Category Archives: Future War

Where is war going?

After Distributed Lethality – Unmanned Netted Lethality

Distributed Lethality Topic Week

By Javier Gonzalez

Distributed lethality was introduced to the fleet in January 2015 as a response to the development of very capable anti-access area-denial (A2/AD) weapons and sensors specifically designed to deny access to a contested area. The main goal is to complicate the environment for our adversaries by increasing surface-force lethality—particularly with our offensive weapons—and transform the concept of operations for surface action groups (SAGs), thus shifting the enemy’s focus from capital ships to every ship in the fleet. Rear Admiral Fanta said it best: “If it floats, it fights.” The real challenge is to accomplish this with no major funding increase, no increase in the number of ships, and no major technology introductions. The Navy has successfully implemented this concept by repurposing existing technology and actively pursuing long-range anti-ship weapons for every platform. An illustrative example of the results of these efforts is the current initiative to once again repurpose Tomahawk missiles, currently used for land strikes, as anti-ship missiles. The next step in the evolution of distributed lethality will be to deploy similar force packages and introduce new technology. The introduction of  Naval Integrated Fire Control-Counter Air (NIFC-CA) technology is the kind of technological advancement that enhances distributed lethality. NIFC-CA combines multiple kill chains into a single kill web agnostic of sensors or platforms. In the near future, hunter-killer SAGs will deploy with these very capable networks and bring powerful and credible capability into the A2/AD environment

The first hunter-killer SAG deployed earlier this year. It was comprised of three destroyers and a command element. This recent SAG mirrors the World War II “wolf pack” concept—not just a disaggregated group of destroyers in theater under a different fleet commander, but a group of ships sailing together with an embarked command element. The embarked command element is key because, coupled with the concept of “mission command,” it allows the hunter-killer SAG the autonomy required to fully realize effects in a command and control denied environment.

While there is no argument that distributed lethality is a sound short-term strategy, the enemy has a vote and will adjust. The real challenge for the Navy then is to continue finding ways to innovate and rapidly incorporate new technologies such as unmanned systems to ensure that distributed lethality does not yield to distributed attrition. The best way to prevent distributed attrition is to fully integrate unmanned technologies into the fleet to ultimately transform distributed lethality into a new concept, hereby referred to as Unmanned Netted Lethality. 

Evolving Distributed Lethality

In the near future, a hunter-killer SAG will bring a more powerful and lethal force package into the fight with the partial integration of unmanned systems. A near-future force package could include a NIFC-CA capable DDG with an MH-60R detachment, littoral combat ships with scan eagle unmanned aerial vehicles (UAVs), and an anti-submarine warfare continuous trail unmanned vessel (ACTUV)- DARPA’s latest unmanned vessel built with a sensor package optimized to track submarines. These new capabilities bring  unprecedented flexibility to  warfighters, and commanders in theater will have additional options to tailor adaptive force packages based on the perceived threat or mission.

The next step in the evolution of distributed lethality will be to add more advanced weapons to every ship—from energy weapons to the rail gun—and fully incorporate unmanned systems into  future force packages. The ultimate vision is hunter-killer SAGs comprised of unmanned underwater vehicles, unmanned surface vehicles, and UAVs under the command of a single manned ship. These unmanned platforms will create a massive constellation of sensors and weapons that will transform every ship in the Navy into a lethal, flexible, and fully distributed force to reckon with—the Unmanned Netted Lethality concept.

It is evident that the Unmanned Netted Lethality concept relies on the aggressive development and integration of unmanned, and eventually fully autonomous, systems into the fleet..  Controlled autonomy is fundamental for the Unmanned Netted Lethality concept to be effective.  While autonomy brings many benefits, there are concerns as well—unintended loss of control, compromise by adversaries, accountability, liability, and trust, to name a few. The solution to mitigate these concerns is to manage the level of autonomy with a manned ship as an extension of the commanding officer’s combat system. Employing various levels of autonomy control, from completely manual to completely autonomous, gives the power to the decision makers to set the level of autonomy based on the prevailing circumstance and allows unmanned system utilization in any environment.   

16440189798_ddd0fc7a5f_b
SOUTH CHINA SEA (Feb. 19, 2015) – Sailors assigned to Helicopter Maritime Strike Squadron (HSM) 35, Detachment 2, prepare an MQ-8B Fire Scout unmanned autonomous helicopter for flight operations aboard the littoral combat ship USS Fort Worth (LCS 3). (U.S. Navy photo by Mass Communication Specialist 2nd Class Conor Minto) 

The mission will drive the level of autonomy. For instance, 20 years from now, during the first Unmanned Netted Lethality hunter-killer SAG deployment and while transiting in safe waters, the command ship will control the operations of an unmanned vessel until it is in restricted waters. Then, the commanding officer will change the level of autonomy into a cooperative mode in which the unmanned systems quickly create a constellation of passive and active sensors to increase overall maritime awareness. Once a crisis transitions into combat operations, the commanding officer will place the unmanned systems into a fully autonomous status with two primary missions: sense and destroy  enemy forces while protecting the manned ship by creating a lethal cluster around it. This layered approach to autonomy increases overall trust in unmanned systems in a responsible and palatable way for decision makers who are unquestionably accountable for the performance of these unmanned systems.

Cooperative independence is also an important feature, in which unmanned systems will perform complex tasks, both individually and in groups under the supervision of a commanding officer. Not one unmanned system should rely on another; if a system is destroyed or is taken off-line, each system should be able to continue with the mission independently but cooperatively with remaining systems.

Without a doubt and due in great part to the proliferation of unmanned systems, interoperability remains the hardest challenge to overcome. The bottom line is that these systems need to be developed with common and open software architecture to minimize interoperability challenges and maximize employment opportunities. The need to convey these requirements early in the acquisition process is fundamental so that new unmanned systems are designed with three primary characteristics: controlled autonomy, cooperative but independent functionality, and complete interoperability.

A Roadmap to Guide Change

Distributed lethality’s initial charter was to increase performance with no technology leaps, significant funding increase, or number of ship increases while having immediate to near-future effects. In the short term, this goal is achievable. However, in the near to long-term future, the Navy should continue to follow former General Electric’s CEO Jack Welch’s advice “Change before you have to.” The Unmanned Netted Lethality concept provides the Navy with a vision and a roadmap to guide the evolution of distributed lethality into the future. Incorporating unmanned systems into an Unmanned Netted Lethality concept will transform every manned ship in the Navy into a force package with a credible conflict changing capability.

Commander Javier Gonzalez is a Navy Federal Executive Fellow at the John Hopkins University Applied Physics Laboratory and a career Surface Warfare Officer. These are his personal views and do not reflect those of John Hopkins University or the Department of the Navy.

Featured Image: ATLANTIC OCEAN (Feb. 6, 2012) Scan Eagle, an unmanned aerial vehicle (UAV), sits on the flight deck after a successful test aboard the Whidbey Island-class amphibious dock-landing ship USS Gunston Hall (LSD 44) during a certification exercise (CERTEX).  (U.S. Navy photo by Mass Communication Specialist 3rd Class Lauren G. Randall/ Released)

Tactical Information Warfare and Distributed Lethality

Distributed Lethality Topic Week

By Richard Mosier

Background

The U.S. Navy’s distributed lethality strategy is to deny sea control to adversaries claiming sovereignty over international waters through the use of small offensive Surface Action Groups (SAGs) that operate in areas covered by the adversary’s anti-access, sea denial sensor systems and supported by land based command and control, interior lines of communication, and defensive platforms and weapons. The Navy strategy is for these SAGs to transit to positions to attack enemy ISR, command and control, and defending forces; and deny them sea control. The success of distributed operations ultimately depends on Information Warfare (IW) operations to deny the enemy the data required to target and attack Surface Action Groups.

Anti-access, sea denial capabilities of near-peer nations present a high threat to surface navy operations. The use of multiple offensive SAGs complicates the enemy’s defense but only if these groups avoid detection, tracking, targeting, and attack. If they operate with active sensors, datalinks and voice and network communications transmitting, they reveal their location, track, classification/identification, and group composition. Moreover, these emissions provide a readily available source for targeting the SAG. If attacked, the resulting battle damage and depleted stock of defensive weapons would most likely require the group to withdraw.  

130131-N-HN991-919 PACIFIC OCEAN (Jan. 31, 2013) The Arleigh Burke-class guided-missile destroyers USS Stockdale (DDG 106) and USS William P. Lawrence (DDG 110) transit the western Pacific Ocean. The Nimitz Strike Group Surface Action Group is operating in the U.S. 7th Fleet area of responsibility. (U.S. Navy photo by Mass Communication Specialist 2nd Class David Hooper/Released)
PACIFIC OCEAN (Jan. 31, 2013) The Arleigh Burke-class guided-missile destroyers USS Stockdale (DDG 106) and USS William P. Lawrence (DDG 110) transit the western Pacific Ocean. The Nimitz Strike Group Surface Action Group is operating in the U.S. 7th Fleet area of responsibility. (U.S. Navy photo by Mass Communication Specialist 2nd Class David Hooper/Released)

For distributed lethality to succeed, SAGs have to avoid being engaged while in transit to the attack position, attack with the advantage of surprise, avoid attack while repositioning, and if attacked, effectively defend the force. If, as must be anticipated, some or all of the units in the SAG are located and the enemy begins defensive operations, the first objective is to avoid being targeted by possibly denying the attacking force the information required to attack. If these measures fail and a SAG is located and targeted by the enemy, the goal is to transition instantaneously to full active defense in a tactically advantageous manner. Destroying the aircraft, surface ships, submarines, or land based sites is preferable to defending against large numbers of fast moving incoming anti-ship weapons.

While emission control (EMCON) is essential to deny targeting, the ships in a SAG will have to communicate to coordinate movements, exchange information, and execute defensive and offensive activities. These datalinks and battle group communications will have to be carefully selected to minimize the probability of intercept by enemy ISR systems.

Implications for Surface Navy Information Warfare

When in EMCON, the SAG will be reliant on own-force passive sensors, organic airborne surveillance systems, and the full range of information from nonorganic Navy, joint, and national ISR systems. This information will enable the tactical commander to gain and maintain both information superiority and speed of command, defined by VADM Cebrowski as: “knowing more things which are relevant, knowing them faster and being able to convert that knowledge into execution faster than the adversary.”

SAG tactical situation awareness requires the capability to automatically correlate relevant active and passive information from organic and non-organic sensors with intelligence at all classifications and compartments for presentation to the commander. This automation is essential to the commander’s situational awareness and speed of command. Surface ships will have to integrate the capabilities to correlate information from the ship’s combat system with intelligence and information from off board sources. Speed of command is dramatically slowed and tactical advantage lost if the commander has to mentally integrate three separate sets of information with some only available in a separate physical space.

Knowing the relevant facts faster than the adversary drives a requirement that off board intelligence and information systems must meet a Key Performance Parameter for time latency, measured from time of sensing to receipt onboard ship. It also indicates the need for a similar metric for ship combat systems measured from time of information receipt on ship to presentation to the commander. Speed of command is the key to tactical success in distributed operations.

Even when exercising electromagnetic and acoustic EMCON to avoid detection, surface ships can be detected by radars, visually, and by electro-optical sensor systems. Assessing whether the SAG has been detected will depend on factors such as enemy sensor location and altitude, platform type, sensor types on the platform, and a detailed understanding of enemy sensor performance. Sensor performance estimates require not only detailed technical intelligence, but also the assessment of effects of atmospheric and acoustic conditions on enemy sensor performance at any time during the mission. This suggests that combat systems will have to incorporate new automated IW functionality that, among other things, integrates track information with technical intelligence and meteorologic/oceanographic data to assess whether the ship has been detected or not.

Conclusion

The effective planning and command of SAG IW activities requires line officers that are trained, have specialized in IW during their careers, and are ready to perform the IW functions required for success in distributed operations. That is, to achieve superior situation awareness and speed of command, influence enemy decisions, deny the enemy information superiority, disrupt enemy decision making, and protect and defend own force information and information systems from external or internal threats.

As the concept of distributed lethality matures and the Navy gains an appreciation of the necessity for and potential of IW at the tactical level, the Navy will have to adjust to more clearly define IW, describe the missions and functions of IW, establish a career path for Surface Warfare Officer (SWO) IW specialists, and equip surface combatants with the information warfare capabilities required for successful distributed operations.

Richard Mosier is a former naval aviator, intelligence analyst at ONI, OSD/DIA SES 4, and systems engineer specializing in Information Warfare. The views express herein are solely those of the author.

Featured Image:  The Arabian Gulf (Mar. 23, 2003) — The Tactical Operations Officer (TAO), along with Operations Specialists, stand watch in the Combat Direction Center (CDC) aboard the aircraft carrier USS Abraham Lincoln (CVN 72) monitoring all surface and aerial contacts in the operating area.  (U.S. Navy photo by Photographer’s Mate Airman Tiffany A. Aiken)

Beans, Bullets, and Benzene: A Proposal for Distributing Logistics

Distributed Lethality Topic Week

By Elee Wakim

The days of majestic leviathans harnessing the power of the elements for propulsion to cruise the world’s navigable waters are long past. What has evolved are voracious beasts which tear across the world with little concern for all but the largest of wind and wave. The appetite of the engines that propel these vessels can only be satiated by a routine supply of petroleum. The United States Navy has established a global logistics network to feed this hunger, the backbone of which is a fleet of tankers, manned by the merchant mariners of the Military Sealift Command (MSC). Hand in hand with the ability to refuel the Navy’s ships is the ability to send fresh food, replacement parts, and ammunition to surface assets without the need to have them return to domestic ports and safe havens. This steady stream of supplies allows the United States to project power around the world. Given the importance of our MSC fleet, they will likely be a priority target in the opening stages of a conflict against a near-peer adversary. Given their vulnerability, these vessels will be faced with the prospect of withdrawing from the area of responsibility (AOR) or being sunk. Whatever the outcome, the cruisers, destroyers, and littoral combat ships at the tip of the spear will retain the requirement of contesting the battlefield until sufficient forces arrive in theater to relieve them. How then to supply these vessels and ensure they have what they need to do what is demanded of them? This paper seeks to address this concern and provide a possible solution to the disruption of our supply chain in the Western Pacific.

Distributing Logistics

One possible solution harkens back to the late 19th century, when nations desiring to project naval power around the world were confronted with a need for coaling stations to support their relatively short legged ships. The 21st century Navy, borrowing from this concept, could build a series of logistics hubs throughout the Western Pacific. These miniature logistics hubs could be built in small inlets, coves, and atolls – anywhere with sufficient draft to support our surface assets. They would function as temporary sanctuaries where thirsty ships could quickly gas up and resupply before turning around and returning to the fight. The infrastructure required to support this concept need not be excessive. A small tug, a fuel barge, and the personnel to man them would be the extent of the investment.

Depending on the potential threat (largely driven by its proximity of an adversary’s weapons systems, or lack thereof), the Navy could expand beyond the aforementioned bare necessities to provide additional support to its vessels. A runway could be constructed to allow for replacement ordnance or repair teams to be flown in.  To complement this, cranes could be prepositioned to support reloading of expended VLS cells. Any combination of support equipment could be staged to support rapid augmentation via air during wartime. Indeed, if we were feeling particularly ambitious, we could use these locations to facilitate the forward repair of battle damage, using vessels like the USNS Frank Cable (AS-40) with their extensive machine shops to establish floating forward repair facilities.

101230-N-8423B-015 POLARIS POINT, Guam (Dec. 30, 2010) The submarine tender USS Frank Cable (AS 40) tends the Virginia-class attack submarine USS Hawaii (SSN 776). Hawaii is the first Virginia-class attack submarine to be moored outboard of a submarine tender. Frank Cable conducts maintenance and support of submarines and surface vessels deployed in the U.S. 7th Fleet area of responsibility. (U.S. Navy photo by Mass Communication Specialist 2nd Class Catherine Bland)
POLARIS POINT, Guam (Dec. 30, 2010) The submarine tender USS Frank Cable (AS 40) tends the Virginia-class attack submarine USS Hawaii (SSN 776). Hawaii is the first Virginia-class attack submarine to be moored outboard of a submarine tender. (U.S. Navy photo by Mass Communication Specialist 2nd Class Catherine Bland)

There are several advantages that such outposts offer our frontline commanders.  First and foremost is that, in a scenario where our logistics ships are driven off, sunk, or otherwise unavailable, the captains fighting their ships would have multiple locations to replenish and get back into the fight. This would facilitate greater time on station which is crucial to maintaining their ability to shape the conflict, contest the battle space, and disrupt an adversary’s plan.

Secondly, these dispersed outposts would allow for fixed locations to refuel. In a degraded C2 environment, this is no small consideration when the ship in question may not have the ability to locate, communicate with, or sufficient endurance to reach surviving oilers. By dispersing potential resupply locations across a greater expanse, we inherently complicate potential adversaries ISR and force distribution calculations. No longer could it be assumed that naval vessels will be taking the most direct route to or from Guam, Japan, Singapore, or the Philippines. Instead, the foe must now picket additional lines of approach and disperse limited assets.

It is a very different tactical problem to protect widely dispersed oilers with a handful of assets than those steaming in company with a strike group. If our logistics ships are to survive in an increasingly lethal anti-access/area-denial (A2AD) environment, they will require an escort to provide sensor and kinetic coverage, primarily from hostile airborne and subsurface threats. This coverage will necessarily be supplied by large surface combatants. This coverage would likely require a one to one matchup between these – the shepherds – and their quarry. Freeing them of the need to ride herd on our logistics (at least until they initially transit out of the theater) will make them available for other tasking.

Considerations and Challenges

There are a host of questions to consider, one of which is the sustainability of these stations. Operating upon the high seas takes a heavy toll upon equipment, which requires a great deal of maintenance to remain operational. These outposts would require personnel to ensure the airfields are capable of supporting aircraft, the cranes of swinging VLS cells, and the pumps of pushing fuel. Exact expenditure and allocation of personnel would need to be worked out on a case by case basis. The current U.S. Army facilities on Kwajalein in the Marshall Islands provide a possible blueprint for use elsewhere. The island possesses a harbor, tug, fuel barge, and runway, which do not require burdensome manning. Additional requirements would necessarily be subject to further study.

(Kwajalein Range Services)
Kwajalein atoll in the Marshall Islands. (Kwajalein Range Services)

Another question which merits consideration is the diplomatic expenditures necessary to enable the placement of these logistics hubs. Should the United States construct these facilities on the territory of regional partners or should it seek to, like the People’s Republic of China, improve upon maritime features scattered throughout the Pacific? Both lines of approach have inherent hurdles. Establishing them on the territory of another nation will require a greater initial investment of political capital and defining legal framework to permit their existence. Building upon unclaimed maritime features risks a charge of hypocrisy against the United States relative to its stance on the Spratly Islands, though this could largely be mitigated through a decision to forego claiming a surrounding exclusive economic zone. Ultimately, some combination of the two may ultimately prove desirable.

A third matter that should be addressed is that of targeting by long range weapons of an adversary. The proposed logistics hubs, like their seaborne counterparts, would be prime targets in the opening hours of a conflict while, unlike their counterparts, they would be unable to dodge. How then to prevent them from being anything other than a target or a drain of resources? There are two potential paths to their salvation. The first draws from the Russian concept of maskirovka, or military deception. Given the pervasiveness of satellite imagery, it will be difficult to actually hide the locations, making it necessary to convince an adversary that they serve a different purpose. They will be far less likely to waste precious missiles on a naval construction battalion facility or medical facility than a place to replenish a warship. The other path, for those facilities which would be emplaced on foreign territory, would be the protection afforded by the sovereignty of that nation. Potential adversaries may not want to draw unnecessary third parties (such as the Philippines or Japan) into a conflict with the United States by lobbing missiles at their territory, especially if the third parties are not obligated to join the United States.

Conclusion

George Patton once quipped, “fixed fortifications are monuments to man’s stupidity.”  This paper does not advocate turning these proposed positions into heavily manned bastions. Rather, their physical security would be derived from geographic remoteness and light covering forces such as Patriot batteries and Naval Expeditionary Combat Command detachments. This paper also does not seek to posit that our MSC fleet lacks utility; indeed, it is quite the opposite. Those ships are the defining variable in determining not only whether we can emerge victorious from a prolonged conflict, but whether we can simultaneously support our global commitments.

This paper offers an alternative means to supply our fleet in the opening stages of a conflict against a near-peer adversary who is capable of tracking and targeting our logistic ships at great distances. If we have sufficient forces in theater to meet mission obligations and protect our logistics ships, then there is no harm in having built up such a capability.  If, however, our opponent has denied these vessels the ability to safely operate where they are most needed, then such a low-cost investment may prove decisive in allowing our ships to hold the enemy at risk. Let us not forget that if she runs out of gas, no amount of advanced sensors or weapons will prevent a ship from being anything more than a target.

LTJG Elee Wakim is a Surface Warfare Officer in the United States Navy.  He is currently stationed in Singapore with the Maritime Staff Element of Destroyer Squadron SEVEN.  The views expressed here are his own and do not represent those of the United States Department of Defense or any other organization.

Featured Image: EAST CHINA SEA (July 30, 2016) The forward-deployed Arleigh Burke-class guided-missile destroyer USS Barry (DDG 52) conducts an underway-replenishment with the Military Sealift Command (MSC) fleet replenishment oiler Joshua Humphreys (T-AO 188). (U.S. Navy photo by Mass Communication Specialist 2nd Class Kevin V. Cunningham/Released)

Unmanned Systems: A New Era for the U.S. Navy?

By Marjorie Greene

The U.S. Navy’s Unmanned Systems Directorate, or N99, was formally stood up this past September with the focused mission of quickly assessing emerging technologies and applying them to unmanned platforms. The Director of Unmanned Warfare Systems is Rear Adm. Robert Girrier, who was recently interviewed by Scout Warrior, and outlined a new, evolving Navy Drone Strategy.

The idea is to capitalize upon the accelerating speed of computer processing and rapid improvements in the development of autonomy-increasing algorithms; this will allow unmanned systems to quickly operate with an improved level of autonomy, function together as part of an integrated network, and more quickly perform a wider range of functions without needing every individual task controlled by humans. “We aim to harness these technologies. In the next five years or so we are going to try to move from human operated systems to ones that are less dependent on people. Technology is going to enable increased autonomy,” Admiral Girrier told Scout Warrior.

Forward, into Autonomy

Although aerial drones have taken off a lot faster than their maritime and ground-based equivalent, there are some signs that the use of naval drones – especially underwater – is about to take a leap forward. As recently as February this year, U.S. Defense Secretary Ash Carter announced that the Pentagon plans to spend $600 million over the next five years on the development of unmanned underwater systems. DARPA (the Defense Advanced Research Projects Agency) recently announced that the Navy’s newest risk taker is an “unmanned ship that can cross the Pacific.”

DARPA’s initial launch and testing of Sea Hunter. (Video: DARPA via YouTube)

Called the Sea Hunter, the vessel is a demonstrator version of an unmanned ship that will run autonomously for 60 – 80 days at a time. Known officially as the Anti-Submarine Warfare Continuous Trail Unmanned Vessel (ACTUV), the program started in 2010, when the defense innovations lab decided to look at what could be done with a large unmanned surface vessel and came up with submarine tracking and trailing. “It is really a mixture of manned-unmanned fleet,” said program manager Scott Littlefield. The big challenge was not related to programming the ship for missions. Rather, it was more basic – making an automated vessel at sea capable of driving safely. DARPA had to be certain the ship would not only avoid a collision on the open seas, but obey protocol for doing so.

As further evidence of the Navy’s progress toward computer-driven drones, the Navy and General Dynamics Electric Boat are testing a prototype of a system called the Universal Launch and Recovery Module that would allow the launch and recovery of unmanned underwater vehicles from the missile tube of a submarine. The Navy is also working with platforms designed to collect oceanographic and hydrographic information and is operating a small, hand-launched drone called “Puma” to provide over-the-horizon surveillance for surface platforms.

Both DARPA and the Office of Naval Research also continue to create more sophisticated Unmanned Aircraft Systems. DARPA recently awarded Phase 2 system integration contracts for its CODE (Collaborative Operations in Denied Environment) program to help the U.S. military’s unmanned aircraft systems (UAS) conduct dynamic, long-distance engagements against highly mobile ground and maritime targets in denied or contested electromagnetic airspace, all while reducing required communication bandwidth and cognitive burden on human supervisors.

An artist's rendition of DARPA's CODE concept, designed to enable operations in a electromagnetically contested environment. Illustration: DARPA
An artist’s rendition of DARPA’s CODE concept, designed to enable operations in a electromagnetically contested environment. (DARPA)

CODE’s main objective is to develop and demonstrate the value of collective autonomy, in which UAS could perform sophisticated tasks, both individually and in teams under the supervision of a single human mission commander. The ONR LOCUST Program allows UAVs (Unmanned Aerial Vehicles) to stay in formation with little human control. At a recent demonstration, a single human controller was able to operate up to 32 UAVs.

The Networked Machine…

The principle by which individual UAVs are able to stay in formation with little human control is based on a concept called “swarm intelligence,” which refers to the collective behavior of decentralized, self-organized systems, as introduced by Norbert Wiener in his book, Cybernetics. Building on behavioral models of animal cultures such as the synchronous flocking of birds, he postulated that “self-organization” is a process by which machines – and, by analogy, humans – learn by adapting to their environment.

The flock behavior, or murmuration, of starlings is an excellent demonstration of self-organization. (Video: BBC via YouTube)

Self-organization refers to the emergence of higher-level properties and behaviors of a system that originate from the collective dynamics of that system’s components but are not found in nor are directly deducible from the lower-level properties of the system. Emergent properties are properties of the whole that are not possessed by any of the individual parts making up that whole. The parts act locally on local information and global order emerges without any need for external control. In short, the whole is truly greater than the sum of its parts.

There is also a relatively new concept called “artificial swarm intelligence,” in which there have been attempts to develop human swarms using the internet to achieve a collective, synchronous wisdom that outperforms individual members of the swarm. Still in its infancy, the concept offers another approach to the increasing vulnerability of centralized command and control systems.

Perhaps more importantly, the concept may also allay increasing concerns about the potential dangers of artificial intelligence without a human in the loop. A team of Naval Postgraduate researchers are currently exploring a concept of “network optional warfare” and proposing technologies to create a “mesh network” for independent SAG tactical operations with designated command and control.

…And The Connected Human

Adm. Girrier was quick to point out that the strategy – aimed primarily at enabling submarines, surface ships, and some land-based operations to take advantage of fast-emerging computer technologies — was by no means intended to replace humans. Rather, it aims to leverage human perception and cognitive ability to operate multiple drones while functioning in a command and control capacity. In the opinion of this author, a major issue to be resolved in optimizing humans and machines working together is the obstacle of “information overload” for the human.

Rear Admiral Girrier, Director of N99, delivers a presentation on the future of naval unmanned systems at the Center for Strategic and International Studies.
Rear Admiral Robert P. Girrier, Director of N99, delivers a presentation on the future of naval unmanned systems at the Center for Strategic and International Studies, January 29, 2016. See the presentation here. (CSIS)

Captain Wayne P. Hughes Jr, U.S. Navy (Ret.), a professor in the Department of Operations Research at the Naval Postgraduate School, has already noted the important trend in “scouting” (or ISR) effectiveness. In his opinion, processing information has become a greater challenge than collecting it. Thus, the emphasis must be shifted from the gathering and delivery of information to the fusion and interpretation of information. According to CAPT Hughes, “the current trend is a shift of emphasis from the means of scouting…to the fusion and interpretation of massive amounts of information into an essence on which commanders may decide and act.”

Leaders of the Surface Navy continue to lay the intellectual groundwork for Distributed Lethality – defined as a tactical shift to re-organize and re-equip the surface fleet by grouping ships into small Surface Action Groups (SAGs) and increasing their complement of anti-ship weapons. This may be an opportune time to introduce the concept of swarm intelligence for decentralized command and control. Technologies could still be developed to centralize the control of multiple SAGs designed to counter adversaries in an A2/AD environment. But swarm intelligence technologies could also be used in which small surface combatants would each act locally on local information, with systemic order “emerging” from their collective dynamics.

Conclusion

Yes, technology is going to enable increased autonomy, as noted by Adm. Girrier in his interview with Scout Warrior. But as he said, it will be critical to keep the human in the loop and to focus on optimizing how humans and machines can better work together. While noting that decisions about the use of lethal force with unmanned systems will, according to Pentagon doctrine, be made by human beings in a command and control capacity, we must be assured that global order will continue to emerge with humans in control.

Marjorie Greene is a Research Analyst with the Center for Naval Analyses. She has more than 25 years’ management experience in both government and commercial organizations and has recently specialized in finding S&T solutions for the U. S. Marine Corps. She earned a B.S. in mathematics from Creighton University, an M.A. in mathematics from the University of Nebraska, and completed her Ph.D. course work in Operations Research from The Johns Hopkins University. The views expressed here are her own.

Featured Image: An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast Guard Research and Development Center has been testing UAS platforms consistently for the last three years. (U.S. Coast Guard)