portion of the opposing distributed force at a time, if it can get in range. By comparison, many more elements of the distributed force can hold the shorter-ranged force at risk, and from safer standoff distances. Rings within rings can illustrate how the force with longer-ranged weapons can enjoy a broader distribution and mass firing advantage over a force with less range (Figures 4 and 5).
Figure 4. Click to expand. Reverse range rings centered on a REDFOR ship illustrate the extent of distribution for BLUFOR ships combining fires with SM-6, and the extent of distribution for REDFOR ships combining fires with YJ-18. The BLUFOR ships can only hold one REDFOR ship at risk at a time, if they can get within range, while all REDFOR ships can hold all BLUFOR ships at risk simultaneously. A majority of REDFOR ships can fire from standoff ranges. (Author graphic)Figure 5. Click to expand. Reverse range rings centered on a BLUFOR ship illustrate the extent of distribution for BLUFOR ships combining fires with Tomahawk, and the extent of distribution for REDFOR ships combining fires with YJ-18. The REDFOR ships can only hold one BLUFOR ship at risk at a time, if they can get within range, while all BLUFOR ships can hold all REDFOR ships at risk simultaneously. A majority of BLUFOR ships can fire from standoff ranges. (Author graphic)
What can be defined as distributed, concentrated, or stretched thin is less a matter of a specific range or density of forces. Rather, it is better understood as a relationship between one’s own capabilities, and how that compares to the relationship between the capabilities of the adversary. A force that believes it is well-distributed could actually be heavily concentrated in the context of an adversary with much longer-ranged capability.
Anti-ship weapons that are specifically designed for multi-role aircraft are often much smaller than warship-based weapons that are fielded in large launch cells, which often causes these aircraft-based weapons to have lesser range. Aircraft can compensate for lesser weapons range with their faster platform maneuver, whereas warships can compensate for their slower platform maneuver with the longer range of their larger weapons. Understanding this relationship between platform maneuver and payload maneuver and how they can complement and compensate for one another is critical to assembling massed fires.
But range is only one critical variable for assessing the ability to mass fires. Other critical traits include launch cell compatibility, platform compatibility, number of weapons procured, and numbers of weapons fielded per platform. These traits combine to highlight the true extent of a navy’s offensive firepower.
Harpoon and the Perils of Carrier Strike
The Harpoon missile was the U.S. Navy’s first anti-ship missile and has remained its primary anti-ship weapon for more than 45 years.4 The way the U.S. Navy has continued to field this missile has created severe operational liabilities for U.S. sea control and the credibility of American security guarantees in the Indo-Pacific writ large. The Harpoon missile underscores a critical capability gap of major strategic significance by highlighting just how little anti-ship missile firepower the U.S. military has. The weapon’s shortcomings are emphasized by the especially risky tactics the U.S. would be forced to use in war to make much use of it.
The Harpoon missile’s greatest weakness comes through its combination of short range at 80 miles for the more common variants and the lack of meaningful inventory in all its compatible launch platforms save for one – aircraft carriers.5 The short range of this missile draws the U.S. Navy’s most expensive and least risk-worthy platform deeper into the battlespace, while funneling carrier air wings into exceedingly concentrated anti-ship attacks. But because the U.S. Navy has lagged for decades in fielding a meaningful replacement for Harpoon, the highly risky method of attacking ships with carrier air wings is the only tactic the U.S. military effectively has for sinking high-end warships at long range.
The Harpoon missile has the broadest platform compatibility of any U.S. anti-ship weapon, where it can be fielded by submarines, surface ships, bombers, land-based launchers (which the U.S. sells to partners but does not procure for itself), and carrier air wings. But despite the U.S. Navy having more than 9,000 vertical launch cells for missiles, the Harpoon is incompatible with these launchers.6 Instead, it has to be kept in torpedo racks or in launchers mounted topside, which are highly uneconomical methods that severely reduce the number of weapons that can be fielded per warship. U.S. Navy destroyers and cruisers only carry eight Harpoon missiles despite having around 100 launch cells per platform, and the number of torpedo tubes per submarine typically numbers in the single digits. What launch cells offer is significant magazine depth on both an individual platform and force-wide basis, making launch cell compatibility a crucial trait for massing fires.
PACIFIC OCEAN (Feb. 18, 2008) Note the four Harpoon missile launchers in the background and the 64 vertical launch cells in the foreground. Original caption: Seaman Robert Paterson, of Norgo, Cal., stands watch next to the aft vertical launch missile platform on the fantail while underway on the guided-missile cruiser USS Lake Erie (CG 70). (U.S. Navy photo by Mass Communication Specialist 2nd Class Michael Hight)
As a general rule of thumb, any alert and modern warship larger than a corvette should be able to hold its own against a salvo of only eight subsonic anti-ship missiles, or else the warship can hardly justify its cost. U.S. surface and submarine launch platforms are hardly able to muster enough volume of fire to credibly threaten most modern warships with their sparse inventories of Harpoon missiles. This shallow magazine depth creates a strong need for massing fires between multiple platforms to achieve enough volume of fire. But the extremely short range of Harpoon means this weapon has barely any potential for aggregation with other ship-launched Harpoon missiles, unless commanders are willing to concentrate numerous warships to an extreme degree.
This combination of launch cell incompatibility and short range in the Navy’s mainstay anti-ship weapon forces carrier aviation to shoulder most of the burden of massing enough volume of fire. Only the air wing can conceivably mass enough platforms to create enough volume of fire, while having a chance of getting those platforms close enough to a target warship to launch a strike. These factors make aircraft carriers the only platform that can muster a combat credible volume of Harpoon fire.
An F/A-18 Hornet can equip up to four Harpoon missiles, where only two of these aircraft can match the Harpoon firepower of a U.S. Navy cruiser or destroyer. But against high-end warships, achieving combat credible volumes of Harpoon fire requires massing large numbers of carrier aircraft. Overwhelming a single surface action group of several modern destroyers, each with dozens of anti-air weapons and several layers of hardkill and softkill defenses, could conceivably require the majority of an air wing. The remaining few aircraft would be thinly stretched between maintaining combat air patrols, providing tanking and jamming support to the striking squadrons, among other roles. By heavily concentrating the burden of massing volume of fire on air wings, those air wings are subsequently stretched thin across a multitude of other critical missions.
Attempting to mass fires with a missile that is very short-ranged creates severe tactical risks. The short range of Harpoon forces an extremely tight and dense concentration of carrier aircraft around the target to muster enough firepower to be overwhelming. Harpoon’s short range also makes it a weapon that cannot always be confidently fired from standoff distances beyond the range of modern air defenses, unlike many anti-ship missiles. Instead, Harpoon can force air wings to concentrate themselves well within the range of opposing shipboard air defenses. Warship air defense weapons, such as China’s HHQ-9B missiles, can approach and even exceed the short ranges of the Harpoon, putting adversaries into the more favorable position of being able to threaten archers before they can fire arrows (Figure 6).7
Figure 6. Click to expand. Harpoon and LRASM reverse range rings centered on a target illustrate the limits of distribution while massing fires. The center ring illustrates the range of the target’s longest-range air defense weapons, showing how Harpoon-equipped aircraft will have to enter within range of these air defense weapons to mass fires. (Author graphic)
Survivability concerns not only apply to carriers, but to their air wings as well. Air wings are highly sensitive to attrition, where losing even a few aircraft per sortie can quickly render certain missions unsustainable. This is especially true for anti-ship missions that require large numbers of aircraft to achieve sufficient volume of fire. The Navy’s air wings can be risking substantial losses by using a missile that is so short ranged that it can force them to send large and tightly concentrated aerial formations into the teeth of modern naval air defenses. The air wing’s ability to mass enough anti-ship firepower would be rendered impotent in a matter of days if not hours by suffering even minor losses on only a few of these risky strikes.
A visualization of aircraft attrition rates. (Graphic via slide deck of “Sharpening the Spear: The Carrier, the Joint Force, and High-End Conflict” by Seth Cropsey, Bryan G. McGrath, and Timothy A. Walton, Hudson Institute, October 2015.)
Carrier air wings may be resisted by far more than warship air defenses. The signature posed by a mass of carrier aircraft heading toward a target at high altitude could provide plenty of warning to vector opposing airpower into position to blunt the strike. Compared to the aircraft defending the airspace, anti-ship squadrons would likely be at a hardpoint and maneuverability disadvantage. Many of their hardpoints would be taken up by a combination of heavy anti-ship weapons and drop tanks, with potentially fewer anti-air weapons loaded compared to the opposing dogfighters. If the anti-ship aircraft are intercepted before they are within range of attacking warships, they may be forced to dogfight and evade missiles while having their maneuverability impacted by the heavy anti-ship weapon loadouts. Drop tanks, anti-air, and anti-ship weapons will compete for similar hardpoints on carrier aircraft, setting the stage for difficult tradeoffs between survivability, concentration, and mustering enough volume of cruise missile fires.
An F/A-18E flying with a varied weapons loadout. (Lockheed Martin photo)
Anti-ship strikes can be conducted near the limits of the air wing’s range to maximize standoff distance. But the short range of Harpoon combined with the relatively short range of current generation carrier aircraft (compared to past and future generations of air wings), forces the carrier deeper into the contested battlespace and potentially incurs more risk. Harpoon not only threatens the tight concentration of valuable carrier aircraft around targets, it threatens to pull the carrier itself deeper into riskier territory.
Extending the range of the air wing through drop tanks or tanking aircraft can help keep the carrier further out, but this will diminish the volume of firepower by devoting hardpoints and aircraft to fuel instead of weapons. This can benefit the survivability of the carriers more than the air wings, where adding range to the air wing can improve the carrier’s survivability by allowing it to launch strikes from further away. But this will do less for the air wing’s survivability because the short range of their anti-ship weapons will still force tight concentration around the target regardless.
When it comes to managing the signatures of aircraft carriers, not only does the signature of the carrier have to be taken into account, but the signature of the air wing as well. The signatures and footprints of air wing operations can contribute toward concealing or revealing the carrier’s location. Maximizing the standoff range of an air wing launching a massed anti-ship strike encourages a more linear flight path to and from the target, a denser concentration of aircraft throughout the flight path, and higher altitude flight that extends the range but increases the detectability of the aircraft. Even though it maximizes standoff distance, a linear flight path could more easily lead an adversary back to the carrier by virtue of predictability.
Shortening the carrier’s range to the target or devoting more hardpoints and aircraft to fueling can give the air wing more margin to increase the complexity of force presentation. It can allow the air wing to more widely distribute itself and take nonlinear paths to and from the target, which can help conceal the carrier’s location (Figure 7). However, ensuring a disaggregated air wing can effectively come together on time to mass fires poses more complex challenges for mission planning compared to a more linear strike, especially when combining fires with other types of platforms. And a distributed nonlinear flight profile may have to come at the cost of decreasing the overall striking range of the carrier and pull it deeper into the battlespace.
Figure 7. Click to expand. A visualization of carrier strike flight profiles, where each flight path is 500 miles from the carrier to the target. A concentrated linear strike has more overall range, but offers less complex force presentation in some respects than a distributed, nonlinear strike. Yet the distributed flight profile shortens the overall range of the carrier’s striking power. (Author graphic)
Overall, many of the survivability concerns and tradeoffs of using air wings and carriers in anti-ship roles are substantially worsened by the Harpoon missile’s traits. But the major advantage Harpoon has over all the other anti-ship weapons in the U.S. arsenal is its inventory numbers. While recent public information on current figures appears unavailable, data from the 1990s suggests an inventory of as many as 6,000 missiles.8 It is reasonable to assume that the figure today remains in the thousands, compared to most other U.S. anti-ship missiles which have been procured only in the hundreds or dozens. But the ability to leverage the depth of the Harpoon inventory is tightly bottlenecked by the shallowness of the individual platform magazines it is fielded in, given its launch cell incompatibility.
Due to the major risks air wings and carriers must take to effectively mass the very short-ranged Harpoon, maybe the Navy’s carriers would be better served by not using this weapon in a fleet-on-fleet fight. Doing so could enhance the survivability of carriers, air wings, and the surface ships that escort them. But it would mean coming to terms with how the vast majority of the U.S. Navy’s force structure and missile arsenal is hardly able to threaten modern naval formations with anti-ship firepower. Virtually all of the U.S. military’s anti-ship capability could then be narrowly confined to what the submarine force can accomplish with torpedoes alone.
One has to be careful about extrapolating specific tactics from basic weapon limits, given how shortcomings in capability can be compensated by creative operational design. Maybe the Navy is counting on the submarine force sinking the adversary’s high-end surface combatants to pave the way for carrier anti-ship strikes, but that will do little against the land-based airpower those carrier aircraft may still have to tangle with.
November 2015 – An F/A-18 armed with a Harpoon Block II+ missile during a free flight test at Point Mugu’s Sea Range in California. (U.S. Navy photo)
This design of having the entirety of the U.S. military’s long-range anti-ship capability completely concentrated in massive aircraft carriers, who must in turn heavily concentrate their valuable air wings to execute the tactic, is extremely contrary to the principle of distribution. What Harpoon tactics reveal is that after severely lagging in anti-ship missile development for more than half a century, the U.S. Navy has deprived itself of many critical options for fighting another great power navy.
SM-6 and Diluting Capability Across Missions
The SM-6 is unique among the Navy’s anti-ship missiles. It is the only supersonic anti-ship weapon in the Navy’s arsenal, it can be used against both aerial and warship targets, and it has the highest production rate of the Navy’s latest generation of anti-ship weapons. Featuring 150 miles of range for the more common variants, it offers a modest improvement of range over the latest Harpoon variants.9 It is also the only Navy shipboard anti-air missile that may be used to aggregate defensive firepower at long range. However, some of the supposed strengths of SM-6 create drawbacks when it comes to massing firepower for anti-ship strikes.
The high speed of the SM-6, which is more than Mach 3, improves the survivability and lethality of the missile when it comes to breaking through warship defenses and striking the target at high speeds.10 However, the high speed of the missile complicates its ability to combine fires with the Navy’s other anti-ship weapons, which are all subsonic. If SM-6 is to combine with subsonic missiles, then it must either be fired near the end of a mass firing sequence to ensure timely overlap, or the platforms firing subsonic missiles must be much closer to the target than the warship firing SM-6. (This dynamic will be discussed more closely in Part 3.)
The multi-mission versatility of the weapon poses challenges for effective mass fires by complicating release authorities. If a distributed force is to combine anti-ship fires across multiple platforms, then the release authority for offensive anti-ship weapons may naturally reside at a higher echelon than the commander of an individual ship, who typically lacks the organic sensors to target these weapons against warships at long range. But the intense speed and lethality of missile attacks on warships means individual commanders should be afforded the authority to prosecute their local air defense missions with great initiative, especially to avoid defeat in detail. If a unit-level commander feels compelled to employ SM-6 for the sake of ship self-defense, then that may diminish a higher-echelon commander’s options for massing anti-ship fires.
The typical flight profile of long-range anti-air weapons poses another challenge to the effectiveness of SM-6 as an anti-ship weapon. While long-range anti-air weapons can certainly hit sea-level targets, their initial phase of flight typically involves a boost phase that takes them to higher altitude.11 Higher altitude makes it easier for the missile to achieve its maximum speed and range before it descends back down to hit lower-altitude threats. However, a higher altitude flight profile creates disadvantages when attacking warships. High-altitude flight broadens the area from which a missile can be detected and engaged from, possibly giving more warships the opportunity to engage the missile and with more time to take multiple shots. Sea-skimming flight by comparison can force air defense engagements into the immediate area of only the target warship. The SM-6 missile’s high speed is not so great that it effectively compensates for these risks of high-altitude flight. The boost phase of an SM-6 launch can give almost double the reaction time to a target warship’s radars compared to a slower subsonic missile that is only detected after it breaks over the target’s horizon.12
It is unclear if SM-6 can be fired on a flatter trajectory and maintain an end-to-end sea-skimming flight profile. Doing so would likely deprive it of a significant amount of range. It would also make it more difficult for the missile to apply the greatest source of its lethality against warships – its high speed. The warheads of anti-air weapons are much smaller than those of purpose-built anti-ship weapons, where the warhead of SM-6 is about only 15 percent of the size of an LRASM or Tomahawk warhead.13 SM-6 needs to reach high speeds to be at its most lethal against warships, but achieving those speeds is heavily dependent on higher-altitude flight profiles that make the missile less survivable.
The U.S. Navy Arleigh-Burke class guided-missile destroyer USS John Paul Jones (DDG-53) launches an SM-6 missile during a live-fire test of the ship’s Aegis weapons system in the Pacific Ocean. (U.S. Navy photo)
The range of SM-6 is not so long that its offensive anti-ship roles can be cleanly separated from its defensive anti-air roles. The concept of “standoff” fires implies that a valuable margin of survivability can be earned by outranging an opponent’s ability to strike back. But the range of many great power anti-ship missiles is great enough to where SM-6 cannot be comfortably used in a purely standoff role for attacking modern warships. If a warship is within range of attacking another high-end warship with SM-6, then it is also likely within range of anti-ship missile threats that could force the ship to expend SM-6 on defense instead. This effect becomes even more relevant when longer-ranged weapons like opposing anti-ship ballistic missiles can cast a long shadow over thousands of miles of ocean.14 Commanders may opt to reserve their most capable air defense weapon for protection against the adversary’s most capable anti-ship missiles.
Because modern anti-ship weapons tend to outrange most anti-air weapons, it is much more feasible to combine offensive firepower than defensive firepower from across distributed forces. SM-6 may mark an exception by using the unique NIFC-CA capability that allows it to be targeted beneath the radar horizon of the launching warship. The range of SM-6, its high speed relative to the subsonic anti-ship missiles it could be used against, and its ability to be retargeted beneath the horizon make the aggregation of defensive firepower possible.15 This is an especially unique capability, but adds more complexity to the command-and-control arrangements undergirding massed fires.
Compared to all of the Navy’s other modern anti-ship missiles (excluding the aging Harpoon), SM-6 has an advantage in being produced at consistent full-rate production for a number of years since being introduced in 2013, with more than 1,300 missiles in the inventory.16 By comparison, all of the Navy’s other latest generation of anti-ship weapons currently exist in very low numbers that make them hardly applicable to the large-scale salvo requirements of modern naval warfare.
However, most of the SM-6 production runs to date have been for earlier variants whose anti-ship ranges are only marginally better than the latest Harpoon variants.17 While longer-ranged versions of SM-6 are forthcoming, the vast majority of the current inventory will offer little improvement in broadening the extent to which warships can distribute and still be able to combine fires.
Even if longer-ranged versions of SM-6 quickly arrive in large numbers, much of the missile’s versatility could have to be set aside to fill the Navy’s critical anti-ship capability gap through the near term. SM-6 is currently the Navy’s only somewhat numerous, launch-cell compatible, and long-range anti-ship weapon. But its multi-mission capabilities threaten to dilute the inventory across diverse threats. The Navy may be forced to maintain SM-6 as its only viable modern anti-ship missile until other anti-ship weapons are produced in large enough numbers to make a real difference and free SM-6 to fulfill its air defense potential. But given how current production runs are trending, this could take at least 10-15 years to accomplish. If the Navy finds itself in a major naval conflict this decade, it may be forced to forego much of SM-6’s cutting edge air defense capability for the sake of retaining a modicum of long-range anti-ship firepower.
Maritime Strike Tomahawk – The Foundational Enabler of Massed Fires
More than 40 years after an anti-ship Tomahawk first struck a seaborne target in testing, the Navy will be reintroducing an anti-ship variant of the missile.18 More so than any other U.S. anti-ship weapon to be fielded in the coming years, the Maritime Strike Tomahawk holds the greatest promise in fostering a major evolution in the Navy’s ability to distribute platforms and mass anti-ship fires.
Tomahawk’s great advantage is its combination of launch cell compatibility and very long range at more than 1,000 miles.19 Many platforms will be able to carry large numbers of an especially long-range weapon, creating a wide range of options for massing fires. Long range also gives the weapon more opportunity to vary its flight paths and use waypointing, which can be used to execute a variety of tactics and facilitate aggregation with other salvos.
By finally having an anti-ship missile that is both long-range and launch cell compatible, the Navy will be poised to drastically increase the amount of anti-ship firepower across a much greater distribution of platforms. Land-based Tomahawk launchers are also on the way for the U.S. Army and Marine Corps, which will significantly increase options for massing fires if those services procure the weapon in major numbers.20
U.S. Army Mid-Range Capability ground-based missile launcher program. (U.S. Army slide)
However, the Maritime Strike Tomahawk’s potential will not be fully realized until many years from now. It will not reach initial operating capability until 2024 and is currently in its early years of low-rate initial production and testing, with roughly 100 MST kits procured so far.21 The Navy is looking to upgrade all of its Block IV Tomahawks into Block V variants, and it is possible up to 300 recertification kits may be installed per year.22 But it is unclear if every recertification will also add the maritime strike capability through the specific Block Va configuration.23
At this rate, it could take 10 or more years before the Navy has enough inventory of the foundational missile that will allow it to truly make distributed and massed anti-ship fires a reality.
Jan. 27, 2015 – A Tomahawk cruise missile hits a moving maritime target after being launched from the USS Kidd (DDG-100) near San Nicolas Island in California. (U.S. Navy video)
LRASM – A Leap Forward Yet Still More of the Same
The Long-Range Anti-Ship Missile (LRASM) will mark an important upgrade to the Navy’s anti-ship firepower. Featuring a stealthy profile and an estimated range of around 350 miles, LRASM outranges all of the Navy’s other anti-ship weapons except for Tomahawk.24 Yet LRASM does little to enhance the Navy’s ability to mass fires from across distributed forces.
LRASM’s potential for mass fires is heavily constrained by platform compatibility because it is not a launch cell compatible weapon. LRASM can only currently be fielded by bombers and carrier aircraft. Despite tests suggesting that LRASM can be fired from launch cells, the Navy continues to describe the program as “a key air launched component of the Navy’s overall Cruise Missile Strategy…”25 In 2021, industry partnered with an Australian firm to refine the development of a surface-launched variant of LRASM that has been termed “LRASM SL,” suggesting that launch cell compatible versions of this weapon are distinct from what the U.S. Navy is procuring for itself.26
A July 2016 test of the LRASM from a MK-41 launcher on the Navy’s Self Defense Test Ship. (Lockheed Martin photo)
Even though LRASM’s range makes it a much less risky missile for air wings to fire at targets compared to Harpoon, these strikes would still tie down a large portion of the air wing to mass enough firepower to be overwhelming. LRASM does not alleviate the need for large volume of fire, which strains the air wing’s ability to cover multiple other roles besides strike. Even with its advanced capabilities, LRASM will not change certain fundamental disadvantages of massing air wings to conduct long-range strikes against warships.
The amount of LRASM inventory is extremely low at about 250 missiles procured for the Navy so far.27 The Air Force’s inventory is even smaller and only numbers slightly less than 100.28 Although the Air Force’s bombers can equip Harpoon missiles, the short range of that weapon and their especially low procurement rate of LRASM may mean the U.S. military’s bombers will have barely any anti-ship firepower to contribute to U.S. sea control for the foreseeable future.
LRASM shares a production line with the much more numerous Joint Air-to-Surface Standoff Missile (JASSM) it is adapted from, and where more than 2,000 JASSM weapons have been procured by the U.S. Air Force so far, and where the Navy has begun to procure the weapon within the past two years.29 The newest forthcoming “extreme range” variants of the JASSM ground-attack missile will feature ranges of up to 1,000 miles, making it one of the first air-launched cruise missiles that can rival the ranges of Tomahawk.30 The JASSM production line is also the most robust of any of the missiles described thus far, with annual production runs numbering in the hundreds as opposed to the other missiles that are only being procured by the dozens.31
August 12, 2015 – A Long Range Anti-Ship Missile (LRASM). (Photo via Wikimedia Commons)Sept. 13, 2018 – An inert AGM-158A Joint Air-to-Surface Standoff Munition (JASSM) being used in a training exercise on a B-1B Lancer at Al Udeid Air Base, Qatar. (U.S. Air Force photo by Tech. Sgt. Ted Nichols/Released)
The two anti-ship weapons that hold the most promise, LRASM and Maritime Strike Tomahawk, are adaptations of existing munitions that have been produced in far greater numbers – JASSM and the land-attack Tomahawk. Upgrading these existing weapons with anti-ship capabilities and seekers may be a more rapid and cost-effective way to ramp up the anti-ship weapon inventory of the U.S. military compared to building new weapons wholesale. If the forthcoming extended-range variants of JASSM can feature anti-ship capabilities, then the U.S. military will open up a vast array of new options for the distribution and aggregation of firepower between naval and air forces.
Naval Strike Missile – Only Slightly Better Than Harpoon
The Naval Strike Missile (NSM) features a stealthy profile and an advanced seeker, but it brings only a marginal improvement over Harpoon. Similar to Harpoon, NSM has relatively short range at 115 miles and it is not compatible with launch cells.32 It is mainly being fielded by the Navy’s Littoral Combat Ships with only eight weapons per ship, and the Marines are procuring a land-based version. Its short range and launch cell incompatibility make this weapon poorly suited for massing fires from distributed forces. Low procurement rates put the current inventory at slightly more than 110 missiles, hardly enough to make the weapon widely fielded and available for mass fires.33 The main utility of both Harpoon and NSM in a major naval conflict may be relegated to engagements against smaller and more isolated combatants, perhaps in secondary theaters and areas peripheral to larger salvo exchanges.
A Naval Strike Missile in flight. (Photo via U.S. Department of Defense DOT&E)
A Brittle Spear
The ability to mass fires is fundamentally enabled by fielding a large number of long-range missiles across a wide variety of platforms. In terms of numbers, range, and variety, the U.S. military falls woefully short. The U.S. military cannot execute the tactic of distributed massed fires against warships today because it simply does not have the weapons to make it possible. Its current anti-ship missile firepower is extremely concentrated in aircraft carriers and tightly stretched thin everywhere else.
None of the newer U.S. anti-ship missiles will do much to improve the Navy’s ability to distribute and still combine fires, except for Tomahawk. LRASM can somewhat broaden the scope of physical distribution of launch platforms, but it is still a heavily concentrating weapon due to its narrow platform compatibility. LRASM will do little to alleviate the carrier’s heavy burden of shouldering most of the U.S. Navy’s anti-ship capability.
The Maritime Strike Tomahawk strongly stands out as the weapon with the most transformational promise, and it is absolutely fundamental to manifesting DMO. Finally the U.S. Navy will have anti-ship weaponry that is both long-range and compatible with its launch cells, and finally the U.S. military will have more viable anti-ship missile platforms than just carriers. This stands in sharp contrast to great power competitors, who have already broadly distributed anti-ship firepower across their surface fleets, bombers, land-based forces, and submarines.34
A central risk factor is considering what proportion of the overall volume of fire each type of weapon may contribute. Based on these key traits, more risk is incurred the less suitable a weapon is for mass fires. Weapons such as Harpoon or the Naval Strike Missile can certainly add a fraction of the contributing fires, but the more these weapons make up mass fires, the more risk the force will have to assume.
Click to expand. A table of U.S. anti-ship weapons and key weapon traits for massing fires. (Author graphic)
Among the weapon traits analyzed, the depth of inventory stands out as an especially critical constraint in the capital-intensive nature of modern naval salvo combat. Even if highly capable missiles are being procured, inventory depth is the key variable that will prevent the U.S. military from having enough modern anti-ship missile firepower through at least the rest of this decade. Current stocks of modern U.S. anti-ship missiles are not remotely close to satisfying the demands of a type of combat that can require more than a hundred missiles to overwhelm the defenses of only a few destroyers, where a decade’s worth of weapons procurement can easily be discharged in a matter of hours.
As it currently stands, most of the inventory of the Navy’s anti-ship missiles except for Harpoon could be spent in a handful of salvo engagements. The appropriate amount to meet great power naval threats is not dozens or even hundreds of weapons, but thousands – a figure that grossly exceeds the inventory of all of the U.S. military’s latest generation of anti-ship weapons. And even if procurement rates have substantially grown the inventory 15 years from now, competitors could have grown their own arsenals over the same period, such as by building out deep inventories of anti-ship ballistic missiles and hypersonics that sustain a critical margin of overmatch.
It is unclear how exactly the U.S. military has chosen to distribute or concentrate its small but growing inventory of modern anti-ship weapons. A major crisis could force the U.S. military to scrounge across the force in a rush to assemble enough weapons to field an adequate volume of fire. If these rare weapons are spread across the east- and west coast-based fleets, the Navy may be forced to engage in an elaborate act of transcontinental crossdecking to concentrate enough credible firepower in crisis response units.
These pervasive capability gaps have created a major window of opportunity for great power challengers to capitalize on the strategic liability posed by the weakness of the American naval arsenal. Until new weapons are fielded in large enough numbers, the U.S. military may be forced to endanger its single most expensive platform to close the gap – aircraft carriers.
Part 3 will focus on assembling massed fires and modern fleet tactics.
7. J. Michael Dahm, “A Survey of Technologies and Capabilities on China’s Military Outposts in the South China Sea,” South China Sea Military Capability Series, Johns Hopkins Applied Physics Laboratory, pg. 6, March 2021, https://apps.dtic.mil/sti/pdfs/AD1128637.pdf.
12. This calculation was arrived at by dividing the range of the SM-6 (150 miles) using the SM-6’s Mach 3.5 speed (2,685 miles), adding about 30 seconds to account for acceleration to max speed from launch, and a radar horizon profile of a radar mounted 30ft. high and the SM-6 coming into view at about 7,000 feet of altitude, which corresponds to the 150 mile range of the weapon. This comes to about four minutes of warning to the target warship. The subsonic missile time is calculated at 550mph breaking over a horizon that is 20 miles, giving the target warship slightly more than two minutes of warning.
18. For 1982 test date: E. H. Corirow, G. K. Smith, A. A. Barboux, “The Joint Cruise Missiles Project: An Acquisition History, Appendixes,” RAND, pg. 46, August 1982, https://www.rand.org/pubs/notes/N1989.html.
Statement of Frederick J. Stefany, Principal Civilian Deputy, Assistant Secretary of the Navy (Research, Development and Acquisition), Performing the Duties of the Assistant Secretary of the Navy (Research, Development and Acquisition) and Vice Admiral Scott Conn, Deputy Chief of Naval Operations, Warfighting Requirements and Capabilities (OPNAV N9) and Lieutenant General Karsten S. Heckl, Deputy Commandant, Combat Development and Integration, Commanding General, Marine Corps Combat Development Command, before the Subcommittee on Seapower of the Senate Armed Services Committee on Department of the Navy Fiscal Year 2023 Budget Request for Seapower, PDF pages 31-32, April 26, 2022, https://www.armed-services.senate.gov/imo/media/doc/HS_26APR22_RDA_SASC_S_DON_PB23_Shipbuilding_Aviation_Ground_FINAL%20(2).PDF.
Featured Image: PHILIPPINE SEA (Oct. 1, 2019) Independence-variant littoral combat ship USS Gabrielle Giffords (LCS 10) launches a Naval Strike Missile (NSM) during exercise Pacific Griffin. (U.S. Navy Photo by Mass Communication Specialist 3rd Class Josiah J. Kunkle)