Tag Archives: E-2 Hawkeye

Information Management and the Future of Naval Aviation

By Michael Glynn

Aviators and operators hitting the fleet today have reasons to be excited. Naval Aviation is in the process of recapitalizing the fleet with a stable of very capable platforms and sensors: the E-2D carrying the highly advanced APY-9 multifunction radar; the P-8A with a powerful acoustic system and the APS-154 Advanced Airborne Sensor radar; and the EA-18G armed with the very capable ALQ-218 electronic warfare system and Next Generation Jammer.

The advances are not restricted to manned platforms alone. The MQ-4C will enable wide area search and ISR operations, covering hundreds of thousands of square miles during 30 hour flights. The MQ-8C will bring impressive endurance to small deck surface ships. Longer dwell time promises to yield more collection opportunities and push more data to warfighters.

But observers should be cautioned that these new platforms, new sensors, and emerging autonomy won’t necessarily yield higher quality intelligence or more information to commanders. Warfighters today are fighting not to generate enough information, but rather to manage the incredible amounts of data that today’s sensors record and store. The fleet is struggling to keep from being drowned in a sea of data. The battle of the information age is to separate the useful information from the vast amount of meaningless noise.

Our sensors today already develop tremendous amounts of data. How do we store it, access it, make sense of it, and disseminate it? How will we manage this in the future with even more data as unmanned systems become more common? Can autonomy and data fusion be part of the answer? Will our training and intelligence analysis need to change? Let’s examine these challenges in detail.

Large Data Sets, Autonomy, and Data Fusion

The increasing use of unmanned systems will bring longer mission profiles and hence longer windows of time where sensors can collect. This will generate extremely large amounts of information each flight. To put the challenge in perspective, consider a modern maritime patrol aircraft, the P-8A and its partner, the soon to be deployed MQ-4C UAV. On an eight hour mission, a Poseidon will generate up to 900 gigabytes of sensor information. How much more data will the unmanned Triton generate during its thirty hour flights?

Any operator in the fleet will admit that the amount of data gathered by our platforms today far surpasses the bandwidth of our long range communication networks. What happens to data that can’t be transferred off an aircraft during its mission? How best to manage information that may be over a day “time-late” when a UAV lands? What sensor information should be broadcast to operators ashore and what should be saved for post-flight access? These are challenging questions for program mangers, requirements officers, and operators to solve.

In the same vein, the large data set generated by sensors today offers the possibility of using analytics to sift through them and draw conclusions. However, this will only happen if managers design suitable architectures to extract the data post-flight, store it, and make it available to customers. We will discuss this concept later.

A second broad trend worth mentioning is automation and the ability to use technology to parse the data. Algorithms in modern sensors allow these systems to automatically capture, store, and disseminate information. Legacy surface search radars required an operator to manually plot a contact, log its position on paper, and update the position as time went by. Modern surface search radars can automatically identify, assign track numbers, and update tracks of dozens, if not hundreds of contacts, and promote certain tracks to datalinks such as Link 16. The track information is also recorded on-board and available for post-mission download, analysis, and storage.

The benefits of automation and data storage don’t end there. Today’s platforms either already do or will soon employ data fusion engines that merge complimentary information from multiple sensors to produce a higher-fidelity view of the battlespace. These systems will identify a surface contact by radar and overlay an electronic line of bearing signal that arrives from the same direction as the radar contact. The fusion engine will recognize the radar signal is coming from that ship and by analyzing the parameters of the signal might be able to provide a possible identification of the type of vessel. The system will then merge the radar contact and the electronic emission into a single track and promote it automatically to a datalink.

The capability of our sensors and our ability to store the data they produce is improving rapidly. Unless we think about how we collect and process this data, we risk not being able to capitalize on the capability. Let’s examine some actions we can take to prevent the technological advances from outpacing our ability to control them.

Recognizing the Challenge

Our warfighters and intelligence professionals need to examine the process by which they collect, store, process, and disseminate information. We need to match technology with roles a computer can accomplish and utilize our manpower where the skills of a human are most needed. Too often, our warfighters are employed in roles to which they are poorly suited.

In parts of the fleet, an observer can find operators plotting the locations of ships in paper logs when mission systems are recording the same information and storing it with far greater fidelity and fewer errors. These mission systems scale easily, plotting not one track history, but thousands. The same observer could find aviators submitting message traffic to meteorological commands listing environmental measurements at one location when the aircraft they just flew recorded similar measurements at dozens of locations spread over hundreds of miles. The observer could also find an intelligence officer spending their time preparing a PowerPoint brief for a commander instead of analyzing the information brought home by crew.

Humans are excellent at recognizing patterns and drawing conclusions from data. When it comes to tasks like plotting and updating radar contacts or transcribing information in a log, a machine wins every time. Yet we can find numerous cases in which we ask humans to “beat the machine” and conduct a rote task when the technology exits to automate the process. We need to train our operators to adopt a “sensor supervisor” approach and use technology to automate post-mission product creation.

Action Ahead

Are we making wise use of the billions of dollars spent on collection platforms if we don’t examine our own information processing requirements? When we bring new sensors to the fleet, are we process mapping to determine how best to analyze and disseminate the data they collect? Do we even know what types of information our systems are collecting? In all of these cases, Naval Aviation as an organization can get better.

Leaders in Naval Aviation and the Information Dominance Corps have several solutions that can be implemented. The first is to examine and implement a “pull” based system of information portals where collection platforms can post data and customers of all types can access it. Currently, the fleet relies on a “push” model where a unit is assigned to accomplish a collection task, and then information is reported back to stakeholders. Under a “pull” system, information would be posted to IP accessible portals where any authorized user can discover the information and utilize it for their analysis purpose. This is a far more efficient system, prevents stovepipes, and will enable next generation “big data” analytics efforts including applications in the Naval Tactical Cloud.

Next, information analysis and dissemination need to be viewed as a key part of the kill chain and performed so as to optimize mission effectiveness. Is a trained intelligence analyst better suited to sifting through ambiguous data and drawing conclusions about adversary behavior or best used building PowerPoint slides? Software today can be easily adopted to automatically generate post mission message traffic, briefing slides, and other products. This allows human capital to be reallocated into value-added efforts.

In a similar manner, Naval Aviation should examine how we can train our aviators and operators to best employ their sensors. We should expose our young aviators and sensor operators to concepts of information management early in their training. Understanding the strengths and weaknesses both of the human sitting in the seat and the sensor system will go far to optimize our collection platforms. This will allow operators to let machines do what they do best, and apply human minds to the analytical tasks they are best suited for.


The platforms and sensors being introduced to the fleet are very capable and will grow more so with intelligent management of the data they produce. Let us write and think about how best to manage the information our warfighters gather as they prepare to deter and win the conflicts of tomorrow.

Lieutenant Glynn is a naval aviator and member of the CNO’s Rapid Innovation Cell. The views expressed in this article are entirely his own.

This article featured as a part of CIMSEC’s September 2015 topic week, The Future of Naval Aviation. You can access the topic week’s articles here

Analyzing and Improving Airborne Command and Control

In the command and control realm, size does not matter.

For decades, aircraft such as the Navy’s E-2 Hawkeye and the Air Force’s E-3 AWACS have performed duties as airborne command and control (C2) platforms. In Iraq and Afghanistan today, these units play a key role in the daily execution of the commander’s Air Tasking Order (ATO) and Airspace Control Order (ACO). Their duties include everything from the safe deconfliction of aircraft to the expeditious processing of air support requests from troops on the ground.

However, unlike other tactical aircraft, no measure currently exists to evaluate or compare the effectiveness of airborne C2 platforms.

Due to their size and persistence, most outside observers assume that the AWACS is the most capable airborne C2 platform. Conversely, with a crew of five and attached to the Carrier Air Wing (CVW), the E-2 Hawkeye is often dubbed a second-rate, “mini-AWACS.”

Rather than an impediment, the size of the Hawkeye crew is its greatest strength. While both platforms are equally capable in theater, a comparison of the data transfer rate of these two units validates the importance of Crew Resource Management (CRM) in the ability to perform C2 duties.

Crew Resource Management

Crew Resource Management (CRM) was first introduced in 1979 out of a need to address unsafe operating practices in the airline industry that had resulted in too-frequent, high profile crashes. Aviation professionals needed better procedures to incorporate each member of the flight crew to ensure safety of the aircraft.

In its early years, CRM emphasized improved communication, leadership, and decision making in the cockpit. By empowering each member of the crew to speak up to correct an unsafe situation, the National Transportation Safety Board (NTSB) hoped that CRM might lead to earlier recognition of potentially unsafe scenarios and fewer aviation mishaps.

Naval aviation was quick to recognize the success of the civilian CRM process and began adopting it as standard practice in 1989. Over the years, CRM has evolved to impact not just safety of flight concerns, but also the tactical performance of aircrew serving on various platforms.

Today, CRM encompasses seven characteristics: decision making, assertiveness, mission analysis, communication, leadership, adaptability/flexibility, and situational awareness. Aviators are expected to incorporate these concepts into the conduct of their flights, whether they are F/A-18E Super Hornet pilots or multi-crewed P-8 Poseidon aircrew.

Command and Control

In combat missions over Iraq and Afghanistan, E-2 and E-3 aircrew operate as airborne C2 units in accordance with theater Special Instructions (SPINS). They are assigned as Battle Management Area (BMA) controllers for large geographic areas, controlling all aircraft and communicating with all theater agencies in the Area of Operations (AOR).

At its most basic level, command and control is essentially information management. Aircrew must manage the flow of information through both verbal and non-verbal communications between other crewmembers in the aircraft and with external agencies or individuals. Typical information includes management of the theater aerial refueling plan, changes to tasking and dynamic targeting, emergency coordination, and airspace management that ensures the safe routing and deconfliction of all aircraft.

To be successful, C2 units must strive to pass information as efficiently and accurately as possible. Rather than strike or fighter aircraft, whose practiced execution of air-to-air and air-to-ground procedures defines success in combat, the management and routing of large amounts of information via radio and chat communication is essential for effective C2.

For this reason, CRM plays a crucial role in command and control. Communication, adaptability, and flexibility — central tenets of CRM — are closely related to time. While radio communications take a measurable amount of time (i.e. length of transmission), the act of receiving and processing a given piece of data often takes longer and is difficult to quantify. Specifically, the greater the number of individuals that must process and communicate a set piece of data, the longer the entire transmission process will take.

Data Transfer Rate

In telecommunications, the data transfer rate is defined as the amount of data that can be transferred from one place to the next per unit time. We typically consider data transfer rates when we compare the speeds of various Internet connections, measured in bytes or kilobytes per second.

Mathematically, if y equals the total amount of data to be processed and communicated and t equals the time required to process and transmit, we can solve for the standard data transfer rate (x):


By adapting this equation, we can judge a unit’s ability to process and communicate information and, hence, their effectiveness as a C2 platform. To do so, we must consider how many individuals are required to receive, process, and transmit the given amount of data (y). If we allow z to equal the number of crewmembers involved, we can amend the equation:


We can use this equation to roughly compare the efficiency of Tactical C2 platforms and use that data to reflect on some realities concerning C2 and CRM.

For example, if the total instantaneous amount of theater data, or situational awareness, to be communicated is notionally equivalent to 100 kilobytes (KB), then y=100 KB. We will assume that it takes each crewmember 2 seconds to process and transmit the data, as required, so t=2 sec. For our purposes, we will maintain that crewmembers are processing the data sequentially rather than simultaneously.[i]

We can then compare the theoretical data transfer rate of an E-2 Hawkeye, with a crew of 5 (z=5), with that of an E-3 AWACS, with a nominal crew size of 20 (z=20):

E-2C Hawkeye

X=100 KB / 5*2 sec
X=10 KB/sec


X=100 KB / 20*2 sec
X=2.5 KB/sec

On its face, the crew of the Hawkeye appears able to process and transmit data, or situational awareness, four times faster than its AWACS counterpart.[ii] Since fewer individuals are required to share knowledge in the Hawkeye, information can be processed and transmitted more quickly. Hawkeye crews also regularly brief and practice CRM techniques that help enhance their overall efficiency.

This is not to say that E-2 crews are superior to their E-3 counterparts; in theater, both units work closely together with other joint agencies to provide unparalleled C2 coverage. Additionally, the radar and passive detection systems on the AWACS provide better value.[iii]

However, on average, larger AWACS crews must work harder than their Hawkeye counterparts to process, manage, and communicate information. Rather than a hindrance, the comparative size of the Hawkeye crew can provide an important advantage in a dynamic theater environment.

Improving C2

This revelation teaches the importance of including solid CRM procedures as part of mission preparation. While crews cannot change the amount of data in theater (y), they can take steps to control the number of people (z) and amount of time (t) required to process data.

Five key considerations can maximize a crew’s data transfer rate and improve the quality of C2:

1. Compartmentalization. Minimizing the amount of individuals required to consider each piece of C2 data can increase efficiency. This demands crews become comfortable with decentralized control, as the necessity to constantly feed all information to one centralized individual can degrade the effectiveness of C2. In mission planning, crews should assign duties to each individual — i.e. communications with fighter and tanker aircraft, tasking and tanking changes, communications with other agencies, etc — and consider the supervision required for each task. During mission execution, crews should adhere to these contracts to the maximum extent possible.

2. Verbal communications. During mission planning, crews must determine not only radio frequencies, but also radio contracts for each crewmember. Controllers must determine whom in the crew they are required to talk to before transmitting information or orders. Units should strive to produce autonomous controllers, as these individuals require less supervision and, therefore, fewer crewmembers required to help process their information.

With the introduction of Internet-based chat capability in airborne platforms, crews must additionally consider how the chat operator interfaces with the crew. Does this person listen to his or her own set of radios, or are they waiting for others in the crew to tell them specific pieces of information to transmit? As the Air Force moves their primary C2 medium to Internet-based chat, airborne C2 units must continue to improve their processes in this regard.

3. Non-verbal communications. Crews that are able to visually communicate can significantly augment their verbal communications. Simple measures such as a thumbs up, head nod, or physical touch can “close the loop” of understanding without having to clutter intra-ship communications. To be effective, these non-verbal measures must be briefed before flight and adhered to during execution. Some considerations, such as the physical layout of the space, are beyond an airborne platform’s ability to control. However, ground-based C2 units and designers of future airborne C2 platforms must consider the influence of these characteristics and their impact on CRM.

4. Contingency management. German general Helmuth Graf von Moltke once asserted, “No campaign plan survives first contact with the enemy.” Similarly, no C2 plan survives long after the brief. Adaptability and flexibility, central tenets of CRM, can help a crew persevere. Crews must brief how to handle deviations, whether they are dictated from higher headquarters or must be proposed and executed by the C2 unit.

Since systems such as radar and radios often break, crews must also consider how to continue executing the mission with degraded capabilities or during an aircraft emergency. Oftentimes, the mettle of a C2 unit is not shown during normal operations; it must be proven in times of crisis.

5. Controller proficiency. A confident, proficient controller can significantly improve the efficiency of radio communications and overall C2. Controllers should strive to be concise, communicating all situational awareness in as few radio calls as possible. Additionally, controllers must “close the loop” on information by ensuring that changes are disseminated to and acknowledged by all parties involved. While adhering to a pre-determined script is too rigid and can be a detractor, practicing communications and “chair flying” the mission beforehand can improve performance.

Airborne command and control is one of the most unique capabilities in the United States military arsenal. However, C2 units cannot exist in a vacuum; they must always strive for progress. Practicing good CRM and focusing on improvement during each flight can help crews better their data transfer rate and enhance overall theater command and control.

[i] Depending on the mission process model, some crewmembers may process information simultaneously. This approximation was considered in establishing the value for t in this scenario.

[ii] The comparison of an E-2 crew of 5 and an E-3 crew of 20 is for consistency, i.e. comparing whole crews. The total number of crewmembers required to process specific pieces of data varies by squadron and theater.

[iii] Improvements in the E-2D Advanced Hawkeye make its radar and passive detection systems on par with the AWACS.

LT Roger Misso is an E-2C Naval Flight Officer, MAWTS-1 graduate, and former director of the Naval Academy Foreign Affairs Conference (NAFAC). The ideas expressed here are his own and do not necessarily reflect those of the Department of Defense establishment.

Navy Announces E-2D Will No Longer Employ Most Important Capability

International Maritime Satire Week Warning: The following is a piece of fiction intended to elicit insight through the use of satire and written by those who do not make a living being funny – so it’s not serious and very well might not be funny. See the rest of our IntMarSatWeek offerings here.

NORFOLK – In a controversial decision this morning, U.S. Secretary of the Navy Ray Mabus, former Governor of Mississippi and avid fisherman, has revealed that the Navy’s newest aviation command-and-control platform will no longer be performing its most important mission.

“In the wake of concerns from fishermen and environmentalists, we have decided to forego the Maritime Air-Borne Underwater Security (MABUS) capability in the E-2D Advanced Hawkeye. We recognize the changes that this will bring to the community, but are confident that our resilient officer aircrew and enlisted maintainers will provide the same kind of dedication to new mission sets as they did to MABUS.”

MABUS was first developed in 1998 and is widely hailed as one of the first true innovations from the Navy’s junior officer ranks.

“I think it was the 35th Taco Tuesday of deployment, and we were frankly getting pretty sick of it,” remembers former E-2C mission commander LT John “Bubba” Gump, USN (ret). “I bet Pig that I could catch us a fish and have the NFOs cook it up on the radar boxes in the back.”

LT Chris “Pig” Penn remembers it well. “That sonofabitch cost me $100. But he started a revolution in the community. That’s the day MABUS was born.”

Technically speaking, MABUS is an advanced maneuver that involves the E-2 rolling to an appropriate “reference heading,” using flaps and attitude to achieve the slowest possible airspeed, and then rolling inverted to make use of the large, ugly rotodome, that had previously served no purpose on the airframe, as a vessel for catching fish. Experts say that the radiation from the dome acts as a flash-fryer, causing the cooked fish to rise to the surface to be scooped up during a second pass by the dome, or by a second E-2 flying behind.

“And not just fish, either,” interjected Gump during our interview. “You can make just about anything you want from MABUS. Shrimp-kabobs, shrimp creole, shrimp gumbo. Pan fried, deep fried, stir-fried. There’s pineapple shrimp, lemon shrimp, coconut shrimp, pepper shrimp, shrimp soup, shrimp stew, shrimp salad, shrimp and potatoes, shrimp burger, shrimp sandwich. That- that’s about it.”

Mabus admitted that the decision was made after a recent fishing trip to Lee County, Mississippi.

“There I was, a pristine day on Elvis Presley Lake, when I feel a tug on my line. I’ve done a lot of things in my life, but the feeling I get when a big one is tugging on the line is quite possibly the best in the world.”

“So there I was, and I’m sure this is going to be a big catch. I start reeling in and I’m thinking of different ways to filet this sucker, when all of a sudden out of nowhere comes this big E-2, inverted, dome in the water about a mile away. I start reeling vehemently but the Hawkeye keeps trucking in closer and closer until finally, WHAM! and it was all over. Damn thing broke my fishing rod. And stole my fish.”

Mabus says that the Hawkeye crew will not face punishment, but will be responsible for replacement of his fishing rod and suit, also ruined in the incident.

A source close to the Hawkeye aircrew confirms that the officers will, indeed, make good on their promise to replace the Secretary’s suit, but that “it will probably be a knock-off from a vendor in Dubai.”

LT Roger L. Misso is a Naval Flight Officer (NFO) in the E-2C Hawkeye and former director of the Naval Academy Foreign Affairs Conference (NAFAC). The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense, the US Navy, the E-2 community, his squadron, Paramount Pictures, Bubba Gump Shrimp Co, Tom Hanks, or the actor who played “Bubba” in Forrest Gump.