Category Archives: Current Operations

On-going Naval Ops or Maritime Current Events

Publication Release: Distributed Lethality 2015 Week Compendium

Released January 2016

Distributed Lethality is a concept announced by U.S. Navy leadership in January 2015 to explore the warfighting benefits of dispersing surface combatants. CIMSEC launched a topic week in July 2015 to focus analysis on this new concept. This compendium consists of the articles that featured in the topic week.

Authors:Distributed Lethality cover-page001
James Davenport  
Chris O’Connor
Eric Gomez
John Salak
Michael Glynn
Steven Wills
Ryan Kuhns
Jimmy Drennan
Majorie Greene
Thomas Rowden

Editors:
Sally DeBoer
Jimmy Drennan
Dmitry Filipoff
Matt Hipple
Matthew Merighi
John Stryker

Download Here

Articles:
Distributed Lethality: A Cultural Shift By James Davenport
Distributed Endurance: Logistics and Distributed Lethality By Chris O’Connor
Distributed Basing: The Key to Distributed Lethality’s Success in the Western Pacific By Eric Gomez
Weaponized Hovercraft for Distributed Lethality By John Salak
Airborne Over-The-Horizon-Targeting Options to Enable Distributed Lethality By Michael Glynn
LCS: The Distributed Lethality Surface Combatant By Steven Wills
Missing an Opportunity for Innovation: A Conceptual Critique of Distributed Lethality By Ryan Kuhns
Distributed Lethality’s C2 Sea Change By Jimmy Drennan
The Role of Swarm Intelligence for Distributed Lethality’s C2 By Majorie Greene
Naval Surface and Mine Warfare Development Center: The Human Element of Distributed Lethality By VADM. Thomas Rowden

Be sure to browse other compendiums in the publications tab, and feel free send compendium ideas to Publications@cimsec.org

[otw_shortcode_button href=”https://cimsec.org/buying-cimsec-war-bonds/18115″ size=”medium” icon_position=”right” shape=”round” color_class=”otw-blue”]Donate to CIMSEC![/otw_shortcode_button]

Army’s Apaches Bring Fight to Maritime and Littoral Operations

Littoral Arena Topic Week

By Aaron Jensen

Military operations in the littoral domain are typically associated with the navy and the marines. In the future however, the U.S. Army will also play a key role in maritime and littoral operations. Developments such as the Joint Concept for Access and Maneuver in the Global Commons (JAM-GC)[1], as well as the Asia Pivot, have compelled the army to consider how it can best contribute to possible future conflicts. One area where the army is seeking to contribute is in the maritime domain. The army has been preparing its rotary-wing assets, especially the AH-64 Apache attack helicopter, to fight in the maritime environment.

In recent years, Apache units have begun to train with their navy counterparts. In 2013, the Texas Army National Guard’s 36th Combat Aviation Brigade began testing its helicopters for operations at sea. From March through August, soldiers spent time aboard the amphibious transport docks Ponce and Green Bay, dock landing ship Rushmore and aircraft carrier John C. Stennis. During this time army aviators practiced deck landings, as well as live-fire practice.[i] In 2014, the Army sent eight Apaches from Fort Carson, Colorado to the U.S. Navy’s RIMPAC (Rim of the Pacific) exercise where they conducted deck landings and simulated attacks against enemy ships.[ii]

The Apache’s impressive offensive capability is well suited for operations against smaller vessels at sea. In 2011, the British Army demonstrated the Apache’s lethality against maritime threats. During tests aboard the HMS Ocean, British Apaches fired nine Hellfire missiles (AGM-114) and 550 rounds from its canon against seaborne targets, achieving a 100% success rate.[iii]

An Apache attack helicopter of 656 Squadron Army Air Corps is pictured firing a Hellfire missile during an exercise conducted from HMS Ocean. Photographer: LA(PHOT) Guy Pool Image 45152700.jpg from www.defenceimages.mod.uk
An Apache attack helicopter of 656 Squadron Army Air Corps is pictured firing a Hellfire missile during an exercise conducted from HMS Ocean.
Photographer: LA(PHOT) Guy Pool
Image 45152700.jpg from www.defenceimages.mod.uk

Tests by the U.S. Army have also verified the Apache’s ability to execute missions in the maritime domain. In August, 2014 the Army Test and Evaluation Command (ATEC) conducted a series of tests on the Apache in different environments and mission tasks. For the maritime segment, Apaches were tasked to secure a shipping lane by defending against swarms of small enemy attack boats. The attack boats carried man-portable infrared missile-simulators to simulate a typical threat that would be posed by small boats. Threat radar systems were also simulated in several cases to simulate the danger from radar-guided missile launches. Over eight maritime mission tests, the Apaches performed well, receiving a score of 4.3 (out of a maximum score of 5) and nearly achieving complete success.[iv]

The Apache has also shown that it can operate from ships to attack land targets. During the 2011 military intervention against Libya (Operation Ellamy), several British Apaches operating from the HMS Ocean successfully destroyed targets in Libya. Utilizing Hellfire missiles and 30mm cannon fire, the Apaches destroyed a radar site and a military checkpoint.[v]

The army is modifying the Apache so that it will function better in a maritime environment. The Apache’s fire control radar will be upgraded so that it can more effectively detect and target small ships. Additional upgrades will also give the Apache the ability to better communicate and share information with assets from other services through a connection with LINK 16, a digital data link used widely by the U.S. Air Force and Navy.[vi] Further upgrades for operations at sea may also be necessary. The British Army is seeking to configure its Apaches with flotation devices to enable crew members to ditch in the event of an emergency over water.[vii] As U.S. Apaches move toward maritime operations, similar modifications may be necessary.

The Apache’s lethality is further amplified by its ability to interface with unmanned aerial systems under the manned-unmanned teaming (MUM-T) concept. The army is in the process of integrating the RQ-7B Shadow tactical unmanned aerial system into Apache units.[viii] Under this arrangement, Apache crews can receive data from the Shadow, and even take control of the drone itself. The development of MUM-T capability appears to be paying off for the Apache. In Afghanistan, some Apache units have received help from drones in 60% of direct fire missions.[ix] The ability to receive information from UAVs will provide Apache crews with greater situational awareness and improved ability to detect targets.

Apache operating on USS Bonhomme Richard. U.S. Navy photo.
Apache operating on USS Bonhomme Richard. U.S. Navy photo.

In preparation for its new mission, army aviators have been working with their navy counterparts to develop Tactics, Techniques and Procedures (TTP) to effectively utilize Apaches in a maritime role. In 2014, the South Carolina Army National Guard’s 1-151st Attack Reconnaissance Battalion (ARB) sent several aviators to the Naval Strike and Air Warfare Center (NSAWC). During the exchange, U.S. Navy Rotary Wing Weapon School instructors shared information on Strike Coordination and Reconnaissance (SCAR) tactics to protect navy vessels in confined littoral waters.[x] Similarly, the Texas Army National Guard’s 36th Combat Aviation Brigade has also been developing TTPs for operations against small attack craft.

The threat from swarms of fast attack craft operated by countries like Iran poses a serious challenge to the U.S. Navy. The deadly asymmetric which fast attack craft present to larger ships was well documented during exercise Millennium Challenge 2002 (MC02). In this scenario, a Middle Eastern nation conducted attacks on the U.S. Navy with swarms of fast attack craft and anti-ship missiles. The results of the test were disastrous as sixteen ships, including an aircraft carrier and two amphibious assault ships were destroyed.[xi] The intent of countries to employ swarms of small attack boats against larger ships was vividly illustrated in February, 2015 when the Iranian Revolutionary Guard Corps Navy (IRGCN) conducted a live-fire exercise against a mock-up of an aircraft carrier. Expressing confidence in their ability, Admiral Ali Fadavi of the IRGCN boasted that his forces could sink American aircraft carriers.[xii]

In the Pacific, modern fast-attack craft such as the People’s Liberation Army Navy’s (PLAN) Type 022 ‘Houbei’ could also present a serious threat to the U.S. Navy. In recent naval exercises, the PLAN has emphasized the use of the Type 022 fast attack craft against aircraft carriers using multi-axis attacks.[xiii] The Type 022 packs a powerful punch for its size, carrying eight YJ-83 anti-ship cruise missiles with a 135 nm range.

With growing challenges to U.S. military operations in areas such as the Persian Gulf and the South China Sea, the military will need to fully utilize and integrate the full range of its assets. The inclusion of maritime and littoral operations into the Apache’s mission spectrum constitutes an important step in furthering joint operations.

Aaron Jensen is a PhD student in the International Doctoral Program in Asia-Pacific Studies (IDAS) at National Chengchi University (NCCU) in Taipei, Taiwan.

[1] JAM-GC is the successor to the Air-Sea Battle concept.

[i] Meghann Myers, “Army helicopters fly from Navy ships, test joint ops,” Navy Times, September 5, 2103. http://archive.navytimes.com/article/20130905/NEWS/309050004/Army-helicopters-fly-from-Navy-ships-test-joint-ops 

[ii] William Cole, “Army tests Apaches during RIMPAC exercises at sea,” The Honolulu Star-Advertiser, July 28, 2014. http://www.stripes.com/news/pacific/army-tests-apaches-during-rimpac-exercises-at-sea-1.295581/apache-rimpac-2014-1.295605

[iii] “Army’s Apache fires first Hellfire missiles at sea,” UK Ministry of Defence, May 13, 2011.

https://www.gov.uk/government/news/armys-apache-fires-first-hellfire-missiles-at-sea

[iv] “Lot 4 AH-64E Apache Attack Helicopter Follow-on Operational Test and Evaluation (FOT&E) Report” Director, Operational Test and Evaluation (DOT&E), December 15, 2014. http://www.dtic.mil/dtic/tr/fulltext/u2/a617060.pdf

[v] Kim Sengupta, “Libya: Flashes of orange and shattering noise as Apaches go to war” The Telegraph, June 4, 2011. http://www.telegraph.co.uk/news/worldnews/africaandindianocean/libya/8557266/Libya-Flashes-of-orange-and-shattering-noise-as-Apaches-go-to-war.html

[vi] Kris Osborn, “Army Configures Apaches for Sea Duty,” DOD Buzz, October 13, 2014.

http://www.dodbuzz.com/2014/10/13/army-configures-apaches-for-sea-duty/

[vii] Andrew Chuter, “Flotation Equipment slotted for U.K. Apaches,” Defense News, February 8, 2013. http://archive.defensenews.com/article/20130208/DEFREG01/302080018/Flotation-Equipment-Slotted-U-K-Apaches

[viii] Beth Stevenson, “US Army establishes first manned unmanned unit,” Flightglobal, March 24, 2015. https://www.flightglobal.com/news/articles/us-army-establishes-first-manned-unmanned-unit-410504/

[ix] Richard Whittle, “MUM-T Is The Word For AH-64E: Helos Fly, Use Drones” Breaking Defense, January 28, 2015. http://breakingdefense.com/2015/01/mum-t-is-the-word-for-ah-64e-helos-fly-use-drones/

[x] Matt Summey, “1-151st Attack Reconnaissance Battalion holds strong bond with U.S. Navy,” South Carolina National Guard, March 13, 2014. https://www.dvidshub.net/news/printable/121969

[xi] Brett Davis, “LEARNING CURVE: IRANIAN ASYMMETRICAL WARFARE AND MILLENNIUM CHALLENGE 2002,” Center for International Maritime Security (CIMSEC), August 14, 2014. https://cimsec.org/learning-curve-iranian-asymmetrical-warfare-millennium-challenge-2002-2/11640

[xii] Thomas Erdbrink, “Iran’s Navy Blasts Away at a Mock U.S. Carrier,” The New York Times, February 25, 2015. http://www.nytimes.com/2015/02/26/world/middleeast/in-mock-attack-iranian-navy-blasts-away-at-replica-us-aircraft-carrier.html?_r=0

[xiii] John Patch, “Chinese Houbei Fast Attack Craft: Beyond Sea Denial,” in China’s Near Seas Combat Capabilities, edited by Peter Dutton, Andrew S. Erickson, and Ryan Martinson, China Maritime Studies Institute, February 2014. https://www.usnwc.edu/cnws/cmsi/publications

January’s CIMSEC Topic Week-The Littoral Arena

By Dmitry Filipoff

CIMSEC’s January Topic Week is on the Littoral Arena. The littorals only constitute around 15 percent of the world’s oceanic expanse, yet  60 percent of the world’s urbanized populations are located within sixty miles of the coast, including 80 percent of the world’s capitals. The U.S. Navy has only recently drawn attention to the littoral domain after decades of emphasizing blue water sea control. What are the unique warfighting challenges posed by the littorals? What capabilities and operating concepts best enable power projection in this complex environment? Can navies optimized for blue water operations effectively translate their experience into the littorals? These are only some of the lines of inquiry for examining this complex security environment and how to operate within it. 

Submissions are due by Thursday, January 21
The Topic Week will run from Monday, January 25 to Sunday, January 31

Interested authors should send submissions to the CIMSEC editorial team at Nextwar@cimsec.org. Topic weeks are competitive, so we encourage thoroughly researched contributions and submitting ahead of the due date. Other upcoming topic weeks can be viewed here

Dmitry Filipoff is CIMSEC’s Director of Online Content. Follow us @CIMSEC.

[otw_shortcode_button href=”https://cimsec.org/buying-cimsec-war-bonds/18115″ size=”medium” icon_position=”right” shape=”round” color_class=”otw-blue”]Donate to CIMSEC![/otw_shortcode_button]

Distributed Lethality and Concepts of Future War

By Dmitry Filipoff

Introduction

One must be ready to change his line sharply and suddenly, with no concern for the prejudices and memories of what was yesterday. To rest upon formula is a slumber that, prolonged, means death.”-Admiral Hyman G. Rickover.1

Distributed lethality is a concept that was officially launched a year ago by Navy leadership to explore how dispersing forces would enhance warfighting. Traditionally, dispersion has been a cardinal sin in the highly decisive nature of naval warfare, but new threats and capabilities may have changed this principle that has long guided the employment of warships. This analysis aims to show how distributed lethality can offer versatile means for achieving political and military objectives in an era of lean budgets and evolving threats.

Warfighting Characteristics

“More ships with more firepower acting more independently will increase the planning complexity and resourcing of our potential challengers.”-Vice Adm. Tom Rowden, Commander U.S. Naval Surface Forces.2

Navy leaders assert that distributed lethality will “add battlespace complexity3 and “complicate the calculus” of an adversary. How will dispersed surface action groups (SAG) accomplish this compared to traditional carrier strike groups (CSG), and how will dispersion affect operations in the electromagnetic (EM) domain?

Distributed lethality attacks left on the kill chain, meaning it intends to influence the earlier phases of the process by which targets are located, identified, targeted, engaged, and effects are assessed. Aside from increasing search volume, dispersion challenges intelligence, surveillance, and reconnaissance (ISR) through modularity. In a CSG centric navy, the detection of a large surface combatant increases the probability of learning the disposition of other warships, including valuable capital ships, and of knowing the operational unit they are arrayed in. The modularity offered by dispersed SAGs exacerbates the ISR challenge by reducing the certainty of what kinds of forces may be acting in concert with a potential contact, and what their capabilities and missions are. This will complicate prioritization of ISR and firepower, and increase the probability of expending precision guided munitions (PGM) due to forced error.4

However, distributed lethality will induce friction on the dispersed force. It is presumed that naval forces will employ emissions control (EMCON) techniques to frustrate the adversary in the EM domain. But EMCON exacerbates the challenges inherent to coordinating a dispersed force. Prior Navy experimentation discovered these challenges. Operations Haystack and Uptide revealed that dispersed operations under EMCON dramatically increase carrier survivability against submarines and land based bombers but at the expense of lengthened decision cycles.5 Under electromagnetic opposition, the degradation of confidence in the networking of a distributed force is easier because of additional variables to be accounted for and that can be influenced by enemy action. Aggregated forces can also more easily employ alternative means of communication compared to distributed forces.

Lengthened decision cycles for dispersed forces causes handicaps and presents dilemmas. Operations whose success is contingent upon careful coordination are less likely to succeed. The ability to mass capability on short notice amidst determined opposition is impaired. Planners must consider the extent that a SAG may be tied down by enemy action and its own tasking, and the resulting  impact on total force flexibility. Operations must have built in flexibility and consider myriad contingencies. Scenarios where SAGs may be called upon to support one another will pose a challenge given how the Navy’s offensive firepower may soon outstick its defensive firepower. These realities will place a premium on inclusive planning and the Navy’s command by negation tradition.

Dispersion will complicate the enemy’s ISR at the expense of reducing one’s own C2 agility. It is important to note that C2 is not just further left in the kill chain than ISR and targeting, but threads the entire process together. These realities may make distributed lethality inflexible under certain circumstances, and result in a higher echelon commander’s intent being articulated in broader terms and with more modest aims. Vice Adm. Ted N. Branch, Deputy Chief of Naval Operations for Information Dominance, pointedly reminded that “the assured C2 pillar touches almost everything we do.”6 The nature of modern conventional warfare has made the EM domain the battleground for superior decision making, and distributed lethality affects the kill chain of all parties.

Distributed Lethality versus Anti-Access/Area Denial 

As they seek greater influence, we confront states that seek to compromise freedom of the seas, where conflict and coercion are increasingly common.Chief of Naval Operations Adm. John. M Richardson.7

The Anti-Access/Area Denial (A2/AD) environment is the threat environment dominating the thinking of senior Navy leaders. What advantages does distributed lethality offer in meeting the A2/AD challenge?

Combating an A2/AD adversary could involve operations spanning multiple areas including blue water sea control, power projection into the littoral and across land. While the CSG is a formidable asset against the warships of a near peer adversary, a salvo competition between a CSG and A2/AD forces, especially land based forces, would be suicidal. The A2/AD model is attrition based. Its predominant advantage over expeditionary forces is the logistical sustainment of PGM, ensuring victory in a salvo competition if accurate targeting is sustained. By denying commons, A2/AD reduces freedom of maneuver and raises the probability of attrition based operations, forcing expeditionary forces into the A2/AD’s strength.

Distributed lethality counters A2/AD’s attrition model through maneuver warfare’s intent to probe for weakness and influence psychology. Dispersion facilitates multiple points of entry into theater, allowing for more sea control and maneuver. This in turn strains the anti-access mission and forces the adversary into executing area denial simultaneously. Distributed forces can probe more areas of the A2/AD envelope to gain intelligence on the opponent’s ISR capabilities and discover the true extent of their maritime domain awareness (MDA), setting the stage for follow on operations. Complicating ISR and targeting offsets logistical superiority by injecting uncertainty.

Platforms and Capabilities

“The Navy must be able to access any domain – and possess the mix of kinetic and non-kinetic weapons necessary to prevail today and tomorrow.”-Rear Adm. Mathias W. Winter, Chief of Naval Research.8

Distributed lethality will benefit from the numerous capabilities the Navy is developing to maintain its edge. The concept seeks to employ platforms in different ways, and promote versatility to make the most of limited resources. How could the Navy employ its warships differently and which capabilities should be prioritized?

In a 2014 CIMSEC article Admiral Tom Rowden, then director of Surface Warfare Directorate OPNAV N96, articulated a concept of dispersed lethality and asserted a distributed force will not be dependent on the air wing.9  While distributed lethality deemphasizes carrier strike missions, the air wing will be a critical enabler for the distributed force. A distributed air wing can provide rapid response anti-submarine warfare capability and function as communications relays for maintaining a responsive decision cycle while the dispersed force operates under EMCON. The air wing’s screening and early warning functions will be indispensable for enabling commanders on the scene to exercise initiative and engage on their own terms. The air wing will refocus from the right side to the left on the kill chain. 

Much has been made of a recent memo issued by Secretary of Defense Ash Carter to Secretary of the Navy Ray Mabus on the Navy’s programs. The most significant directives include cutting procurement of the littoral combat ship (LCS) from 52 hulls to 40, and procuring 31 additional F-35C aircraft.10 It is important to note that distributed lethality was born from a wargame at the Naval War College where a LCS equipped with a long range surface to surface missile “added stress and complexity to the red force commander, who had to spend precious ISR resources trying to find these upgunned ships.”11 If aircraft and fast frigates/LCS are mutually exclusive investments in the near term, the Navy should explore whether it needs more shooters in the form of additional warships or air wing enablers performing the aforementioned missions.

USS Fort Worth. Rolls-Royce Photo.
USS Fort Worth. (Rolls-Royce Photo)

A payload that has been wisely distributed across the Navy’s warships is the AN/SLQ-32 electronic warfare (EW) system. The Block III increment of the Surface Electronic Warfare Improvement Program (SEWIP)  will provide common electronic attack capability to surface combatants.12 Not only does the CSG focus large surface combatants on the defensive application of anti-air warfare (AAW), it does the same for EW. A distributed force equipped with an offensive EW capability could cause great disruption to an adversary’s ISR picture, reinforcing distributed lethality’s intent to attack left on the kill chain. As a part of a proposed acquisition fastlane, Chief of Naval Operations Adm. John Richardson has singled out EW capabilities as “candidates for this kind of rapid acquisition, rapid prototyping13 which will benefit distributed lethality enormously.  

Distributed lethality aims to add more firepower to the fleet, potentially even equipping logistics vessels with missiles as a part of the maxim “if it floats, it fights” issued by OPNAV N96 chief Rear Adm. Peter Fanta.14 However, the Navy should reexamine prioritizing anti-surface warfare (ASuW) capability and consider focusing on land attack. While putting modern anti-ship missiles on more surface combatants would reinvigorate the Navy’s ASuW capability, enhanced power projection across land holds greater deterrence value. The Navy’s land attack proficiency is well honed and proven through recent experience. Thankfully the versatility of the tomahawk missile can enhance both mission sets, but presents the technical challenge of installing vertical launch cells on ships that may have little space and weight to spare.

Arguably no set of capabilities stand to enhance distributed lethality more so than Cooperative Engagement Capability (CEC) and Naval Integrated Fire Control-Counter Air (NIFC-CA). These capabilities allow one platform’s sensors to provide a targeting solution to another platform’s weapons. This will multiply the lethality of a distributed force across vast areas of influence by allowing for the massing of payloads but not platforms. Distributed forces will be able to mitigate risk by mixing and matching whatever combination of sensors and shooters best fits an engagement while ensuring survivability.

Strategic Merit

“…it’s primarily about changing our ways and means right now and the operational concepts we use to achieve our objectives…”- Deputy Secretary of Defense Robert O. Work.15

An operational concept’s warfighting advantages are linked to its deterrence value. How does distributed lethality contribute to deterrence, and what options does it provide policymakers confronting crisis?

Distributed lethality enhances deterrence by influencing psychology through more than just kinetic means. It aims to degrade an adversary’s confidence in their weapons rather than through the threat of overwhelming force, a threat that is not as credible against an A2/AD adversary. Dispersion better allows for demonstrations within the EM domain, which may prove a less escalatory form of conveying resolve than deploying a CSG to a hotspot. The enormous creativity allowed by electromagnetic maritime deception allows for a more nuanced and flexible escalatory dynamic. Demonstration options range from temporarily confusing sensors to simulating strikes against strategic forces with impunity as the Navy did in NORPAC 82.16 Not only does threatening the destruction of networks constitute escalation, it attacks the channels by which deception conveys deterrence.17 During crisis, distributed lethality’s modularity allows for more options in terms of what and how many assets are committed to posturing, giving policymakers a more flexible means for adjusting the “temperature.” Distributed lethality not only has more to offer for maneuver in the military sense, but also politically.

As the threat environment evolves, reassessing the CSG’s deterrence value should occur in tandem with reevaluating its warfighting applications. Captain Robert C. Rubel (ret.) makes the excellent point that “If a lucrative target loaded with potent geopolitical symbolism is on scene, with more on the way, it could precipitate a dangerous “window-of-opportunity” mindset in the opposing government.”18 Sending a CSG to a hotspot could “catalyze as deter” and threaten nightmarish devastation or monumental loss of face as carriers are hurriedly withdrawn for the sake of preservation at the outbreak of war. During the initial phases of conflict, failing to deceive ISR through nonkinetic means could quickly escalate into attempting their physical destruction, up to and including strikes on mainland installations, which is more likely if a carrier’s survival is at stake.

Distributing forces will lower a first strike’s potential for success, which is especially important for deterring an adversary employing A2/AD. Jon Solomon points out an adversary’s maritime domain awareness “will never be as accurate and comprehensive at any later point in a conflict as it is during peacetime’s waning moments.”19 A patrolling, dispersed force would provide a more complex targeting picture, and would reveal more indicators and warning of an impending attack across a larger geographical area. These advantages would be realized by having forward deployed forces already operating in a dispersed manner at Phase 0, or otherwise face the uncomfortable process of transitioning into a dispersed force in the midst of crisis or at the onset of conflict.

Final Thoughts

“It will be orange and it may look kind of odd put together and won’t have the nice slick red/gray paint and it won’t be totally tested and it might fail, but we’ve got to get it out there and see what we can do with that.”-Chief of Naval Operations Adm. Jon Greenert.20

There are additional lines of inquiry that must be explored in order to flesh out distributed lethality. For example, what does it entail for amphibious forces? These forces are more likely to face the littoral arena, and their objectives are set upon fixed geography which limits their freedom of maneuver. The history of naval warfare has shown time and time again that key naval engagements precipitated in relation to developments and objectives on land. Scenarios commonly envisioned today such as a Taiwan contingency or a defense of the Strait of Hormuz demand that the Navy examine distributed lethality in a fixed geographical context. The concept will also challenge the ability to wage coalition warfare, as the careful planning and execution demanded by dispersed operations under EMCON will require ample cooperation and true interoperability.

Nonetheless, distributed lethality offers numerous benefits. It will make the most of what the Navy has today, while maximizing the value of investments that will achieve fruition both in the short and long term. It provides means for confronting the A2/AD challenge, and fulfills Air-Sea Battle’s intent to ensure U.S. forces can “assure access, maintain freedom of action, conduct a show of force, or conduct limited strikes.”21 Ultimately, it provides political and military leadership more flexibility to maneuver within crisis and conflict. The Navy must call upon its rich history of innovation and experimentation to turn distributed lethality into a credible warfighting construct that will deter foes, reassure allies, and make the greatest Navy the world has yet seen greater still. 

Dmitry Filipoff is CIMSEC’s Director of Online Content. He can be contacted at Nextwar@cimsec.org.

[1] Admiral Hyman G. Rickover. US Naval Postgraduate School address (16 March 1954). 

[2] Vice Adm. Tom Rowden. “Distributed Lethality: The Beginning of the Beginning,” Navy Live (January 20, 2015).

[3] Vice Adm. Thomas Rowden et. al. “Distributed Lethality,” U.S. Naval Institute Proceedings (January 2015).

[4] Solomon, Jon. “Guided Munitions Inventory Management, Producibility, and their Effects on Strategy (Part 1 of 2),” Information Dissemination (November 3, 2014).

[5] Angevine, Robert G. “Hiding in Plain Sight: The U.S. Navy and Dispersed Operations Under EMCON, 1956-1972,” Naval War College Review (Spring 2011).

[6] Vice Adm. Ted N. Branch. “A New Era in Naval Warfare,” U.S. Naval Institute Proceedings (July 2014).

[7] Chief of Naval Operations  Adm. John M. Richardson. “The Growing Importance of the Maritime,”10th Regional Seapower Symposium, Venice, Italy (October 22, 2015).

[8] The Fiscal Year 2016 Budget Request United States House of Representatives, 114th Cong. Statement of Rear Admiral Mathias W. Winter, United States Navy Chief of Naval Research. House Armed Services Subcommittee on Emerging Threats and Capabilities (March 26, 2015).

[9] Rear Adm. Thomas S. Rowden. “Surface Warfare: Taking the Offensive,” Center for International Maritime Security (June 14, 2014).

[10] U.S. Navy. “Surface Electronic Warfare Improvement Program (SEWIP),” United States Navy Fact File (November 15, 2013).

[11] Freedberg Jr., Sydney J. “CNO Richardson Urges Fast-Track For Cyber, EW & Drones,” Breaking Defense (December 7, 2015).

[12] Secretary of Defense Ash Carter. “Memorandum for Secretary of the Navy,” United States Department of Defense (December 14, 2015).

[13] Eckstein, Megan. “Navy Studying Implications of Distributed Lethality in Wargames Series,”U.S. Naval Institute News (July 9, 2015).

[14] Freedberg Jr., Sydney J. “ ‘If it Floats, It Fights’: Navy Seeks ‘Distributed Lethality’,” Breaking Defense (January 14, 2015).

[15] Deputy Secretary of Defense Robert O’Work.  The Third U.S. Offset Strategy and its Implications for Partners and Allies, Center for a New American Security, Washington D.C. (January 28, 2015).

[16] Pico, Andy. “How to Hide a Task Force,” Navweaps ( June 2, 1999).

[17] Solomon, Jonathan F. “Maritime Deception and Concealment Concepts for Defeating Wide-Area Oceanic Surveillance Reconnaissance-Strike Networks,” Naval War College Review (Autumn 2013).

[18] Capt. Robert C. Rubel (ret.), “Cede No Water: Strategy, Littorals, and Flotillas” U.S. Naval Institute Proceedings (September 2013).

[19] Solomon, Jon. “Parrying the 21st Century First Salvo,” Information Dissemination (October 16, 2014).

[20] Chief of Naval Operations Adm. Jonathan Greenert. Speech given at Naval Future Force Science and Technology Expo, (February 4, 2015).

[21] Air-Sea Battle: Service Collaboration to Address Anti-Access and Area Denial Challenges, United States Department of Defense (May 2013).