Category Archives: Drones/Unmanned

Every Ship a SAG and the LUSV Imperative

By Lieutenant Kyle Cregge, USN

The US Navy’s strike capacity is shrinking. As highlighted in Congressional testimony with senior leaders, the Surface Navy is set to lose 788 Vertical Launch System (VLS) cells through the end of the Davidson Window in 2027. This 8.85% of current Surface Navy VLS capacity represents the equivalent of eight Arleigh Burke-class destroyers leaving the fleet as the Ticonderoga cruisers are retired. However, even the most aggressive and expensive shipbuilding alternative would not return equivalent VLS numbers to the surface fleet until the late 2030s. Present maritime infrastructure capacity further strangles efforts to buy additional Arleigh Burke destroyers, Constellation-class frigates, and Virginia-class submarines. These complex multi-mission ships cost billions of dollars and years of investment in build times, and yet service life extension proposals are equally unsavory. From extending aging Ticonderoga cruisers to arming merchants or Expeditionary Fast Transports, none are cheap, scalable, or sustainable in the long-term. All this while the world’s largest navy, the People’s Liberation Army Navy (PLAN), continues its building spree at speed and scale, delivering combatants equipped with long-range anti-ship missiles meant to challenge America’s role as balancer in Eurasia.

Figure 1. Click to expand. Surface Ship VLS Data, Adopted from the CBO’s analysis of the Navy’s FY23 Shipbuilding Plan.

Where can the Surface Navy focus its efforts for future growth given the financial constraints and maritime industrial base capacity? What capabilities are most likely to enable a replaceable, lethal force to deter or deny Chinese aggression from the Taiwan Strait to the Second Island Chain?

The Surface Navy must build and deploy the Large Unmanned Surface Vehicle (LUSV) at scale as small surface combatants, to economically restore and grow VLS capacity over the next decade. A concept for its implementation and other USVs like it, “Every Ship a SAG,” proposes a distributed future force architecture, where every manned ship can operate far afield from each other, while each is surrounded by multiple VLS-equipped and optionally manned LUSVs. Doctrinally, a Surface Action Group (SAG) is defined as a temporary or standing organization of combatant ships, other than aircraft carriers, tailored for a specific tactical mission. Together, these manned-unmanned teams will form more lethal SAGs than a single ship or manned surface action group operating alone. Led by Surface Warfare Lieutenants as Unmanned Task Group Commanders, this USV-augmented SAG offers a lethal instantiation of the next-generation hybrid fleet.

“Every Ship a SAG” provides a scalable and flexible model for incorporating current and future unmanned systems with the existing surface fleet. The fleet could rapidly up-gun conventional platforms and even amphibious ships, Littoral Combat Ships (LCS), or Expeditionary Staging Bases (ESB) with more lethal USVs as teammates. Lastly, “Every Ship a SAG” offers mitigation for many of the concerns levied at Navy USV concepts, including Hull, Mechanical, and Electrical (HM&E) reliability, maintenance, and spare parts; force protection; C5I/Networks; autonomy; and the role of USVs in deterrence. Mutual support from a manned ship reduces operational risk and will enable the small crew led by the Surface Warfare Early Commander to embark on their USV to execute critical manned operations during dangerous or restricted waters evolutions. These small teams then debark to a designated mothership and perform USV mission integration when the USV is in an unmanned mode. “Every Ship a SAG” offers a critical next step between today’s nascent USV capability and a more advanced, USV-forward, and independent future.

Now is a critical moment in history. LUSVs must be scaled to meet the Navy’s warfighting mission, and Congress must resource the supporting pillars to ensure effective outcomes. When every manned US Navy ship is a Surface Action Group, this distributed hybrid fleet will be more lethal, survivable, and ready to fight and win maritime wars against peer adversaries.

Defining “Every Ship a SAG”

The Secretary of the Navy and the Chief of Naval Operations have consistently argued for the introduction of unmanned systems and their incorporation into the fleet. Leaders have envisioned LUSV as a 200-300ft low-cost, high endurance, and reconfigurable corvette accommodating up to 32 VLS cells. The ship is programmed to be bought in Fiscal Year 2025 with subsequent buys out to 2027 with a three-ship purchase at $241 million per ship. The Navy’s unmanned strategies have referred to LUSVs as “adjunct magazines,” providing greater strike and anti-surface warfare weapons. This vision is appropriate, but has narrowly scoped the ship’s offensive technical capabilities. Myriad experts have penned compelling, lengthy vignettes illustrating USVs in the fleet, with advantages including sensor networking, depth of fire, survivability, and many others.

The “Every Ship a SAG” construct offers a vision for weaponized USVs that is easily understood; from the average fleet sailor to senior leaders to (maybe most critically) Congress. In addition, the concept acknowledges the current fleet design both in Strike Groups and Surface Action Groups, while facilitating the introduction of unmanned ships within a task organization framework common to manned units. Operationally, LUSVs will meet specific, near-term needs in support of national strategies via distributed sea denial and strike, while enhancing the lethality of the surface fleet through increased missile magazine distribution and capacity. When integrated into the force, LUSVs will increase the survivability of the fleet by complicating an adversary’s ability to target and attack surface forces. What does this look like in practice?

In a peacetime environment and workup cycle, the Unmanned Operations Center (UOC) and USV Divisions in Port Hueneme, California, or a local Fleet Maritime Operations center, would manage the traditional “manning,” training, and equipping functions of ship workup cycles towards integrating into Strike Groups and SAGs. These LUSV Divisions would be led by Early Command Junior Officers. In fact, the Surface Community has already begun selecting officers for Unmanned Task Group Early Command roles both in Port Hueneme and in Bahrain with Task Force 59.

Having been assigned to units for scheduled deployments, LUSVs would attach to the designated ships in the deployment group, providing greater flexibility to Combatant Commanders in force packages. Just as the MH-60 Romeo community deploys expeditionary detachments of pilots and aircrew to cruisers and destroyers, these Early Command officers and a small crew would embark a ship, or series of ships, serving in a variety of modalities as expert controllers, emergency maintainers, and expeditionary operators. A key distinction between the helicopter detachment concept and command is the interchangeability of USVs, moving from independent expeditionary command with a manned crew, to embarking on a mothership or series of motherships supporting unmanned operations.

Figure 2: A top-level view comparing USV employment models with generalized benefits and limitations. (Author-generated graphic)

As demonstrated in Figure 2, LUSVs would operate at distances where the manned ship can provide mutual support and respond if needed. This might include periods within the visible horizon but also episodic surges well over the horizon for specific missions. From a lethality perspective, the additional VLS cells and sensors (in the Medium Unmanned Surface Vehicle) offer enhanced battlespace awareness and depth of fire than is available with a single ship. While others have argued for pushing attritable USVs far forward towards threats, treating every manned ship as a SAG with its LUSVs in escort will address many of the issues highlighted by leaders, including Congressional representatives.

Concerning reliability and maintenance, the Navy has based LUSV prototypes on existing commercial ship designs while conducting further land and sea-based testing and validating its critical technologies and subsystems. While designed to operate for extended periods without intervention, the Unmanned Expeditionary Detachment will be able to support emergent repair or troubleshooting if necessary.

For concerns of autonomy or ethical use of weapons from unmanned units, LUSVs will rely on human-in-the-loop (HITL) for command and control of weapons employment decisions. Therefore an on-scene commander simplifies network and communications requirements between the manned fleet and its LUSV escorts. Others have also argued for unmanned systems to be attritable, and to be sure, it would be preferable to lose an LUSV to a manned ship. However, these will still be multi-million dollar combatants with exquisite technology that should not fall into an adversary’s hands – much in the same way how Fifth Fleet dealt with Iranian attempts to capture a US Saildrone in 2022. Having a local manned combatant nearby will support kinetic and non-kinetic force protection of the LUSV, regardless of the theater or threat.

USVs Ranger and Nomad unmanned vessels underway in the Pacific Ocean near the Channel Islands on July 3, 2021. (US Navy Photo)

Finally, treating an LUSV as a force multiplier with a certain number of VLS cells is in line with previous arguments to count the fleet via means other than ship hulls, and simplifies the LUSV’s deterrent value as just another ship that delivers a specific capability at a discount, just as other manned ships do.

Sequencing and Scaling “Every Ship a SAG”

No vision for USV integration into the Surface Force would be complete without considering how these systems would fit into the career pipeline of current and future Surface Warfare Officers and their enlisted teams. In an “Every Ship a SAG” model, LUSV ships would start as individual early commands for post-Division Officer Lieutenants, whereas multiple LUSVs would be organized into a Squadron, led by a post-Department Head Early Command Officer. The Surface Community executed this model with its Mark VI Patrol Craft before their recent retirement, and similarly these squadrons would be organized under the nascent USV Divisions, who have a direct line to the experimentation and tactical development done by the Surface and Mine Warfighting Development Center (SMWDC), and specifically for unmanned systems, in Surface Development Squadron One (SURFDEVRON).

Cmdr. Jeremiah Daley, commanding officer, Unmanned Surface Vehicle Division One, Secretary of Defense Lloyd J. Austin III, and Capt. Shea Thompson, commodore, Surface Development Squadron One, tour USV Sea Hunter at Naval Station Point Loma, California, (Sept. 28, 2022, DOD photo by Chad J. McNeeley)

The surface community is leading the charge towards a hybrid fleet by advancing USV operational concepts and integrating unmanned experience into a hybrid career path. The first salvo in this career movement was launched in 2021, with the establishment of the Unmanned Early Command positions, but scaling this hybrid model is both critical and beneficial. The community will only benefit from commanding officers with expertise and insights in employing a hybrid surface fleet. As pipelines are clarified and unmanned opportunities grow, officers would transition from one expeditionary tour leading a detachment controlling and maintaining an LUSV, back into Division Officer, Department Head, Executive, and Commanding Officer roles in traditional at-sea commands directing the employment of the same LUSVs. Just as the SWO Nuke community develops expertise in both conventional and nuclear fields at each level of at-sea tours, a future hybrid fleet necessitates competencies in fields like robotics, engineering, applied mathematics, physics, computer science, and cyber.

Lastly, SWO professional experiences and investments in training and education for the use of unmanned systems would further Navy and Department of Defense objectives around Artificial Intelligence, Big Data, and Digital Transformation. With unmanned systems, deploying new HM&E or weapons payloads may be a simpler task compared to accelerating fleet data collection and its subsequent use in software development and delivery. Task Force 59 explicitly linked these issues as the Fifth Fleet Unmanned and Artificial Intelligence Task Force.

“Every Ship a SAG” on a Digital Ocean

Some may question whether “Every Ship a SAG” aligns with the already successful work of Task Force 59, directed by Vice Admiral Brad Cooper, Commander, Naval Forces Central Command, and Captain Michael Brasseur, the Task Force’s Commodore. Captain Brasseur has long advocated for increased AI and Unmanned Integration into the Navy, going back to his time as Co-Founder and first Director of NATO’s Maritime Unmanned Systems Innovation and Coordination Cell (MUSIC^2). He convincingly argued for a “Digital Ocean” Concept where drones:

“Propelled by wind, wave, and solar energy… carry  sensors that can collect data critical to unlocking the untapped potential of the ocean…. [to] exploit enormous swaths of data with artificial intelligence- enhanced tools to predict weather patterns, get early warning of appearing changes and risks, ensure the free flow of trade, and keep a close eye on migration patterns and a potential adversary’s ships and submarines.”

Vice Adm. Brad Cooper, left, commander of U.S. Naval Forces Central Command, U.S. 5th Fleet and Combined Maritime Forces, shakes hands with Capt. Michael D. Brasseur, the first commodore of Task Force (TF 59) during a commissioning ceremony for TF 59 onboard Naval Support Activity Bahrain, Sept. 9. TF 59 is the first U.S. Navy task force of its kind, designed to rapidly integrate unmanned systems and artificial intelligence with maritime operations in the U.S. 5th Fleet area of operations. (Photo by Mass Communication Specialist 2nd Class Dawson Roth)

Captain Brasseur has implemented his prudent and innovative vision in the Fifth Fleet Area of Responsibility. Task Force 59 is a success whose model is likely to be adopted in other theaters. Rather than conflict with the “Digital Ocean” model, “Every Ship a SAG” complements this work in line with missions of the US Navy as Congressman Mike Gallagher recently updated and codified in the 2023 National Defense Authorization Act. The Wisconsin Representative edited the Title 10 mission of the Navy such that the service “shall be organized, trained, and equipped for the peacetime promotion of the national security interests and prosperity of the United States and prompt and sustained combat incident to operations at sea.” In short: a “Digital Ocean” and all it enables serves the peacetime promotion of American national security interests and prosperity, especially in coordination with our allies and partners.

“Every Ship a SAG” postures the Navy for prompt and sustained combat operations incident to the sea. Both missions have been a part of the U.S. Navy since its inception, and both visions are applicable as unmanned ships enter our fleets. Further, LUSVs retain additional utility below the level of armed conflict. To support UOC training, experimentation, and manned ship certifications, LUSVs would serve as simulated opposition forces during high-end exercises, reducing demand on manned sustainment forces, or enabling higher-end threat presentations. Precisely in these scenarios are the venues whereby the fleet can integrate new systems and networks while bridging toward operational concepts for unmanned systems as LUSVs earn increased confidence. In the interim and foreseeable future, however, “Every Ship a SAG” remains the scalable, flexible model for deployed LUSVs within current fleet operations. 

Sober Acknowledgement of Critical Pillars

Unmanned ships and various other transformational technologies are not a panacea for the current and future threats facing the US Navy. Even the promises and methodologies proposed here rely upon critical readiness pillars, each of which could warrant deep individual examinations but are worth mentioning.

Even if the US Navy built a certain number of LUSVs to replace lost VLS capacity, failure to resource them or manage them effectively would still likely doom the program. The fleet must understand and plan for the “total cost of ownership” of a hybrid fleet. These units will still require manpower at various levels and a maintenance infrastructure to sustain them in fleet concentration areas. Nor can the fleet avoid at-sea time to test, integrate, and experiment with these systems, much in the same way that RADM Wayne E. Meyer emphasized, build a little, test a little, learn a lot,” with the success of the Aegis Weapons System. The Navy has made efforts to assuage Congressional concerns about reliability through investment in land-based testing. Yet the Surface Navy will need continued, reliable resourcing to continue that testing afloat while integrating LUSVs with traditional forces and experimenting with future concepts.

Characterizing those costs are beyond what is available in open-source, but wide-ranging demand for talent is imposing costs across the public and private sectors. Similarly dire is the state of munitions, as highlighted at the Surface Navy Association National Symposium by Commander, Fleet Forces Command, Admiral Caudle who “noted that [even] if the Navy had ready its 75 mission-capable ships, ‘their magazines wouldn’t all be full.’” Put simply: no amount of LUSVs built at economic costs will be worth anything if they lack the appropriate weapons to place in their launchers.

Lastly, the adaption of agile practices to implement better software, data, AI models, etc., is critical for the fleet to field increasingly capable and autonomous USVs. The Department of Defense and the Navy have made various investments in this direction. These include but are not limited to the Program Executive Office for Integrated Warfare Systems (PEO IWS) “The Forge” working to accelerate ship combat system modernizations and development of the Integrated Combat System; to the Naval Postgraduate School’s new Office of Research and Innovation, to the type-command AI Task Forces. Each is working to provide value across various programs in the digital space. Resourcing, integration, and acceleration of those efforts are crucial.

Figure 3: Proposed priority pillars for success for the LUSV program, paired with a collection of Wayne Hughes’ Cornerstones of Naval Operations from Fleet Tactics and a posthumous article.

Individually, each pillar is a wicked problem, but we must take a sober look at those requirements while examining the same realities in the maritime industrial base. The reality appears that little can be done in the near term to accelerate new ship deliveries of complex multi-mission combatants built in Bath, Maine, and Pascagoula, Mississippi. At present, Fincantieri Marine in Wisconsin is the sole yard for FFG-62, while the remaining large shipyards pursue some collection of ESBs, littoral connectors, and generally, more multi-mission units. Fundamentally, a ship like LUSV is the only near-team option to accelerate a pre-war ship buildup given the PLAN’s construction speed.

As the world’s only Navy with a near-term plan and resourcing to meet and exceed 355 ships, the PLAN along with its fellow services has delivered longer-range weapons at greater capacities than the United States for years. By all available open-source data, the US Navy is falling behind the PLAN in the marathon of naval power while the PLAN accelerates toward future advantages.

Figure 4: Comparison of U.S. to PLAN fleet count totals, based on Congressional Research Service reporting on Chinese Military Modernization since 2005.i

Naval writers and thinkers can parse arguments about quantity versus quality, what the right metric is to assess fleet strength, or whether in a joint, Navy vs. Anti-Navy fight, a pure-maritime comparison is warranted. These are valuable discussions. Regardless, the US Navy’s Surface Forces onboard strike and anti-surface warfare capacities will continue to shrink in the near-term while Chinese threats accelerate. Furthermore, the Chinese industrial base capacity far exceeds American capacity at present. The relationship between US Navy leaders and industry could be described as frosty at best, with recent comments from the Chief of Naval Operations to industry including statements to “Pick up the pace… and prove [you have extra capacity]” and from the Commander of Fleet Forces Command stating that he is “not forgiving” industry’s delays.

Given the long-term buys of multi-mission combatants, national shipyards appear unlikely to generate increased efficiencies, accelerated timelines, or better-quality ships if they continue to build only the multi-billion dollar multi-mission combatants they have previously built. Accelerating LUSV procurement across the six shipyards solicited for LUSV concepts would provide increased capital and demand signal for the shipbuilding industry while providing complementary capabilities to the fleet. Yet while the LUSV can and should be a domestic program for growth, corvette-sized unmanned ships with VLS could easily fall into cooperative build plans with the various allies and partners who have frigate-sized, VLS-equipped combatants. The Australia-United Kingdom-United States (AUKUS) technology-sharing agreement could provide an additional avenue for foreign construction. Further US coordination with Japan and South Korea could also prove fruitful, as the two East Asian allies represent the second and third largest global commercial shipbuilders  behind China.

While refining broader LUSV programs, it is worth considering the differences in shipbuilding costs between choosing LUSVs in a SAG compared to traditional manned combatants. Figure 5 provides a table of notional Surface Action Groups based on the fleet of today through 2027, while Figure 6 presents a table with the future ship programs and their costs.

Figure 5: Hypothetical future SAG LUSV force packages and VLS comparisons with current fleet combatants.
Figure 6: Hypothetical future SAG LUSV force packages and VLS comparisons with future fleet combatants.

Congressional Budget Office estimates for future programs like SSN(X) and DDG(X) present stark realities. The next-generation programs could run costs up to $6.3 billion and $3.3 billion, respectively. By comparison, if the Surface Navy chose to pursue an expanded LUSV buy to recapitalize the 788 VLS cells planned to disappear through 2027, this would require 25 32-cell LUSVs, totaling 800 cells. At $241 million per LUSV, the total (shipbuilding-only) costs would be $6.025 billion, or approximately less than a single SSN(X) or two DDG(X)s. While LUSV has a reduced collection of mission sets by comparison to future submarines and destroyers, it remains a ship that can conceivably be built in at least six American shipyards. Further, future LUSVs purpose-built to support Conventional Prompt Strike (CPS) could hypothetically resolve the issue of the margin of the DDG-51 hull form being “maxed out” in space, weight, air, power, and cooling. Rather than a future large surface combatant required to have each capability resident in a single hull, as in DDG(X), a CPS LUSV in escort with a Flight III DDG may represent a proven ship design and better value, that other companies are attempting to support.

Ultimately, there are myriad ways to frame budgetary realities, but LUSV is the only cost-effective method for the surface force to quickly scale VLS capacity within existing force structure and given the present maritime industrial base.

Conclusion

The Surface Navy has a crucial opportunity to strengthen its capabilities and enhance its readiness by building and deploying LUSVs at scale. The “Every Ship a SAG” concept remains rooted in the intellectual work going back nearly a decade to “Distributed Lethality,” “Hunter-killer SAGs,” and their incorporation into Distributed Maritime Operations – only now with unmanned combatants. This manned-unmanned model provides a feasible solution for incorporating unmanned systems into the Surface Warfare Officer career path and forming more lethal Surface Action Groups for the future fight.

“Every Ship a SAG” addresses the concerns raised about Navy USV concepts and presents a clear vision for the future of wartime maritime operations. As the global security situation continues to evolve, the Surface Navy must take decisive action and invest in LUSVs to ensure it is prepared to meet its warfighting mission. It is time for Congress to fully support this effort by providing the necessary resources to bring the “Every Ship a SAG” model to life. Act now and make every ship a Surface Action Group.

Lieutenant Kyle Cregge is a U.S. Navy Surface Warfare Officer. He is the Prospective Operations Officer for USS PINCKNEY (DDG 91). The views and opinions expressed are those of the author and do not necessarily state or reflect those of the United States Government or the Department of Defense.

References

i. O’Rourke, Ronald. “China Naval Modernization: Implications for U.S. Navy Capabilities—Background and Issues for Congress.” December 1, 2022.

ii. O’Rourke, Ronald. “Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress.” 2011. Pages 6, 12, and 25. Average Costs for New Flight IIA Destroyers based on averaging multi-year procurement of DDGs 114-116, coming to $1,847 Million per ship.

iii. O’Rourke, Ronald. “Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress.” 2022. Page 25. Table A-1. Per ship cost determined based on “Estimated Combined Procurement Cost of DDGs 1000, 1001, and 1002” in millions as shown in annual Navy budget submissions, using the FY23 Budget submission dividing the three ships’ cost by three.

iv. O’Rourke, Ronald. “Navy LPD-17 Flight II and LHA Amphibious Ship Programs: Background and Issues for Congress”. 2022. Pages 1 and 6. AND https://www.navy.mil/Resources/Fact-Files/Display-FactFiles/Article/2169795/aircraft-carriers-cvn/

v. O’Rourke, Ronald. “Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress” 2021. https://www.documentcloud.org/documents/20971801-rl32418-12 Page 9.

vi. O’Rourke, Ronald. “Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress.” 2022. Page 9.

vii. Congressional Budget Office. “An Analysis of the Navy’s Fiscal Year 2023 Shipbuilding Plan”. 2022. https://www.cbo.gov/publication/58447 Table 7, “Average Costs per Ship Over the 2023–2052 Period for Flight III DDG”.

viii. Ibid, for FFG-62 Frigates.

ix. O’Rourke, Ronald. “Navy Constellation (FFG-62) Class Frigate Program: Background and Issues for Congress”. 2021. Congressional Research Service.  https://sgp.fas.org/crs/weapons/R44972.pdf

x. CBO. Navy FY23 Shipbuilding Plan Analysis. Table 7. “Average Costs” DDG(X).

xi. Ibid. “Average Costs”. LPD(X), LHA-6, CVN-78.

xii. O’Rourke, Ronald. “Navy Virginia (SSN-774) Class Attack Submarine Procurement: Background and Issues for Congress” 2021. https://www.documentcloud.org/documents/20971801-rl32418-12 Page 9.

xiii. O’Rourke, Ronald. “Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress.” 2022. Page 9.

xiv. O’Rourke, Ronald. “Navy DDG(X) Next-Generation Destroyer Program: Background and Issues for Congress” 2022. Page 2.

Featured Image: The guided missile destroyers USS Mustin (DDG 89), foreground, and USS Curtis Wilbur (DDG 54) steam through the Philippine Sea during a replenishment at sea Sept. 18, 2013. (U.S. Navy photo by Mass Communication Specialist 3rd Class Paul Kelly/Released)

Manning the Unmanned Systems of SSN(X)

By LCDR James Landreth, USN, and LT Andrew Pfau, USN

In Forging the Apex Predator, we published the results of a new analytical model that defined the limitations and constraints for the United States Navy’s Next Generation Attack Submarine (SSN(X)) concept of operations (CONOPS) for coordinating multiple unmanned undersea vehicles (UUV). Using a Model Based Systems Engineering approach, we studied tradeoffs associated with the number of UUVs, crew complement and UUV crew work schedule. The first iteration of our analysis identified crew complement as the limiting factor in multi-UUV, or “swarm,” operations. Identifying ways to maximize UUV operations with the small footprint crew required aboard submarines is critical to future SSN(X) design. Not all potential UUV missions require continuous human operator involvement. Seafloor surveys, mine detection, and passive undersea cable monitoring for ships can all occur largely independent of human supervision. The damage to Norwegian undersea cables in late 2021, potentially caused by a UUV, hints at the critical nature of this capability for 21st century conflict.1 By identifying operations that require less human supervision, CONOPs for SSN(X) can be tailored to maximize crew and UUV employment. The requirements for training and manning the crews to employ UUVs must be part of the considerations of creating the SSN(X) program.

The submarine force needs sailors with specialized skills to maintain, operate and integrate UUVs into SSN(X) operations. Because the submarine force and the United States Navy at large lack a documented, repeatable, and formalized process for training UUV operators and maintainers, the qualitative concept and computational model presented in this article offers a bridge to scaling multi-UUV operations. The Navy needs to develop codified training and manning requirements for UUV operations and the infrastructure, both physical and intellectual, to support unmanned systems operations. The recommendations discussed here are focused on the specific use case of UUVs deployed from manned submarines.

Defining the Human Operator’s Role in “The Loop”

In order to define a strategy to man SSN(X)’s UUV mission, the submarine force must first define the possible operational and maintenance relationships between man-unmanned teams. Once the desired relationships are defined, then the relevant activities can be listed and manpower estimates can be made for each SSN(X) and for the entire fleet. The importance of this definition and the resultant estimates cannot be understated. For example, launch and recovery of a medium UUV may be seen as consistent with existing Navy Enlisted Classifications (NECs) currently required in torpedo rooms across the fleet. Novel functions like “coordination of autonomous UUV swarms” has many supporting tasks that the Navy’s education enterprise is not yet resourced to meet. Identification of the human tasks required to meet the concept of operations (CONOP) is an essential component of integrated design for SSN(X).

The original model optimized five primary variables with a number of trial configurations, and found the most critical component for maximizing the battle efficiency of SSN(X)’s UUVs was crew support. Specifically, the model identified that the human resources consumed per UUV was the limiting relationship for the UUV swarm size deployable from a single hull. The first version of the trade study varied (a) the number of UUV crews available to support UUV operations and (b) the duration of these shifts, and used a human-in-the-loop configuration, which established a 1:1 relationship between crew and UUV. In order to employ multiple UUVs at once, the model consumed additional UUV crews for each UUV operating and/or increased the length of UUV crew’s shift. This manpower intensive model quickly constrained the number of UUVs that a single hull could employ at once.

Informed by the limitations that human resources placed on SSN(X)’s UUV mission, we updated the systems model to inform the critical task of “manning the unmanned systems.” Submariners and those who support their operations know the premium placed on each additional person inside the pressure hull. Additional crew members can limit the duration of a mission whether by food consumption, bed space, or breathing too much oxygen. As a result, any CONOP that adds a significant human compliment inside the skin of SSN(X) is likely to founder. Additionally, personnel operating and maintaining the UUVs will have a specific set of training, proficiency and career pathway requirements, whose cost will scale with the complexity of the UUV system and CONOP.

The original model was based on unmanned aerial systems (UAVs) operations and followed the manning concept of Group 5 UAVs, where one pilot is consumed continuously by an armed drone. Significant differences in operating environments between UAVs and UUVs necessitate different operating models. Due to the rapid attenuation of light and electronic signals in the undersea domain, data exchange between platforms occurs at relatively low speeds over comparatively limited distances unless connected by wire. This means that the global continuous command, control and communication CONOP available to UAVs will not transfer to UUVs. Instead, SSN(X) UUV operators will control their UUVs during operations relatively close to their manned platform, where the mothership and UUVs will share the same water space during launch and recovery. Communications at longer range will occur less frequently and be status updates to the operator rather than continuous or detailed. Separating the concern about counter detection and interception of acoustic signals, communications at range is possible.2

The unique physical characteristics of the underwater domain make communications one of the most challenging aspects of multi-UUV operations.

Putting connectivity differences aside, the manpower required for this human-in-the-loop model is unnecessarily limiting for the expected UUV CONOP. Alternate models are presented in Autonomous Horizons: The Way Forward, which details the roles for three man-machine team concepts: human-in-the-loop, human-on-the-loop and human-out-of-the-loop. A human-on-the-loop scenario would allow an operator to supervise a coordinated swarm rather than a single asset. This would be less efficient than fully autonomous operation, but dramatically improve the number of UUVs a SSN(X) could deploy as a swarm. Operations performed in this control mode would be limited to those that do not present a hazard to humans but require careful supervision such as a coordinated offensive search or scanning a mine field. Finally, a human-out-of-the-loop scenario would require the fewest human resources and maximize the number of UUVs an SSN(X) could effectively employ, but its mission scope is assumed to be limited to non-kinetic activities (“shaping operations”). Figure 1 provides a visualization of how mission role and levels of autonomy impact human resource requirements.

Given the multi-mission role that SSN(X) and its UUV swarm will play, the updated model offers three man-machine team configurations that could be matched to given missions. SSN(X) requirements officers, submarine mission planners and submarine community managers must understand these man-machine configurations in order to inform SSN(X)’s human resource strategy:

  1. In-the-Loop. The authors assumed that certain missions such as weapons engagement will continue to require a human-in-the-loop architecture where a human is continuously supervising or controlling the actions of a given UUV. As such, the original model results were retained to represent these activities and provide a baseline for comparison against the two other architectures.
  2. On-the-Loop. Directed missions like coordinated search or enemy tracking that could be precursors to human-in-the-loop scenarios benefit from the supervision of a human operator. In a human-on-the-loop architecture, the UUV operator is collaborating with one or more UUVs. The UUVs operate with a degree of autonomy and prompt the operator when they require human direction. The study assumed each operator could coordinate up to 3 UUVs, though this number is a first approximation. Further experimentation might show that this number could be significantly larger.
  3. Out-of-the-Loop. In this architecture, the UUV(s) engage in fully autonomous activities. They remain receptive to commands from the operator but require no input to perform their assigned role. The study assumed that an operator could coordinate up to 18 UUVs in a fully autonomous mode.3 However, this could scale as a multiple if SSN(X) could perform simultaneous launch and recovery operations from multiple ocean interfaces.

By affording the model the scale available from on-the-loop and out-of-the-loop control modes, the predicted swarm of UUVs could easily triple the area surveyed in a 24-hour period. Detailed results of the updated model are provided in Appendix 1. The submarine force must first consider its need to generate UUV crews for SSN(X), regardless of their mode of operation. More complex UUV operations will require greater skill investment, and more actively used UUVs per hull will impose a greater maintenance burden on the crew. Figure 1 illustrates the important relationship between UUV complexity, control mode, mission role across the range of military operations.

Figure 1. Man-Machine Teaming Based on Mission Role

Current Situation Report

The Navy’s guiding document for unmanned systems, the Unmanned Campaign Framework (UCF), addresses how Type Commanders will “equip” the fleet, but the Navy should expand the UCF to include how Type Commanders will perform their “man and train” missions.4 The realities of unmanned technologies will require new training for existing rates and potentially new specialized ratings. The “man and train” demand signals will become louder as the skills required for UUV operations and maintenance grow as a function of UUV complexity5 and scale6 of operations. Establishing a central schoolhouse and formal curriculum for officer and enlisted UUV skills is a strategic imperative. As a reminder, SSN(X)’s requirements demand complex UUV operations at scale.

The Navy has organized UUVs into four primary groups based on size. Figure 2 shows the categorization of UUVs into small, medium, large and extra-large UUV (SUUV, MUUV, LUUV, and XLUUV). The current groupings are based on the ocean interface required to deploy each UUV, but as the Navy develops its UUV CONOP, the submarine force would be wise to borrow from the similar categorization of unmanned aerial vehicles (UAV) in the Joint Unmanned Aircraft Systems Minimum Training Standards.7 The five UAV groupings consider not only physical size, mission, and operational envelop but also the qualification level required of the operators. These categories will determine how each UUV category will be employed, with SUUV, MUUV and even some LUUVs able to be deployed from manned submarine motherships. The complexity and skill required to operate UUVs will also scale with size, with larger UUVs able to carry more sensors at greater endurance. These categorizations easily translate into training and manpower requirements for operations, with more training and personnel required for larger UUVs.

Figure 2: UUV System Categorization by PMS 406. Click to expand.8

Almost all of the platforms illustrated in Figure2 are currently in the experimental phase, with only a few copies of each UUV platform available for test and evaluation. At least one UUV platform, the Knifefish, is moving into low-rate initial production.9 As the Navy moves to acquire more UUVs, it will have to transition its training of sailors from an ad hoc deployment specific training to codified schoolhouses.

In line with the experimental nature of current UUVs, the units that operate and maintain UUV systems also exist in the early phases. The Unmanned Undersea Vehicle Squadron 1 (UUVRON 1), and Surface Development Squadron 1 (SURFDEVRON 1) are tasked with testing unmanned systems and developing tactics, techniques, and procedures for their operation. Task Force 59, operating in the 5th Fleet area, is the first operational Navy command that seeks to work across communities to bring unmanned assets together for testing and operations. Sailors assigned to these commands will learn many unmanned-specific skills and knowledge on the job because the skills they bring from their fleet assignments may or may not be applicable. Similar to the schoolhouse challenge, establishing maintenance centers of excellence and expanding the work of development squadrons are essential pillars of the unmanned manpower strategy.10

Preparing for the Future

The Navy must train sailors for two primary UUV tasks: operations and maintenance. While the same sailor may be trained and capable of performing both tasks on UUVs, manpower models must accommodate enough personnel to simultaneously operate UUVs while performing maintenance on one or more other UUVs.

The submarine force can examine the operational training models that exists for UAVs where the size and capabilities of the UAV determine training requirements. The Department of the Navy already provides training for a range of UAV classes and missions including: RQ-21 Blackjack, ScanEagle, MQ-4 Triton, MQ-8C Fire Scout, and a number of other joint programs of record. The UAV training requirements exist in various stages of maturity, but on average exceed UUVs by several years or even decades due to early investment by both military and civilian organizations like the Federal Aviation Administration. Requirements for UAV training vary widely based on grouping. Qualification timelines for Group 1 UAVs like small quadcopters can be measured in days. Weapons-carrying or advanced UAVs like the MQ-9 Reaper require operators who have received years of training similar to manned aircraft pilots.

The Navy, Army and Marine Corps have established military occupational designations for roles related to UAVs, including maintenance and flight operations. They have established training courses to certify service operators and maintainers for a wide variety of UAV platforms. In contrast, the Navy has yet to promulgate a plan for Navy Enlisted Classifications (NEC) or Officer Additional Qualification Designations (AQD) or establish an equivalent career field for UUV operations at a level of detail consistent with legacy warfare platforms.

In addition to evaluating the transferability of lessons learned from the UAV community, the submarine force should incorporate the lessons learned from sister UUV users in the special warfare and explosive ordinance disposal domains. These communities possess the mature UUV technology and operating procedures. The experience of these communities can accelerate the nascent domain knowledge the submarine force has already established as it builds a foundation for multi-UUV operations from SSN(X). Separate from operations, the Navy will need to be able to perform organic-level maintenance tasks on UUVs at sea such as replacing circuit cards, swapping sensor packages, or maintaining propulsion units. Given SSN(X)’s heavy weapons payload requirements, an unmaintained UUV occupying a weapon’s stow will limit its intended multi-mission nature. The Navy will need to train its work force for these maintenance tasks. Just as importantly, UUVs will have to be designed for maintainability, so that basic components can be repaired or replaced at sea.

Manpower Models

However the Navy chooses to train sailors to operate and maintain UUVs, community managers will face a different set of choices when it comes to the organization and manning. There are two different models the Navy primarily uses to organize and man similar units supporting unmanned operations: directly assign sailors with the required skills to operational units or create specialized UUV detachments located in major homeports that then augment deploying units.

The most integrated model would be direct manning of submarines with sailors possessing the NEC or AQD certifying skill in operation and maintenance of UUVs. Each unit would have the number of billets necessary to meet manpower requirements and these sailors would be part of the crew, getting underway and performing duties other than those directly related to UUVs, even when UUVs are not onboard. This model would ensure continuous integration of UUV experts with the rest of the crew. While the crew may gain more knowledge from these experts, the experts may face challenges maintaining their expertise based on the needs of a given deployment. The most significant challenge to maintaining skills will be the availability of UUVs on every submarine and time at sea to practice operations.

The detachment model offers an arguably more proficient set of operators to a deploying unit, but can cause secondary impacts to warfighting culture. The Information Warfare Community (IWC) efficiently supports current submarine operations via the detachment model for certain technical operations. IWC “riders” are welcome compliments for important missions, but the augment nature means that the hosting submarine does not necessarily fully integrate the “rider’s” culture and knowledge into its own. If the submarine force adopted this model, a UUVRON at fleet concentration areas like Groton or Pearl Harbor would have administrative responsibility for sailors with the technical skills to maintain and operate UUVs. These sailors form into detachments and deploy to submarines to conduct operations while deployed. This model requires fewer personnel than a direct manning model, and these sailors will likely become more proficient in UUV operations. However, the rest of the submarine crew (and thus the force as a whole) would become less familiar with UUV operations without a permanent presence of expert sailors.

Both of the direct assignment and detachment manning models have advantages and drawbacks. Quantitatively, the submarine force must assign priorities and human resource availability to the variables within the trade space. Qualitatively, the Navy must determine how tightly UUV operators will be coupled to deploying units, and whether the detachment model can establish the desired UUV culture across the fleet.

Conclusion

Despite the unmanned moniker, UUVs will still require skilled humans to maintain and operate them. SSN(X) requirements officers, mission planners and community managers must provide early input into the types of autonomous missions SSN(X) UUVs will perform and the corresponding skill level required of sailors. To succeed, decision makers can compare the model provided in this article with existing programs of record’s training and certification requirements for UAVs. The submarine force must adopt a framework of training requirements that scales to UUV size and capability, and that framework must include whether UUV sailors will come from specialized detachments like current-day IWC riders or be integrated members of the crew. As the Navy moves UUVs from the test and evaluation to deployment phases and formalizes requirements for SSN(X), skilled sailors must be already in the fleet, ready to receive and operate these systems.

Lieutenant Commander James Landreth, P.E., is a submarine officer in the Navy Reserves and a civilian acquisition professional for the Department of the Navy. He is a graduate of the U.S. Naval Academy (B.S.) and the University of South Carolina (M.Eng.). The views and opinions expressed here are his own.

Lieutenant Andrew Pfau, USN, is a submariner serving as an instructor at the U.S. Naval Academy. He is a graduate of the Naval Postgraduate School and the U. S. Naval Academy. The views and opinions expressed here are his own.


Appendix 1: Data Comparison between System Optimized for Human-In-the-Loop versus On-the-Loop and Out-of-the-Loop Optima

 

# UUV # Crew Miles Scanned per 24 hrs Utilization
8 4 240 0.25
7 4 240 0.29
6 4 240 0.33
5 4 240 0.4
4 4 240 0.5
3 4 240 0.67
2 3 165 0.69

Table 5. Sample Analysis Results Optimized for Man-in-the-Loop (1:1)

 

# UUV # Crew Crew OPTEMPO UUV Charging Bays Charges per Day Miles Scanned per 24 hrs Utilization Notes ↑↓
8 4 0.5 2 0.33 659 0.69 2.75x ↑ in miles scanned; 2.76x ↑ in utilization
7 4 0.5 2 0.33 577 0.69 2.4x ↑ in miles scanned; 2.37x ↑ in utilization
6 4 0.5 2 0.33 494 0.69 2.06x ↑ in miles scanned; 2.1x ↑ in utilization
5 4 0.5 2 0.33 412 0.69 1.72x ↑ in miles scanned; 1.7x ↑ in utilization
4 4 0.5 2 0.33 330 0.69 1.72x ↑ in miles scanned; 1.7x ↑ in utilization
3 4 0.5 2 0.33 247 0.69 1.03x ↑ in miles scanned; 1.03x ↑ in utilization
2 3 0.5 2 0.33 165 0.69 No change

Table 6. Sample Analysis Results for On-the-Loop (3:1) vs Man-in-the-Loop Optima

# UUV # Crew Crew OPTEMPO UUV Charging Bays Charges per Day Miles Scanned per 24 hrs Utilization Notes
8 4 0.5 2 0.33 659 0.69 No change
7 4 0.5 2 0.33 577 0.69 No change
6 3 0.5 2 0.33 494 0.69 Same output with 1 fewer crew
5 3 0.5 2 0.33 412 0.69 Same output with 1 fewer crew
4 2 0.5 2 0.33 330 0.69 Same output with 2 fewer crew
3 2 0.5 2 0.33 247 0.69 Same output with 2 fewer crew
2 2 0.5 2 0.33 165 0.69 Same output with 1 fewer crew

Table 7. Sample Analysis Results for On-the-Loop (3:1) Re-Optimized

 

# UUV # Crew Miles Scanned per 24 hrs Utilization
8 4 659 0.69
7 4 577 0.69
6 4 494 0.69
5 4 412 0.69
4 4 330 0.69
3 4 247 0.69
2 3 165 0.69
8 2 659 0.69
7 2 577 0.69
6 2 494 0.69
5 2 412 0.69
4 2 330 0.69
3 2 247 0.69
2 2 165 0.69

Table 8. Sample Analysis Results for Out-Of-the-Loop (18:1) vs In-the-Loop Optimal. The same performance metrics of miles scanned and utilization rates are achieved with only 2 crews for the same UUV configurations.

Appendix 2: Analysis Constraint Equations

The following equations were used to develop a reusable parametric model. The model was developed in Cameo Systems Modeler version 19.0 Service Pack 3 with ParaMagic 18.0 using the Systems Modeling Language (SysML). The model was coupled with Matlab 2021a via the Symbolic Math Toolkit plug-in. This model is available to share with interested U.S. Government parties via any XMI compatible modeling environment.

Equation 7b. Crew Availability Equation introduces a new variable called “Number of UUV Managed per Crew.” This variable represents an evolution from the first version of this study, which limited an individual crew and its UUV to a 1:1 relationship. Equation 7a. Crew Availability Equation used in the first version calculations is included for comparison.

Equation 1. Scanning Equation

Equation 2. System Availability Equation

Equation 3. UUV Availability Equation

Equation 4. UUV Duty Cycle Equation

Equation 5. Day Sensor Availability Equation

Equation 6. Night Sensor Availability Equation

Equation 7a. Crew Availability Equation

Equation 7b. Crew Availability Equation

Equation 8. Charge Availability Equation

Equation 9. Utilization Score

Endnotes

1. Thomas Newdick, “Undersea Cable Connecting Norway with Arctic Satellite Station has been Mysteriously Severed”, The War Zone, Jan 10, 2022, online: https://www.thedrive.com/the-war-zone/43828/undersea-cable-connecting-norway-with-arctic-satellite-station-has-been-mysteriously-severed

2. Milica Stojanovic, “On the Relationship Between Capacity and Distance in Underwater Acoustic Communication Channel”, ACM SIGMOBILE Mobile Computing and Communications Review, Vol 11, Issue 4, Oct 2007. Online: https://doi.org/10.1145/1347364.1347373

3. The basis for 18 was that the deployment and recovery of each UUV would consume approximately 4 hours in an anticipated 72-hour UUV mission (72:4 reduces to 18:1).

4. Department of the Navy, “Unmanned Campaign Framework,” Washington, D.C., March, 2021 https://www.navy.mil/Portals/1/Strategic/20210315%20Unmanned%20Campaign_Final_LowRes.pdf?ver=LtCZ-BPlWki6vCBTdgtDMA%3D%3D

5. Complexity refers to the technical sophistication of each UUV and/or the difficulty of executing a mission within a realistic battle space

6. Scale refers to the number of UUVs in a coordinated UUV operation

7. Joint Staff, “Joint Unmanned Aircraft Systems Minimum Training Standards (CJCSI 3255.01, CH1),” Washington, D.C., September 2012

8. Slide 2 of briefing by Captain Pete Small, Program Manager, Unmanned Maritime Systems (PMS 406), entitled “Unmanned Maritime Systems Update,” January 15, 2019, accessed Oct 22, 2021, at https://www.navsea.navy.mil/Portals/103/Documents/Exhibits/SNA2019/UnmannedMaritimeSys-Small.pdf?ver=

9. Edward Lundquist, “General Dynamics Moves Knifefish Production to New UUV Center of Excellence,” Seapower Magazine, August 19, 2021, https://seapowermagazine.org/general-dynamics-moves-knifefish-production-to-new-uuv-center-of-excellence/

10. The end of 2021 saw initial operating capability for Task Force 59 in the 5th Fleet area of operations, which was the first unmanned Task Force of its kind.

Featured Image: BEAUFORT SEA, Arctic Circle (March 5, 2022) – Virginia-class attack submarine USS Illinois (SSN 786) surfaces in the Beaufort Sea March 5, 2022, kicking off Ice Exercise (ICEX) 2022. (U.S. Navy photo by Mike Demello)

Two Platforms for Two Missions: Rethinking the LUSV

By Ben DiDonato

The Navy’s current Large Unmanned Surface Vehicle (LUSV) concept has received heavy criticism on many fronts. To name but a few, Congress has raised concerns about concepts of operation and technology readiness, the Congressional Research Service has flagged the personnel implications and analytical basis of the design, and legal experts have raised alarm over the lack of an established framework for handling at-sea incidents involving unmanned vessels. An extensive discussion of these concerns and their implications would take too long, but in any case, criticism is certainly extensive, and the Navy must comply with Congress’s legal directives.

That said, the core issues with the current LUSV concept arise from one fundamental problem. It’s trying to perform two separate roles – a small surface combatant and an adjunct missile magazine – which have sharply conflicting requirements and require radically different hulls. A small surface combatant needs to minimize its profile, especially its freeboard, to better evade detection, needs a shallow draft for littoral operations, and must have not only a crew, but the necessary facilities for them to perform low-end security and partnership missions to provide presence. The adjunct missile magazine, on the other hand, must accommodate the height of the Mk 41 VLS which substantially increases the draft and/or freeboard, should not have a crew, and should avoid detection in peacetime to increase strategic ambiguity. Not only do these conflicts make it irrational to design one vessel to fulfill both missions, but they point to two entirely separate types of vessels since the adjunct missile magazine role should not be filled by a surface ship at all.

The Adjunct Missile Magazine

The adjunct missile magazine role is best filled by a Missile Magazine Unmanned Undersea Vessel (MMUUV). Sending this capability underwater immediately resolves many of the issues associated with a surface platform since it cannot be boarded, hacked, detected by most long-range sensors, or hit by anti-ship missiles, and so obviates most crew, security, and legal questions. The size required to carry a full-sized VLS also makes it highly resistant to capture since it should have a displacement on the order of 1,000 tons, far more than most nets can bring in, and it could also be designed with a self-destruct capability to detonate its magazine.

The cost should be similar to the current LUSV concept since it can dispense with surface ship survivability features like electronic warfare equipment and point defense weapons to offset the extra structural costs. Because it has no need to fight other submarines and would use standoff distance to mitigate ASW risks, it has no need for advanced quieting or sonar and could accept an extremely shallow dive depth. Even a 150-foot test depth would likely be sufficient for the threshold requirement of safe navigation, and anything past 200 feet would be a waste of money. These are World War One submarine depths. Furthermore, since it only needs to fire weapons and keep up with surface combatants while surfaced, a conventional Mk 41 VLS under a watertight hatch could be used instead of a more complex unit capable of firing while submerged. For additional savings, the MMUUV could be designed to be taken under tow for high-speed transits rather than propel itself to 30+ knots. A speed on the order of 5 knots would likely be sufficient for self-propelled transit, and it would only need long range, perhaps 15,000 nautical miles, to reach its loiter zone from a safe port without tying up underway replenishment assets. Since visualization is helpful for explaining novel concepts, the Naval Postgraduate School (NPS) design team produced a quick concept model to show what this platform might look like. In the spirit of minimizing cost at the expense of performance, and projecting that tugs could handle all port operations, all control surfaces are out of the water while surfaced to reduce maintenance costs.

Rendering of the MMUUV. (Author graphic)

On the command-and-control front, the situation is greatly simplified by the fact that the MMUUV would spend most of its time underwater. In its normal operating mode, it would be dispatched to a pre-planned rendezvous point where it would wait for a one-time-use coded sonar ping from a traditional surface combatant commanding it to surface. It would then be taken under tow and fired under local control using a secure and reliable line-of-sight datalink to eliminate most of the concerns associated with an armed autonomous platform. A variation of this operating mode could also be used as a temporary band-aid for the looming SSGN retirement, since MMUUVs could be loaded with Tomahawks, prepositioned in likely conflict zones, and activated by any submarine or surface ship when needed to provide a similar, if less flexible and capable, concealed strike capability to provide strategic ambiguity. Finally, these platforms could be used as independent land attack platforms by pre-programming targets in port and dispatching them like submersible missiles with a flight time measured in weeks, instead of minutes or hours. Under this strike paradigm, a human would still have control and authorize weapon release, even if that decision and weapon release happens in port instead of at sea. This focus on local control also mitigates cybersecurity risks since the MMUUV would not rely on more vulnerable long-range datalinks for most operations and could perform the independent strike missions with absolutely zero at-sea communications, making cyberattack impossible.

As a novel concept, this interpretation of the adjunct missile magazine concept obviously has its share of limitations and unanswered questions, particularly in terms of reliability and control. Even so, these risks and concerns are much more manageable than the problems with the current LUSV concept, and so give the best possible chance of success. More comprehensive analysis may still find that this approach is inferior to simply building larger surface combatants to carry more missiles, but at least this more robust concept represents a proper due-diligence effort to more fully explore the design space.

The Small Surface Combatant

The other role LUSV is trying to fill is that of a small surface combatant. These ships take a variety of forms depending on the needs and means of their nation, but their role is always a balance of presence and deterrence to safeguard national interests at minimal cost. The US Navy has generally not operated large numbers of these types of ships in recent decades, but the current Cyclone class and retired Pegasus class fit into this category.

While limited information makes it difficult to fully assess the ability of the current LUSV concept to fill this role, what has been released does not paint a promising picture. The height of the VLS drives a very tall hull for a ship of this type which makes it easy to detect, and therefore vulnerable, a problem that is further compounded by limited stealth shaping and defensive systems. There also does not seem to be any real consideration given to other missions besides being an adjunct missile magazine, with virtually no launch capabilities or additional weapons discussed or shown. This inflexibility is further compounded by the Navy’s muddled manning concept, which involves shuffling crew around to kludge the manned surface combatant and unmanned missile magazine concepts together in a manner reminiscent of the failed LCS mission module swap-out plan. Finally, the published threshold range of 4,500 nautical miles, while likely not final, is far too short for Pacific operations without persistent oiler support.

The result is a vulnerable, inflexible ship unsuited to war in the Pacific, and thus incapable of deterring Chinese aggression. This may indicate the current LUSV concept is intended more as a technology demonstrator than an actual warship. However, because the U.S. Navy urgently needs new capabilities to deter what many experts see as a window of vulnerability to Chinese aggression, the current plan is unacceptable.

Fortunately, there is an alternative ready today. The Naval Postgraduate School has spent decades studying these small surface combatants and refining their design, and is ready to build relevant warships today. The latest iteration of small surface combatant design, the Lightly Manned Autonomous Combat Capability (LMACC), achieves the Navy’s autonomy goals while providing a far superior platform at a lower cost and shorter turnaround time. Where the LUSV design is large, unstealthy, and poorly defended, the LMACC has a very low profile, aggressive stealth shaping, SeaRAM, and a full-sized AN/SLQ-32 electronic warfare suite designed to defend destroyers, making it extremely difficult to identify, target, and hit. While the LUSV concept is armed with VLS cells, LMACC would carry the most lethal anti-ship missile in the world, LRASM, as well as a wide range of other weapons to let it fulfill diverse roles like anti-swarm and surface fire support, something that cannot be done with LUSV’s less diverse arsenal. To maximize its utility in the gray zone, the LMACC design boasts some of the best launch facilities in the world for a ship of its size.

On the manning front, LMACC has a clearly defined and legally unambiguous plan with a permanent crew of 15, who would partner with the ship’s USV-based autonomous capabilities and team with a variety of other unmanned platforms. This planned 15-person crew is complemented by 16 spare beds for detachments, command staff, special forces, or EABO Marines to maximize flexibility, and also hedges against the unexpected complications with automated systems which caused highly publicized problems for LCS.

LMACC was designed with the vast distances of the Pacific in mind, so it has the range needed for effective sorties from safe ports and provisions to carry additional fuel bladders when even more range is needed. Unlike the LUSV concept which Congress has rightly pushed back on, LMACC is a lethal, survivable, flexible, and conceptually sound design ready to meet our needs today.

The full details of the LMACC design were published last year and can be found in a prior piece, and since that time the engineering design work has been nearly completed. A rendering of the updated model, which shows all exterior details and reflects the floorplan, is below. Our more detailed estimating work, which has been published in the Naval Engineer’s Journal and further detailed in an internal report to our sponsor, Director, Surface Warfare (OPNAV N96), shows we only need $250-$300 million (the variation is primarily due to economic uncertainty) and two years to deliver the first ship with subsequent units costing a bit under $100 million each. The only remaining high-level engineering task is to finalize the hullform. This work could be performed by another Navy organization such as Naval Surface Warfare Center Carderock, a traditional warship design firm, one of the 30 alternative shipyards we have identified, an independent naval architecture firm, or a qualified volunteer, so we can jump immediately into a production contract or take a more measured approach based on need and funding.

Rendering of the LMACC. (Author graphic)

LMACC has also been the subject of extensive studies and wargaming, including the Warfare Innovation Continuum and several Joint Campaign Analysis courses at NPS. Not only have these studies repeatedly shown the value of LMACC when employed in its intended role teamed with MUSVs and EABO Marines, especially in gray zone operations where its flexibility is vital, but they have also revealed its advantage in a shooting war with China is so decisive that not even deliberately bad tactics stop it from outperforming our current platforms in a surface engagement. Finally, while our detailed studies have focused on China as the most pressing threat, LMACC’s flexibility also makes it ideally suited to pushing back on smaller aggressors like Iran and conducting peacetime operations, such as counterpiracy, to guarantee its continued utility in our ever-changing world.

Conclusion

While there are still some questions about the MMUUV concept which could justify taking a more measured approach with a few prototypes to work out capabilities, tactics, and design changes before committing to full-rate production, there is an extensive body of study, wargaming, and engineering behind LMACC which conclusively prove its value, establish its tactics, and position it for immediate procurement at any rate desired. If the Navy is serious about growing to meet the challenge of China in a timely manner, it should begin redirecting funding immediately to pivot away from the deeply flawed LUSV concept and ask Congress to authorize serial LMACC production as soon as possible. Splitting the LUSV program into two more coherent platforms as described in this article will allow the Navy to fully comply with Congress’s guidance on armed autonomy, aggressively advance the state of autonomous technology, and deliver useful combat capability by 2025.

Mr. DiDonato is a volunteer member of the NRP-funded LMACC team lead by Dr. Shelley Gallup. He originally created what would become the armament for LMACC’s baseline Shrike variant in collaboration with the Naval Postgraduate School in a prior role as a contract engineer for Lockheed Martin Missiles and Fire Control. He has provided systems and mechanical engineering support to organizations across the defense industry from the U.S. Army Communications-Electronics Research, Development and Engineering Center (CERDEC) to Spirit Aerosystems, working on projects for all branches of the armed forces. Feel free to contact him at [email protected] or 443-442-4254.

Additional points of contact:

The LMACC program is led by Shelley Gallup, Ph.D. Associate Professor of Research, Information Sciences Department, Naval Postgraduate School. Dr. Gallup is a retired surface warfare officer and is deeply involved in human-machine partnership research. Feel free to contact him at [email protected] or 831-392-6964.

Johnathan Mun, Ph.D. Research Professor, Information Sciences Department, Naval Postgraduate School. Dr. Mun is a leading expert and author of nearly a dozen books on total cost simulation and real-options analysis. Feel free to contact him at [email protected] or 925-998-5101.

Feature Image: Austal’s Large Unmanned Surface Vessel (LUSV) showing an optionally-manned bridge, VLS cells and engine funnels amidships, and plenty of free deck space with a tethered UAS at the rear. The LUSV is meant to be the U.S. Navy’s adjunct missile magazine. (Austal picture.)

The Future is Unmanned: Why the Navy’s Next Generation Fighter Shouldn’t Have a Pilot

By Trevor Phillips-Levine, Dylan Phillips-Levine, and Walker D. Mills

In August 2020, USNI News reported that the Navy had “initiated work to develop its first new carrier-based fighter in almost 20 years.” While the F-35C Lightning II will still be in production for many years, the Navy needs to have another fighter ready to replace the bulk of the F/A-18E/F/G Super Hornets and Growlers by the mid-2030s. This new program will design that aircraft. While this is an important development, it will be to the Navy’s detriment if the Next Generation Air Dominance (NGAD) program yields a manned fighter.

Designing a next-generation manned aircraft will be a critical mistake. Every year remotely piloted aircraft (RPAs) replace more and more manned aviation platforms, and artificial intelligence (AI) is becoming ever increasingly capable. By the mid-2030s, when the NGAD platform is expected to begin production, it will be obsolete on arrival if it is a manned platform. In order to make sure the Navy maintains a qualitative and technical edge in aviation, it needs to invest in an unmanned-capable aircraft today. Recent advances and long-term trends in automation and computing make it clear that such an investment is not only prudent but necessary to maintain capability overmatch and avoid falling behind.

Artificial Intelligence

This year, AI designed by a team from Heron Systems defeated an Air Force pilot, call sign “Banger,” 5-0 in a simulated dogfight run by DARPA. Though the dogfight was simulated and had numerous constraints, it was only the latest in a long string of AI successes in competitions against human masters and experts.

Since 1997, when IBM’s DeepBlue beat the reigning world chess champion Gary Kasparov over six games in Philadelphia, machines have been on a winning streak against humans. In 2011, IBM’s “Watson” won Jeopardy!. In 2017, DeepMind’s (Google) “AlphaGo” beat the world’s number one Go player at the complex Chinese board game. In 2019, DeepMind’s “AlphaStar” beat one of the world’s top-ranked Starcraft II players, a real-time computer strategy game, 5-0. Later that year an AI from Carnegie Mellon named “Pluribus” beat six professionals in a game of Texas Hold’em poker. On the lighter side, an AI writing algorithm nearly beat the writing team for the game Cards Against Humanity in a competition to see who could sell more card packs in a Black Friday write-off. After the contest the company’s statement read: “The writers sold 2% more packs, so their jobs will be replaced by automation later instead of right now. Happy Holidays.”

It’s a joke, but the company is right. AI is getting better and better every year and human abilities will continue to be bested by AI in increasingly complex and abstract tasks. History shows that human experts have been repeatedly surprised by AI’s rapid progress and their predictions on when AI will reach human parity in specific tasks often come true years or a decade early. We can’t make the same mistake with unmanned aviation.

Feb, 11, 1996 – Garry Kasparov, left, reigning world chess champion, plays a match against IBM’s Deep Blue, in the second of a six-game match in Philadelphia. Moving the chess pieces for IBM’s Deep Blue is Feng-hsiung Hsu, architect and principal designer of the Deep Blue chess machine. (H. Rumph, Jr./AP File)

Most of these competitive AIs use machine learning. A subset of machine learning is deep reinforcement learning which uses biologically inspired evolutionary techniques to pit a model against itself over and over. Models that that are more successful at accomplishing the specific goal – such as winning at Go or identifying pictures of tigers, continue on. It is like a giant bracket, except that the AI can compete against itself millions or even billions of times in preparation to compete against a human. Heron Systems’ AI, which defeated the human pilot, had run over four billion simulations before the contest. The creators called it “putting a baby in the cockpit.” The AI was given almost no instructions on how to fly, so even basic practices like not crashing into the ground were things it had to learn through trial and error.

This type of ‘training’ has advantages – algorithms can come up with moves that humans have never thought of, or use maneuvers humans would not choose to utilize. In the Go matches between Lee SeDol and AlphaGo, the AI made a move on turn 37, in game two, that shocked the audience and SeDol. Fan Hui, a three-time European Go champion and spectator of the match said, “It’s not a human move. I’ve never seen a human play this move.” It is possible that the move had never been played before in the history of the game. In the AlphaDogfight competition, the AI favored aggressive head-on gun attacks. This tactic is considered high-risk and prohibited in training. Most pilots wouldn’t attempt it in combat. But an AI could. AI algorithms can develop and employ maneuvers that human pilots wouldn’t think of or wouldn’t attempt. They can be especially unpredictable in combat against humans because they aren’t human.

A screen capture from the AlphaDogFight challenge produced by DARPA on Thursday, August 20, 2020. (Photo via DARPA/Patrick Tucker)

An AI also offers significant advantages over humans in piloting an aircraft because it is not limited by biology. An AI can make decisions in fractions of a second and simultaneously receive input from any number of sensors. It never has to move its eyes or turn its head to get a better look. In high-speed combat where margins are measured in seconds or less, this speed matters. An AI also never gets tired – it is immune to the human factors of being a pilot. It is impervious to emotion, mental stress, and arguably the most critical inhibitor, the biological stresses of high-G maneuvers. Human pilots have a limit to their continuous high-G maneuver endurance. In the AlphaDogfight, both the AI and “Banger,” the human pilot, spent several minutes in continuous high-G maneuvers. While high G-maneuvers would be fine for an AI, real combat would likely induce loss of consciousness or G-LOC for human pilots.

Design and Mission Profiles

Aircraft, apart from remotely piloted aircraft (RPAs), are designed with a human pilot in mind. It is inherent to the platform that it will have to carry a human pilot and devote space and systems to all the necessary life support functions. Many of the maximum tolerances the aircraft can withstand are bottlenecked not by the aircraft itself, but to its pilot. An unmanned aircraft do not have to worry about protecting a human pilot or carrying one. It can be designed solely for the mission.

Aviation missions are also limited to the endurance of human pilots, where there is a finite number of hours a human can remain combat effective in a cockpit. Using unmanned aircraft changes that equation so that the limit is the capabilities of the aircraft and systems itself. Like surveillance drones, AI-piloted aircraft could remain on station for much longer than human piloted aircraft and (with air-to-air refueling) possibly for days.

The future operating environment will be less and less forgiving for human pilots. Decisions will be made at computational speed which outpaces a human OODA loop. Missiles will fly at hypersonic speeds and directed energy weapons will strike targets at the speed of light. Lockheed Martin has set a goal for mounting lasers on fighter jets by 2025. Autonomous aircraft piloted by AI will have distinct advantages in the future operating environment because of the quickness of its ability to react and the indefinite sustainment of that reaction speed. The Navy designed the Phalanx system to be autonomous in the 1970s and embedded doctrine statements into the Aegis combat system because it did not believe that humans could react fast enough in the missile age threat environment. The future will be even more unforgiving with a hypersonic threat environment and decisions made at the speed of AI that will often trump those made at human speeds in combat.

Unmanned aircraft are also inherently more “risk worthy” than manned aircraft. Commanders with unmanned aircraft can take greater risks and plan more aggressive missions that would have featured an unacceptably low probability of return for manned missions. This increased flexibility will be essential in rolling back and dismantling modern air defenses and anti-access, area-denial networks.

Unmanned is Already Here

The U.S. military already flies hundreds of large RPAs like the MQ-9 Predator and thousands of smaller RPAs like the RQ-11 Raven. It uses these aircraft for reconnaissance, surveillance, targeting, and strike. The Marine Corps has flown unmanned cargo helicopters in Afghanistan and other cargo-carrying RPAs and autonomous aircraft have proliferated in the private sector. These aircraft have been displacing human pilots in the cockpit for decades with human pilots now operating from the ground. The dramatic proliferation of unmanned aircraft over the last two decades has touched every major military and conflict zone. Even terrorists and non-state actors are leveraging unmanned aircraft for both surveillance and strike.

Apart from NGAD, the Navy is going full speed ahead on unmanned and autonomous vehicles. Last year it awarded a $330 million dollar contract for a medium-sized autonomous vessel. In early 2021, the Navy plans to run a large Fleet Battle Problem exercise centered on unmanned vessels. The Navy has also begun to supplement its MH-60S squadrons with the unmanned MQ-8B. Chief among its advantages over the manned helicopter is the long on-station time. The Navy continues to invest in its unmanned MQ-4C maritime surveillance drones and has now flight-tested the unmanned MQ-25 Stingray aerial tanker. In fact, the Navy has so aggressively pursued unmanned and autonomous vehicles that Congress has tried to slow down its speed of adoption and restrict some funding.

The Air Force too has been investing in unmanned combat aircraft. The unmanned “loyal wingman” drone is already being tested and in 2019 the service released its Artificial Intelligence Strategy arguing that “AI is a capability that will underpin our ability to compete, deter and win.” The service is also moving forward with testing their “Golden Horde,” an initiative to create a lethal swarm of autonomous drones.

https://gfycat.com/sentimentalunknownharpyeagle

The XQ-58A Valkyrie demonstrator, a long-range, high subsonic unmanned air vehicle completed its inaugural flight March 5, 2019 at Yuma Proving Grounds, Arizona. (U.S. Air Force video)

The Marine Corps has also decided to bet heavily on an unmanned future. In the recently released Force Design 2030 Report, the Commandant of the Marine Corps calls for doubling the Corps’ unmanned squadrons. Marines are also designing unmanned ground vehicles that will be central to their new operating concept, Expeditionary Advanced Base Operations (EABO) and new, large unmanned aircraft. Department of the Navy leaders have said that they would not be surprised if as much as 50 percent of Marine Corps aviation is unmanned “relatively soon.” The Marine Corps is also investing in a new “family of systems” to meet its requirement for ship-launched drones. With so much investment in other unmanned and autonomous platforms, why is the Navy not moving forward on an unmanned NGAD?

Criticism

An autonomous, next-generation combat aircraft for the Navy faces several criticisms. Some concerns are valid while others are not. Critics can rightly point out that AI is not ready yet. While this is certainly true, it likely will be ready enough by the mid-2030s when the NGAD is reaching production. 15 years ago, engineers were proud of building a computer that could beat Gary Kasparov at chess. Today, AIs have mastered ever more complex real-time games and aerial dogfighting. One can only expect AI will make a similar if not greater leap in the next 15 years. We need to be future-proofing future combat aircraft. So the question should not be, “Is AI ready now?” but, “Will AI be ready in 15 years when NGAD is entering production?”

Critics of lethal autonomy should note that it is already here. Loitering munitions are only the most recent manifestation of weapons without “a human in the loop.” The U.S. military has employed autonomous weapons ever since Phalanx was deployed on ships in the 1970s, and more recently with anti-ship missiles featuring intelligent seeker heads. The Navy is also simultaneously investing in autonomous surface vessels and unmanned helicopters, proving that there is room for lethal autonomy in naval aviation.

Some have raised concerns that autonomous aircraft can be hacked and RPAs can have their command and control links broken, jammed, or hijacked. But these concerns are no more valid with unmanned aircraft than manned aircraft. Modern 5th generation aircraft are full of computers, networked systems, and use fly-by-wire controls. A hacked F-35 will be hardly different than a hacked unmanned aircraft, except there is a human trapped aboard. In the case of RPAs, they have “lost link” protocols that can return them safely to base if they lose contact with a ground station.

Unfortunately, perhaps the largest obstacle to an unmanned NGAD is imagination. Simply put, it is difficult for Navy leaders, often pilots themselves, to imagine a computer doing a job that they have spent years mastering. They often consider it as much an art as a science. But these arguments sound eerily similar to arguments made by mounted cavalry commanders in the lead up to the Second World War. As late as 1939, Army General John K. Kerr argued that tanks could not replace horses on the battlefield. He wrote: “We must not be misled to our own detriment to assume that the untried machine can displace the proved and tried horse.” Similarly, the U.S. Navy was slow to adopt and trust search radars in the Second World War. Of their experience in Guadalcanal, historian James D. Hornfischer wrote, “…The unfamiliar power of a new technology was seldom a match for a complacent human mind bent on ignoring it.” Today we cannot make the same mistakes.

Conclusion 

The future of aviation is unmanned aircraft – whether remotely piloted, autonomously piloted, or a combination. There is simply no reason that a human needs to be in the cockpit of a modern, let alone next-generation aircraft. AI technology is progressing rapidly and consistently ahead of estimates. If the Navy waits to integrate AI into combat aircraft until it is mature, it will put naval aviation a decade or more behind.

Platforms being designed now need to be engineered to incorporate AI and future advances. Human pilots will not be able to compete with mature AI – already pilots are losing to AI in dogfights; arguably the most complex part of their skillset. The Navy needs to design the next generation of combat aircraft for unmanned flight or it risks making naval aviation irrelevant in the future aerial fight.

Trevor Phillips-Levine is a lieutenant commander in the United States Navy. He has flown the F/A-18 “Super Hornet” in support of operations New Dawn and Enduring Freedom and is currently serving as a department head in VFA-2. He can been reached on Twitter @TPLevine85.

Dylan Phillips-Levine is a lieutenant commander in the United States Navy. He has flown the T-6B “Texan II” as an instructor and the MH-60R “Seahawk.” He is currently serving as an instructor in the T-34C-1 “Turbo-Mentor” as an exchange instructor pilot with the Argentine navy. He can be reached on Twitter @JooseBoludo.

Walker D. Mills is a captain in the Marines. An infantry officer, he is currently serving as an exchange instructor at the Colombian naval academy. He is an Associate Editor at CIMSEC and an MA student at the Center for Homeland Defense and Security at the Naval Postgraduate School. You can find him on twitter @WDMills1992.

Featured Image: The XQ-58A Valkyrie demonstrator, a long-range, high subsonic unmanned air vehicle completed its inaugural flight March 5, 2019 at Yuma Proving Grounds, Arizona. (DoD)