Category Archives: Future War

Where is war going?

21st Century Maritime Operations Under Cyber-Electromagnetic Opposition Part Two

The following article is part of our cross-posting partnership with Information Dissemination’s Jon Solomon.  It is republished here with the author’s permission.  You can read it in its original form here.

Read part one of this series here.

By Jon Solomon

Candidate Principle #2: A Network’s Combat Viability is more than the Sum of its Nodes

Force networking generates an unavoidable trade-off between maximizing collective combat capabilities and minimizing network-induced vulnerability risks. The challenge is finding an acceptable balance between the two in both design and operation; networking provides no ‘free lunch.’

This trade-off was commonly discounted during the network-centric era’s early years. For instance, Metcalfe’s Law—the idea that a network’s potential increases as the square of the number of networked nodes—was often applied in ways suggesting a force would become increasingly capable as more sensors, weapons, and data processing elements were tied together to collect, interpret, and act upon battle space information.[i] Such assertions, though, were made without reference to the network’s architecture. The sheer number (or types) of nodes matter little if the disruption of certain critical nodes (relay satellites, for example) or the exploitation of any given node to access the network’s internals erode the network’s data confidentiality, integrity, or availability. This renders node-counting on its own a meaningless and perhaps even misleadingly dangerous measure of a network’s potential. The same is also true if individual systems and platforms have design limitations that prevent them from fighting effectively if force-level networks are undermined.

Consequently, there is a gigantic difference between a network-enhanced warfare system and a network-dependent warfare system. While the former’s performance expands greatly when connected to other force elements via a network, it nevertheless is designed to have a minimum performance that is ‘good enough’ to independently achieve certain critical tasks if network connectivity is unavailable or compromised.[ii] A practical example of this is the U.S. Navy’s Cooperative Engagement Capability (CEC), which extends an individual warship’s air warfare reach beyond its own sensors’ line-of-sight out to its interceptor missiles’ maximum ranges courtesy of other CEC-participating platforms’ sensor data. Loss of the local CEC network may significantly reduce a battle force’s air warfare effectiveness, but the participating warships’ combat systems would still retain formidable self and local-area air defense capabilities.

Conversely, a network-dependent warfare system fails outright when its supporting network is corrupted or denied. For instance, whereas in theory Soviet anti-ship missile-armed bombers of the late 1950s through early 1990s could strike U.S. aircraft carrier battle groups over a thousand miles from the Soviet coast, their ability to do so was predicated upon time-sensitive cueing by the Soviet Ocean Surveillance System (SOSS). SOSS’s network was built around a highly centralized situational picture-development and combat decision-making apparatus, which relied heavily upon remote sensors and long-range radio frequency communications pathways that were ripe for EW exploitation. This meant U.S. efforts to slow down, saturate, block, or manipulate sensor data inputs to SOSS, let alone to do the same to the SOSS picture outputs Soviet bomber forces relied upon in order to know their targets’ general locations, had the potential of cutting any number of critical links in the bombers’ ‘kill chain.’ If bombers were passed a SOSS cue at all, their crews would have had no idea whether they would find a carrier battle group or a decoy asset (and maybe an accompanying aerial ambush) at the terminus of their sortie route. Furthermore, bomber crews firing from standoff-range could only be confident they had aimed their missiles at actual high-priority ships and not decoys or lower-priority ships if they received precise visual identifications of targets from scouts that had penetrated to the battle group’s center. If these scouts failed in this role—a high probability once U.S. rules of engagement were relaxed following a war’s outbreak—the missile salvo would be seriously handicapped and perhaps wasted, if it could be launched at all. Little is different today with respect to China’s nascent Anti-Ship Ballistic Missile capability: undermine the underlying surveillance-reconnaissance network and the weapon loses its combat utility.[iii] This is the risk systems take with network-dependency.

Candidate Principle #3: Contact Detection is Easy, Contact Classification and Identification are Not

The above SOSS analogy leads to a major observation regarding remote sensing: detecting something is not the same as knowing with confidence what it is. It cannot be overstated that no sensor can infallibly classify and identify its contacts: countermeasures exist against every sensor type.

As an example, for decades we have heard the argument ‘large signature’ platforms such as aircraft carriers are especially vulnerable because they cannot readily hide from wide-area surveillance radars and the like. If the only method of carrier concealment was broadband Radar Cross Section suppression, and if the only prerequisite for firing an anti-carrier weapon was a large surface contact’s detection, the assertions of excessive vulnerability would be true. A large surface contact held by remote radar, however, can just as easily be a merchant vessel, a naval auxiliary ship, a deceptive low campaign-value combatant employing signature-enhancement measures, or an artificial decoy. Whereas advanced radars’ synthetic or inverse synthetic aperture modes can be used to discriminate a contact’s basic shape as a classification tool, a variety of EW tactics and techniques can prevent those modes’ effective use or render their findings suspect. Faced with those kinds of obstacles, active sensor designers might turn to Low Probability of Intercept (LPI) transmission techniques to buy time for their systems to evade detection and also delay the opponent’s development of effective EW countermeasures. Nevertheless, an intelligent opponent’s signals intelligence collection and analysis efforts will eventually discover and correctly classify an active sensor’s LPI emissions. It might take multiple combat engagements over several months for them to do this, or it might take them only a single combat engagement and then a few hours of analysis. This means new LPI techniques must be continually developed, stockpiled, and then situationally employed only on a risk-versus-benefit basis if the sensor’s performance is to be preserved throughout a conflict’s duration.

Passive direction-finding sensors are confronted by an even steeper obstacle: a non-cooperative vessel can strictly inhibit its telltale emissions or can radiate deceptive emissions. Nor can electro-optical and infrared sensors overcome the remote sensing problem, as their spectral bands render them highly inefficient for wide-area searches, drastically limit their effective range, and leave them susceptible to natural as well as man-made obscurants.[iv]

If a prospective attacker possesses enough ordnance or is not cowed by the political-diplomatic risks of misidentification, he might not care to confidently classify a contact before striking it. On the other hand, if the prospective attacker is constrained by the need to ensure his precious advanced weapons inventories (and their launching platforms) are not prematurely depleted, or if he is constrained by a desire to avoid inadvertent escalation, remote sensing alone will not suffice for weapons-targeting.[v] Just as was the case with Soviet maritime bombers, a relatively risk-intolerant prospective attacker would be compelled to rely upon close-in (and likely visual) classification of targets following their remote detection. This dependency expands a defender’s space for layering its anti-scouting defenses, and suggests that standoff-range attacks cued by sensor-to-shooter networks will depend heavily upon penetrating (if not persistent) scouts that are either highly survivable (e.g., submarines and low-observable aircraft) or relatively expendable (e.g., unmanned system ‘swarms’ or sacrificial manned assets).

On the expendable scout side, an advanced weapon (whether a traditional missile or an unmanned vehicle swarm) could conceivably provide reconnaissance support for other weapons within a raid, such as by exposing itself to early detection and neutralization by the defender in order to provide its compatriots with an actionable targeting picture via a data link. An advanced weapon might alternatively be connected by data link to a human controller who views the weapon’s onboard sensor data to designate targets for it or other weapons in the raid, or who otherwise determines whether the target selected by the weapon is valid. While these approaches can help improve a weapon’s ability to correctly discriminate valid targets, they will nevertheless still lead to ordnance waste if the salvo is directed against a decoy group containing no targets of value. Likewise, as all sensor types can be blinded or deceived, a defender’s ability to thoroughly inflict either outcome upon a scout weapon’s sensor package—or a human controller—could leave an attacker little better off than if its weapons lacked data link capabilities in the first place.

We should additionally bear in mind that the advanced multi-band sensors and external communications capabilities necessary for a weapon to serve as a scout would be neither cheap nor quickly producible. As a result, an attacker would likely possess a finite inventory of these weapons that would need to be carefully managed throughout a conflict’s duration. Incorporation of highly-directional all-weather communications capabilities in a weapon to minimize its data link vulnerabilities would increase the weapon’s relative expense (with further impact to its inventory size). It might also affect the weapon’s physical size and power requirements on the margins depending upon the distance data link transmissions had to cover. An alternative reliance upon omni-directional LPI data link communications would run the same risk of eventual detection and exploitation over time we previously noted for active sensors. All told, the attacker’s opportunity costs for expending advanced weapons with one or more of the aforementioned capabilities at a given time would never be zero.[vi] A scout weapon therefore could conceivably be less expendable than an unarmed unmanned scout vehicle depending upon the relative costs and inventory sizes of both.

The use of networked wide-area sensing to directly support employment of long-range weapons could be quite successful in the absence of vigorous cyber-electromagnetic (and kinetic) opposition performed by thoroughly trained and conditioned personnel. The wicked, exploitable problems of contact classification and identification are not minor, though, and it is extraordinarily unlikely any sensor-to-shooter concept will perform as advertised if it inadequately confronts them. After all, the cyclical struggle between sensors and countermeasures is as old as war itself. Any advances in one are eventually balanced by advances in the other; the key questions are which one holds the upper hand at any given time, and how long that advantage can endure against a sophisticated and adaptive opponent.

In part three of the series, we will consider how a force network’s operational geometry impacts its defensibility. We will also explore the implications of a network’s capabilities for graceful degradation. Read Part Three here.

Jon Solomon is a Senior Systems and Technology Analyst at Systems Planning and Analysis, Inc. in Alexandria, VA. He can be reached at jfsolo107@gmail.com. The views expressed herein are solely those of the author and are presented in his personal capacity on his own initiative. They do not reflect the official positions of Systems Planning and Analysis, Inc. and to the author’s knowledge do not reflect the policies or positions of the U.S. Department of Defense, any U.S. armed service, or any other U.S. Government agency. These views have not been coordinated with, and are not offered in the interest of, Systems Planning and Analysis, Inc. or any of its customers.

[i] David S. Alberts, John J. Garstka, and Frederick P. Stein. Network Centric Warfare: Developing and Leveraging Information Superiority, 2nd Ed. (Washington, D.C.: Department of Defense C4ISR Cooperative Research Program, August 1999), 32-34, 103-105, 250-265.

[ii] For some observations on the idea of network-enhanced systems, see Owen R. Cote, Jr. “The Future of Naval Aviation.” (Cambridge, MA: Massachusetts Institute of Technology Security Studies Program, 2006), 28, 59.

[iii] Solomon, “Defending the Fleet,” 39-78. For more details on Soviet anti-ship raiders dependencies upon visual-range (sacrificial) scouts, see Maksim Y. Tokarev. “Kamikazes: The Soviet Legacy.” Naval War College Review 67, No. 1 (Winter 2013): 71, 73-74, 77, 79-80.

[iv] See 1. Jonathan F. Solomon. “Maritime Deception and Concealment: Concepts for Defeating Wide-Area Oceanic Surveillance-Reconnaissance-Strike Networks.” Naval War College Review 66, No. 4 (Autumn 2013): 88-94; 2. Norman Friedman. Seapower and Space: From the Dawn of the Missile Age to Net-Centric Warfare. (Annapolis, MD: Naval Institute Press, 2000), 365-366.

[v] Solomon, “Defending the Fleet,” 94-96.

[vi] Solomon, “Maritime Deception and Concealment,” 95.

Enter the SCAGTF: Combined Distributed Maritime Ops

By Nicolas di Leonardo

SURFACE * CYBER * AIR * GROUND * TASK FORCE

 “…The supreme art of war is to subdue the enemy without fighting.” –Sun Tzu, The Art of War 

Six Phases of Warfare
Source: JP 3-0

In modern parlance, winning without fighting is accomplished in Phases 0 and 1 of a campaign.  China is seeking to achieve a Phase 0-1 victory in the Pacific through its acquisition / deployment of Anti-Access Area Denial (A2AD) weaponry and economic / military coercion of its peripheral neighbors. When the two are coupled, US operational and diplomatic freedom of maneuver becomes severely constrained, and decisive counter-strategy is required.

Historically, the US has attempted to counter each of China’s weapon systems / diplomatic moves individually without attacking its overall strategy.  When new Chinese weapons systems are deployed, new American countermeasures are fielded.  When China builds new islands where disputed sandbars and reefs once existed, the US flies freedom of navigation sorties overhead.  When individual South East Asian countries are coerced by China to abandon multilateral UNCLOS negotiations and sign bilateral agreements, the US reaffirms support of multilateralism.  The American strategy demonstrates

Source: InformationDissemination.net
Source: InformationDissemination.net

resolve and intent, but does little to shape the environment, and deter the near peer competitorIt plays like a precipitated withdraw and ceding of the South China Sea to China—a stunning admission that there is seemingly little that the US can do when faced with the Chinese dominated political-economic landscape on one hand and a potential naval – air war of attrition on the other. 

The potential Chinese A2AD environment is particularly daunting for the US Pacific Fleet.  Chinese forces could elect to deploy their anti-surface / land attack ballistic and cruise missiles to keep American carriers outside of the 9-Dash Line; disable reconnaissance satellites; jam communications necessary for secure / centralized command & control; threaten to overwhelm remaining forces with vast numbers of aircraft while using the majority of their ships and submarines to counter the US asymmetric advantage in undersea warfare. By asymmetrically threatening American Navy “kill chains”, and especially by holding its naval center of gravity—the CVNs—at risk, the Chinese can effectively turn the American critical strength into a critical vulnerability.  The US cannot afford to lose even one CVN and thus when confronted with the threat of a paralyzing strike against its Pacific CVNs followed by an attrition war, it is prudent to assume that the US would not risk the losses and would exit the battlespace. A potential de-facto Chinese victory in Phases 0-2 could thus be achieved without a decisive Mahanian sea battle–just a credible threat.

Solution sets to countering Chinese A2AD Phase O-2 victory are under development from multiple sources—US  Naval Surface Forces (Distributed Lethality); Marine Corps Combat Development Command (Distributed STOVL [F-35B] Operations); US Marine Corps Advanced Studies Program (Engagement Pull).  All have one thing in common: strategic distribution of mobile offensive power to hold China’s freedom of maneuver in the South China Sea at risk, and inhibit their sea control over key sea lines of communication (SLOC). These solution sets represent a significant evolution in the strategic thought surrounding the US pivot to the Pacific:  attacking China’s strategy vs countering its individual asymmetric capabilities.

In Distributed Maritime Operations: Back to the Future, Dr. Benjamin Jensen states that

“…integrating land and naval forces as a ‘fleet in being’ denying adversary sea control is at the core of the emerging distributed maritime operations paradigm.” 

The defining of the pieces parts and the organizational construct of this paradigm is at the heart of the matter.  General Al Gray, USMC (ret) and Lt. General George Flynn, USMC (ret) recently presented at the Potomac Institute their thoughts on Sea Control and Power Projection within the context of The Single Naval Battle.  In their vision, the forces would include:

To this list I would add tactical level cyber capabilities.

Forces engaged in these missions will likely operate in near proximity to each other and in joint / combined operations, as the American, Australian, New Zealand and British sea, air and land forces of Guadalcanal did.  They will be required to pose sufficient threat to Chinese forces without significant reinforcement due to anticipated Chinese A2AD.  The inter-complexity of their likely combined Sea, Cyber, Air, Ground operations dictates that their task force command and control should not be ad-hoc, but must be defined well in advance to allow for the emergence, experimentation and exercising of command knowledge, skills, abilities and tactics / doctrine. US and allied lack of exercising joint/ combined, multi-domain operations prior to Guadalcanal led to tactics and command and control (C2) doctrine being written in blood.  This lack of foresight should not be repeated.

A SCAGTF construct allows for the US to shape the environment with its allies, deter the [Chinese], and if necessary to seize the initiative, buying time for the massing of forces to dominate the battlespace.  The SCAGTF is one way to integrate the great ideas of our best strategists on distributed maritime operations into a single, flexible organizational structure that is capable of mobile, simultaneous combined / joint multi-domain operations in all phases of warfare.  Such a force could aid the US in reversing its Pacific fortunes, in reinforcing multilateral peace and security for the region, and ultimately in realizing Sun Tzu’s bloodless victory.

Nicolas di Leonardo is a graduate student of the US Naval War College.  The views expressed here are his own and do not necessarily reflect those of the War College or the United States Navy.

Call for Articles: Future of Naval Aviation Week, Sep 14-18

Week Dates: 14-18 Sept 15
Articles Due: 9 Sept 15
Article Length: 500-1500 Words
Submit to: nextwar(at)cimsec(dot)org

Back in January, CAPT Jerry Hendrix (USN, Ret) and CDR Bryan McGrath (USN, Ret) had a stirring debate on the future of Aircraft Carriers. However, the debate quickly shifted from the carrier itself to the nature of the airwing it carried. Indeed, the carrier is nothing more than a host for the platforms provided by naval aviation – and only one of many ships that can carry aviation assets.

That discussion, driving into the world of the carrier air wing, was the inspiration for this week of discussion on naval aviation in general. From the maritime patrol aircraft deployed from the reclaimed Chinese reefs in the South China Sea, to US Army Apaches operating from amphibious assault ships, to 3-D printed drones flown off a Royal Navy offshore patrol vessel, to manned and unmanned ideas for the carrier air wing as carriers proliferate around the Pacific  -we want your ideas and observations on where global naval aviation will and can go next.

How will the littoral navies of the world change with new, lower-cost unmanned aviation assets? Are carriers armed with legions of long-range unmanned drones the future for global powers – will these technologies exponentially increase the importance of smaller carriers – or is unmanned technology a limited path that may be resisted (rightfully?) by pilots and their communities? Will surface fleets embrace the potential from easily produced drone swarms deployed from ships of the line… should they? What is the future of land-based naval aviation? What innovations will be ignored, what will be embraced, and what will the air assets of future fleets around the world look like? What will the institutions, the leadership, and C2 structures that support all these assets of their varied nations look like? The topic is purposefully broad to bring forward a myriad of topics and inspire future topic weeks on more specific subjects.

Contributions should be between 500 and 1500 words in length and submitted no later than 9 September 2015. Publication reviews will also be accepted. This project will be co-edited by LT Wick Hobson (USN) and, as always, Sally DeBoer from our editorial pool.

Matthew Hipple, President of CIMSEC, is a US Navy Surface Wafare Officer and graduate of Georgetown’s School of Foreign Service. He hosts the Sea Control podcast and regularly jumps the fence to write for USNI and War on the Rocks.

The Role of Swarm Intelligence for Distributed Lethality C2

This article was submitted by guest author Marjorie Greene for CIMSEC’s Distributed Lethality week.  Ms. Greene is a Research Analyst with CNA.  Views expressed are her own.

What will distributed lethality command and control look like?   This article introduces a self-organizing approach that addresses this question.   The increasing vulnerability of centralized command and control systems in network warfare suggests it may be time to take an entirely new approach that builds on the human capacity to interact locally and collectively with one another. Building on the concept of swarm intelligence, the approach suggests that information could be “shared” in a decentralized control system, much as insect colonies share information by constructing paths that represent the evolution of their collective knowledge.

This article builds on a self-organizing system that was developed for military analyses aimed at finding out “who talks to whom, about what, and how effectively” in a wide range of operational situations featuring the involvement of naval forces and commands. In an effort to describe the content of message traffic throughout the chain of command during a crisis, a technique was used to associate messages with each other through their formal references. “Reference-connected sets” were constructed that required no interpretation of the subject matter of the messages and, when further analyzed, were found to uniquely identify events during the crisis. For example, one set that was constructed from crisis-related message traffic found in files at three command headquarters contained 105 messages that dealt with preparation for landing airborne troops. Other sets of messages represented communications related to other events such as providing medical supplies and preparing evacuation lists. The technique therefore provided a “filter” of all messages during the crisis into events that could be analyzed – by computers or humans – without predetermined subject categories. It simply provided a way of quickly locating a message that had the information (as it was expressed in natural language) that was necessary to make a decision [1].

As the leaders of the Surface Navy continue to lay the intellectual groundwork for Distributed Lethality, this may be a good time to re-introduce the concept of creating “paths” to represent the “collective behavior” of decentralized self-organized systems” for control of hunter-killer surface action groups. Technologies could still be developed to centralize the control of multiple SAGs designed to counter adversaries in an A2/AD environment. But swarm intelligence techniques could also be used in which small surface combatants would each act locally on local information, with global control “emerging” from their collective dynamics. Such intelligence has been used in animal cultures to detect and respond to unanticipated environmental changes, including predator presence, resource challenges, and other adverse conditions without a centralized communication and control system. Perhaps a similar approach could be used for decentralized control of Distributed Lethality.

Swarm intelligence builds on behavioral models of animal cultures. For example, the ant routing algorithm tells us that when an ant forages for food, it lays pheromones on a trail from source to destination. When it arrives at its destination, it returns to its source following the same path it came from. If other ants have travelled along the same path, pheromone level is higher. Similarly, if other ants have not travelled along the path, the pheromone level is lower. If every ant tries to choose a trail that has higher pheromone concentration, eventually the pheromones accumulate when multiple ants use the same path and evaporate when no ant passes.

Just as an ant leaves a chemical trace of its movement along a path, an individual surface combatant could send messages to other surface ships that include traces of previous messages by means of “digital pheromones.” One way to do this would be through a simple rule that ensures that all surface ships are kept informed of all previous communications related to the same subject. This is a way to proactively create a reference-connected message set that relates to an event across all surface ships during an offense operation.

In his book, Cybernetics, Norbert Wiener discusses the ant routing algorithm and the concept of self-organizing systems. He does not explicitly define “self-organization” except to suggest it is a process which machines – and, by analogy, humans – learn by adapting to their environment. Now considered to be a fundamental characteristic of complex systems, self-organization refers to the emergence of higher-level properties and behaviors of a system that originate from the collective dynamics of that system’s components but are not found in nor are directly deducible from the lower-level properties of the system. Emergent properties are properties of the whole that are not possessed by any of the individual parts making up that whole. The parts act locally on local information and global order emerges without any need for external control.

The Office of Naval Research has recently demonstrated a new era in autonomy and unmanned systems for naval operations that has great promise for Distributed Lethality. The LOCUST (Low-Cost UAV Swarming Technology) program utilizes information-sharing

The Coyote UAV, developed by BAE, used by the LOCUST program
The Coyote UAV, developed by BAE, used by the LOCUST program

between UAVs to enable autonomous collaborative behavior in either defensive or offensive scenarios. In the opinion of this author, this program should be analyzed for its potential application to Distributed Lethality.

Professor Vannevar Bush at MIT was perhaps the first person to come up with a new way of thinking about constructing paths for information-sharing. He suggested that an individual’s personal information storage and selection system could be based on direct connections between documents instead of the usual connections between index terms and documents. These direct connections were to be stored in the form of trails through the literature. Then at any future time the individual himself or one of his friends could retrieve this trail from document to document without the necessity of describing each document with a set of descriptors or tracing it down through a classification tree [2].

The current response to the dilemmas associated with command and control in any distributed operation has led this author to embrace the concept of swarm intelligence. Rather than attempting to interpret the subject matter of information exchanged by entities in confronting an adversary, why not build control systems that simply track information “flows”? Such flows would define the subject matter contained in a naval message without having to classify the information at all.

Any discussion of command and control would be incomplete without including the concept of fuzzy sets, introduced by Professor Lotfi Zadeh at the University of California, Berkeley in 1965. The concept addresses the vagueness that is inherent in most natural language and provides a basis for a qualitative approach to the analysis of command and control in Distributed Lethality. It is currently used in a wide range of domains in which information is incomplete or imprecise and has been extended into many, largely mathematical, constructions and theorems treating inexactness, ambiguity, and uncertainty. This approach to the study of information systems has gained a significant following and now includes major research areas such as pattern recognition, data mining, machine learning algorithms, and visualization, which all build on the theoretical foundations established in information systems theory [3].

Ultimately, the information paths constructed for the control of Distributed Lethality will be a function of organizational relationships and the distribution of information between them. Since a message in a path cannot reference a previous message unless its originator is cognizant of the previous message, the paths in a “reference-connected set” of messages will often reflect the information flows within a Surface Action Group. When paths are joined with other paths, the resulting path often reflects communications across Surface Action Groups. It remains to be determined whether the Surface Navy can use these concepts as it continues to explore the intellectual groundwork for Distributed Lethality. Nevertheless, it is very tempting to speculate that swarm intelligence will play an important role in the future. The most important consideration is that this approach concentrates on the evolution of an event, rather than upon a description of the event. Even if a satisfactory classification scheme could be found for control of hunter-killer Surface Action Groups, the dynamic nature of their operations suggests that predetermined categories would not suffice to describe the complex developments inherent in evolving and potentially changing situations.

Many organizations have supported research and development designed to explore the full benefits of shared information in an environment in which users will be linked through interconnected communications networks. However, in the view of this author, the model of “trails of messages” should be explored again. “Network warfare” will force an increased emphasis on human collaborative networks. Dynamic command and control will be based on communications paths and direct connections between human commanders of distributed surface ships rather than upon technologies that mechanically or electronically select information from a central store. Such an approach would not only prepare for Distributed Lethality, but may improve command and control altogether.

Ms. Greene is a Research Analyst with CNA. Views expressed are her own. 

REFERENCES:

  1. Greene, , “A Reference-Connecting Technique for Automatic Information Classification and Retrieval”, OEG Research Contribution No. 77, Center for Naval Analyses, 1967
  2. Bush, V., “As We May Think”, Atlantic Monthly 176 (1):101-108, 1945
  3. Zadeh, L.,” Fuzzy sets”, Information Control 8, 338-353, 1965
CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.

Select a Donation Option (USD)

Enter Donation Amount (USD)