Tag Archives: unmanned

Autonomous Warfare: An Operational Concept to Optimize Distributed Lethality

By LT Coleman Ward

Introduction

To better meet today’s force demands, [we must] explore alternate fleet designs, including kinetic and non-kinetic payloads and both manned and unmanned systems. This effort will include exploring new naval platforms and formations – again in a highly “informationalized” environment – to meet combatant commander needs.

– Admiral John Richardson in A Design for Maintaining Maritime Superiority

Today’s military operating environment is more complex than ever. While the principles of warfare have remained relatively unchanged throughout history, the development of advanced military capabilities and employment of unconventional styles of warfare increasingly challenge the way commanders are thinking about future conflict. Potential adversaries are further complicating the operating environment through various anti-access/area denial (A2/AD) mechanisms. While many countries are developing such capabilities, this article will focus primarily on the threat of the People’s Republic of China (PRC’s) maritime development. The PRC is rapidly improving its air, surface, and subsurface platform production as it continues its quest for exclusive control of untapped natural resources within the “nine-dash line” region.1 Additionally, the PRC is equipping these platforms with improved weapons that can reach further and cause more damage.2 As a result, the U.S. Navy will assume greater risk when operating in complex A2/AD environments such as the Western Pacific. To mitigate this risk, the U.S. Navy is developing innovative warfighting concepts that leverage technologies and assets available today. The incorporation of unmanned systems into maritime domain operations provides one example where the U.S. Navy is making significant progress. Another example is the inception of a new surface warfighting concept called Distributed Lethality.

In January 2015, Vice Admiral Thomas Rowden (Commander U.S. Naval Surface Forces) and other members of the surface warfare community’s higher leadership formally introduced the opening argument for how the Surface Navy plans to mitigate the A2/AD challenge in an article titled “Distributed Lethality.”3 In this inaugural piece, the authors argue, “Sea control is the necessary precondition for virtually everything else the Navy does, and its provision can no longer be assumed.”4 The “everything else” corresponds to promoting our national interests abroad, deterring aggression, and winning our nation’s wars.5 At its core, Distributed Lethality (DL) is about making a paradigm shift from a defensive mindset towards a more offensive one. To enable DL, the U.S. Navy will increase the destructive capability of its surface forces and employ them in a more distributed fashion across a given theater of operation. 

DL shows promise in executing the initiatives provided in the Chief of Naval Operations’ Design for Maintaining Maritime Superiority in the years to come.6 However, as the U.S. Navy continues to invest in promoting DL, there is a danger that improper fusion of this new operating construct with the foundational principles of war could lead to a suboptimal DL outcome.7 To optimize the combat potential inherent to DLin an A2/AD environment, the Navy must develop and apply the concept of “Autonomous Warfare.” Autonomous Warfare addresses both enabling decentralized, autonomous action at the tactical level through careful command and control (C2) selection at the operational level and further incorporating unmanned systems into the Navy’s maritime operating construct. A flexible C2 structure enabling autonomous action supported by squadrons of unmanned systems optimizes DL and ensures its forces will deliver the effects envisioned by this exciting new concept in the most challenging A2/AD environments. DL advocates put it best in saying that “we will have to become more comfortable with autonomous operations across vast distances.”8 This paper will first examine why DL is an appropriate strategy for countering A2/AD threats before developing the main argument for Autonomous Warfare. This paper concludes by examining how the combined effect of autonomous C2 and aggressive implementation of unmanned systems will achieve the desired results for Autonomous Warfare as it applies to DL, followed by a series of recommendations that will assist with implementing this new idea.

Why Distributed Lethality?

“Naval forces operate forward to shape the security environment, signal U.S. resolve, protect U.S. interests, and promote global prosperity by defending freedom of navigation in the maritime commons.”9 During war, one of the Navy’s principal functions is to gain and maintain sea control to facilitate air and ground operations ashore. An adversary’s ability to execute sea denial makes the endeavor of exercising sea control increasingly challenging.   A key driver behind DL is countering advances in A2/AD capability, a specific sea denial mechanism, which inhibits the Navy’s capacity to operate in a specific maritime area.10

A2/AD is a two-part apparatus. Anti-access attempts to preclude the entrance of naval forces into a particular theater of operation. For example, the threat and/or use of anti-ship cruise and ballistic missiles can hold surface vessels at risk from extended ranges.11 The PRC’s People’s Liberation Army Navy (PLAN) is one of the many navies that deploy various anti-ship cruise missiles (ASCMs), out of a global arsenal of over 100 varieties that can reach nearly 185 miles.12 Of its anti-ship ballistic missiles (ASBMs), the PRC’s renowned “carrier killer” (DF-21D), with a range of 1000 plus miles, is generating cause for concern from an anti-access perspective.13 Additionally, submarines operating undetected throughout a given area of operation (AO) can deter surface forces from entering that area without significant anti-submarine warfare (ASW) capability. On the other hand, area denial seeks to prevent an adversary’s ability to maneuver unimpeded once a vessel has gained access to an area.14 While employment of the aforementioned missiles poses a threat in a combined A2/AD capacity, the PRC’s shipbuilding trend is triggering additional alarms from an area denial perspective. A recent workshop facilitated by the Naval War College’s China Maritime Studies Institute (CMSI) highlighted that the PRC has surged its shipbuilding efforts more than ten times over from 2002 to 2012 and will likely become the “second largest Navy in the world by 2020” if production continues at this pace.15 Indeed, the PRC has generated and continues to produce significant capacity to practice A2/AD and maintains a formidable shipbuilding capability. These observations are just a few amongst a host of many that spark interest in shifting American surface forces toward a DL-focused mindset.

One might ask, “How does DL help mitigate these A2/AD concerns?” Ever since carrier operations proved their might in the Pacific theater during World War II, U.S. naval surface combatants have principally acted in defense of the aircraft carrier. Essentially, the surface force relies predominantly on the firepower wrought by the carrier air wing, while other surface ships remain relatively concentrated around the carrier and defend it against enemy threats from the air, surface, and sub-surface. A well-developed A2/AD operational concept married with a diverse and sophisticated array of systems is advantageous against this model for two reasons: that adversary could hold a limited number of high value units (the carriers) at risk with only a small number of ASBMs, while the imposing navy could only employ a fraction of its offensive capability due to a necessary focus on defensive measures. DL addresses both concerns by deploying progressively lethal “hunter-killer” surface action groups (SAGs – more recently referred to as Adaptive Force Packages) in a distributed fashion across an area of operation (AO). By doing so, the DL navy will provide a more challenging targeting problem while offering the commander additional offensive options.16 DL shifts the focus of the Navy’s offensive arsenal from its limited number of aircraft carriers to the surface navy as a whole.

Potential Shortcomings

DL addresses the challenges of operating in an A2/AD environment by dispersing offensively focused surface combatants across the theater. To be effective, however, the operational commander must assign an appropriate C2 structure for DL forces. The DL operating concept could rapidly dissolve through the development and implementation of complex command and control structures. Furthermore, inadequate use of unmanned systems presents an additional potential shortcoming to the effective application of DL. While the consequences of these shortcomings would not be cause for instantaneous failure, they could create adverse second and third order effects and result in deterioration of the DL concept.

Command and Control

Effective C2 is the cornerstone of the successful execution of any military operation. Service doctrine aids in establishing the proper balance between centralized and decentralized C2. The Naval Doctrine Publication 1 for Naval Warfare defines C2 as “the exercise of authority and direction by a properly designated commander over assigned and attached forces in the accomplishment of the mission.”17 Further, the Joint Publication for C2 and Joint Maritime Operations highlights that a clear understanding of commander’s intent should enable decentralized execution under the auspices of centralized planning.18 Instituting the appropriate C2 structure based on the mission at hand and composition of employed forces helps achieve maximum combat utility while minimizing the need to communicate. This is particularly important when the operational commander has cognizance over a large number of forces and/or when the enemy has degraded or denied the ability to communicate. As the absence of a notional C2 architecture for Adaptive Force Packages (AFPs) at the operational level represents a significant gap in the DL concept, this paper will provide a traditional Composite Warfare Commander (CWC) approach to commanding and controlling AFPs, followed by a potential solution through the lens of Autonomous Warfare.19 The intent is to show that thinking about AFPs as autonomous units will uncover innovative ways to assign C2 functions and responsibilities amongst DL forces.

Unmanned Systems

The proper employment of unmanned systems will prove equally critical in developing the design for Autonomous Warfare as it relates to DL.20 Increasing the offensive capability of smaller groups of warships is one of DL’s main functions (if not the main function). A key enabler to this is the ability to provide ISR-T in a manner that reduces risk to the organic vessels. The concern is that targeting requires the ability to detect, track, and classify enemy vehicles – which oftentimes requires emission of electronic signals that will alert the enemy. Unmanned systems have the ability to provide ISR-T while reducing the risk for organic vessels to reveal their location. Autonomous Warfare will leverage the use of unmanned systems in all three maritime domains (air, surface, and sub-surface). Anything less would unnecessarily limit the potential for delivering maximum offensive firepower while minimizing risk to the organic platforms. Furthermore, critics should note that the U.S. Navy’s adversaries are making similar advances in unmanned systems.21 The bottom line is that underutilization of unmanned systems will be detrimental to DL. The effectiveness of DL as an operational concept depends on the effective employment of unmanned systems.

Providing A Frame of Reference

The following hypothetical situation offers a frame of reference for the remainder of the Autonomous Warfare argument.22 The goal is to show that Autonomous Warfare will optimize DL employment in a scenario where multiple BLUE AFPs must operate in the same AO against multiple RED force SAGs and other RED forces.23

screenshot_12
Figure One: A notional scenario for DL24

The area depicted in Figure 1 represents the AO for the given scenario. Country GREY is an abandoned island and has an airfield that BLUE forces want to capture to facilitate follow-on operations against RED. The Joint Force Maritime Component Commander (JFMCC) receives the task of capturing the airfield. As such, he establishes two objectives for his forces: establish sea control on the eastern side of the island (indicated in yellow) to support an amphibious landing in preparation for seizing the airfield, and establish sea denial on the western side of the island (indicated in orange) to prevent RED from achieving the same.

BLUE’s Order of Battle (OOB) consists of one carrier strike group (CSG), one expeditionary strike group (ESG), and three AFPs. Each AFP is comprised of an ASW capable Littoral Combat Ship (LCS), a Flight III Arleigh Burke-class destroyer, and a Zumwalt-class destroyer. Together, each AFP is capable of the full range of offensive and defensive measures needed to defeat enemy targets in each of the three maritime domains.25 RED’s OOB consists of one CSG, three SAGs, and two diesel-electric submarines. RED has a more difficult targeting problem than if BLUE elected to concentrate its forces, since BLUE distributed them across the AO utilizing multiple AFPs capable of delivering offensive firepower in all three traditional warfare domains. How then should BLUE best establish its C2 structure? Will that C2 structure continue to function while operating under emissions control (EMCON) and in the event RED is able to degrade or deny BLUE communications? What roles should unmanned systems play in optimizing ISR-T while minimizing risk to the organic platforms? By developing and applying the concepts of Autonomous Warfare, BLUE will operate with a C2 construct that enables more autonomous action at the lower levels. Additionally, BLUE will leverage the use of unmanned systems, relieving the stress of ambiguity in a communications denied environment.

A Traditional Approach for Applying the CWC Concept to DL

One could argue that AFPs operating under the DL construct should follow a traditional CWC C2 structure, which provides a counter-argument for the Autonomous Warfare approach. The CWC concept attempts to achieve decentralized execution and is defensively oriented. The composite warfare commanders direct the various units of a task force on a warfare-specific basis.26 By delegating oversight of each warfare area to lower levels, the command structure avoids creating a choke point at the task force commander level (the CWC). This configuration is “structurally sound – if not brilliant” for its inherent capacity to simplify the offensive and defensive aspects of maritime warfare down to each warfare area.27 AFPs employed in the scenario described above would then operate under the cognizance of the different warfare commanders on a warfare-area basis. These AFPs are simply groups of disaggregated forces forming a distributed network that would otherwise maneuver as a concentrated assembly around the carrier.

Figure 2: Traditional CWC Operational C2 Structure for a DL Task Force
Figure 2: Traditional CWC Operational C2 Structure for a DL Task Force

Putting the given scenario into action and using the C2 structure depicted in Figure 2, to what degree are the APFs enabled to achieve the given objectives? BLUE AFPs are stationed as shown in Figure 1 and will attack any RED forces attempting to contest BLUE’s sea control in the yellow box. BLUE also has a continuously operating defensive combat air (DCA) patrol stationed west of the sea denial box to prevent any RED advancements towards island GREY. Just as BLUE forces get into position, RED attempts to form a blockade of the island by sending two SAGs, each escorted by a submarine, around the north and south ends of the island. The first indication of a RED attack comes from a synchronized ASCM salvo from unidentified targets (they were fired from RED’s submarines) followed by radar contact on the RED SAGs from BLUE UAVs providing ISR-T. BLUE’s distributed AFPs, fully enabled by commander’s intent, are capable of self-defense and defeating the RED forces.

Close coordination with the warfare commanders is not required. Each AFP commander understands that in order to maintain sea control to the east, he must dominate in the air, sub-surface, and on the surface. The CWC remains informed as the situation develops and the warfare commanders provide additional guidance for regrouping following the destruction of enemy threats. Thus, a traditional CWC approach to commanding and controlling AFPs provides the opportunity for centralized planning with decentralized execution with respect to DL. Further efforts to decouple the C2 of the AFPs from the task force as a whole could jeopardize unity of effort amidst a complex maritime contingency. AFPs should not be totally self-governing since “uncontrolled decentralized decision-making is just as likely to result in chaos on the battlefield” as no command and control at all.28

An Autonomous Warfare Approach for DL Command and Control

The traditional CWC approach for DL C2 works in this case only because the given scenario is relatively simple. Uncertainty and adversity (often times referred to as fog and friction) are problems that commanders will enduringly have to overcome in wartime. “A commander can no more know the position, condition, strength, and intentions of all enemy units than the scientist can pinpoint the exact location, speed, and direction of movement of subatomic particles.”29 The best he can do is generate an estimate of the situation based on the information available. In the previous scenario, RED’s COA was generic; BLUE should anticipate this type of COA to a degree, relative to RED’s overall plan of attack. Replaying the scenario with two slight yet profound modifications will show that we should not think of the traditional CWC C2 concept as a universal solution. An Autonomous Warfare approach will simplify managing the fog and friction of war from an operational C2 perspective and maximize AFP combat potential.

Assume the forces available and assigned objectives on each side are unchanged. In this case, RED brings to bear more of its A2/AD capabilities, including jamming BLUE’s communications network. Additionally, RED has sufficient ISR capabilities to determine the location and composition of BLUE’s AFPs. As a result, RED concentrates its forces to the north in an attempt to annihilate BLUE’s AFPs in series. The AFP to the north is now overwhelmingly outmatched. Similar to the previous scenario, BLUE’s first indication of a RED attack is a salvo of ASCMs fired from RED’s submarines. As a result, the LCS is damaged to the extent that it provides no warfare utility. Because communications are jammed, the remaining AFP forces cannot communicate with the CWC and his warfare commanders on the carrier to receive guidance on how to proceed. How does the affected AFP protect itself with the loss of its primary ASW platform? Does the traditional C2 structure allow the affected AFP to coordinate directly with the adjacent AFP for re-aggregation? Collectively, the remaining AFPs still offer the commander adequate capability to thwart the RED attack. This is not to say that Autonomous Warfare completely nullifies the principles of the CWC concept. Autonomous Warfare simply optimizes the principles behind the CWC concept for DL.30

The following is an analysis of how an Autonomous Warfare approach to C2 for AFPs optimizes the combat potential that DL offers – especially in an A2/AD environment. A notional Autonomous Warfare DL C2 structure is provided in Figure 3. Each AFP would have an assigned AFP commander and designated alternate. Tactical decision-making would occur at the AFP level. Communications requirements would be drastically reduced. The delegated C2 structure obviates the need for dislocated command and control – AFPs under the auspices of the CSG. Thus, the “search-to-kill decision cycle” is completely self-contained.31 This degree of autonomy avoids the particular disadvantages of centralized command indicated in the previous example. Autonomous Warfare enables the AFP commander to make best use of his available forces based on the tactical situation and in pursuit of the assigned objectives. Furthermore, Autonomous Warfare prioritizes local decision-making founded on training, trust, mission command, and initiative rather than top-down network-centric command and control.32

Figure 3: Autonomous Warfare C2 Structure for a DL Task Force.
Figure 3: Autonomous Warfare C2 Structure for a DL Task Force

There is an additional significant advantage to having a more autonomous C2 structure. Although the operational commander could assign each AFP a geographic area of responsibility, they could combine forces and disagreggate as necessary in the event of a loss or an encounter with concentrated enemy forces. In the second scenario above, two AFPs could coordinate directly with each other to counter the larger enemy compliment. They could avert the challenges and ambiguity of reaching back to the centralized commanders altogether as long as they maintained accountability for their assigned areas of responsibility. In the case where the LCS was eliminated, the AFP commanders should have the autonomy to adapt at the scene to accomplish the objective without seeking approval for a seemingly obvious response to adversity.

Another reason why a more flexible, autonomous C2 structure is imperative for DL forces is that there is no “one-size-fits-all” AFP.33 The operational commander may assign different combinations of platforms based on the assets available and the given objectives. The harsh reality of war is that ships sink. The doctrine in place must allow for rapid adaptation with minimal need to communicate to higher authority. The Current Tactical Orders and Doctrine for U.S. Pacific Fleet (PAC-10) during World War II captures this notion best: “The ultimate aim [of PAC-10 was] to obtain essential uniformity without unacceptable sacrifice of flexibility. It must be possible for forces composed of diverse types, and indoctrinated under different task force commanders, to join at sea on short notice for concerted action against the enemy without interchanging a mass of special instructions.”34

Optimizing DL with Unmanned Systems

The aggressive employment of unmanned systems is the second feature of Autonomous Warfare through which the U.S. Navy should optimize DL. “It is crucial that we have a strategic framework in which unmanned vehicles are not merely pieces of hardware or sensors sent off-board, but actual providers of information feeding a network that enhances situational awareness and facilitates precise force application.”35 While there are many applications for unmanned systems, Autonomous Warfare exploits the information gathering and dissemination aspects to increase the lethality of organic platforms. By enhancing the capacity to provide localized and stealthier ISR-T using unmanned systems, AFPs will assume less risk in doing the same and can focus more on delivering firepower.36 The examples provided below solidify this assertion.

Submarines provide a healthy balance of ISR and offensive capabilities to the operational commander. A submarine’s ability to remain undetected is its foundational characteristic that gives friendly forces the advantage while “complicating the calculus” for the enemy.37 There is a significant tradeoff between stealth and mission accomplishment that occurs when a submarine operates in close proximity to its adversaries or communicates information to off-hull entities. By making use of UUVs, AFPs can still rely on stealthy underwater ISR-T while allowing the organic submarine to focus on delivering ordinance. In the given scenario, a small fleet of UUVs could be stationed west of the island and provide advanced warning of the approaching enemy forces. If traditional manned submarines took on this responsibility, they would likely have to engage on their own as the risk of counter-detection might outweigh the benefits of communicating. AFPs themselves could remain stealthy and focus on efforts to defeat the enemy.

While UUVs provide additional support in the undersea domain, UAVs are potential force multipliers in the DL application for two additional reasons. A cadre of unmanned aircraft could provide valuable ISR-T and line-of-sight (LOS) communications to further enable AFP lethality.38 From an ISR-T perspective, AFPs could deploy UAVs to forward positions along an enemy threat axis to provide indications and warning (I&W) of an advancing enemy target or SAG. Their smaller payloads means they can stay on station longer than manned aircraft, and they eliminate the risk of loss to human life. Additionally, the benefits of providing LOS communications are numerous. LOS communication is particularly advantageous because it eliminates the need to transmit over-the-horizon, which becomes exceedingly risky from a counter-detection perspective as range increases.39 A UAV keeping station at some altitude above the surface could provide LOS communications capability among various vessels within the AFP that are not necessarily within LOS of each other. Further, a UAV at a high enough altitude may afford the opportunity for one AFP to communicate LOS with an adjacent one. The level of autonomy these AFPs can achieve, and therefore lethality, only improves as battlespace awareness becomes more prolific and communication techniques remain stealthy.

actuvdryrunbridge
Featured Image: The prototype of DARPA’s ACTUV, shown here on the day of its christening. (Photo: DARPA)

Just as UUVs and UAVs offer significant advantages to Autonomous Warfare, there is great value in the application for USVs in the surface domain. Take for instance the Defense Advanced Research Projects Agency’s (DARPA) anti-submarine warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV). This stunning new technology has the capability of tracking the quietest diesel-electric submarines for extended periods.40 If this type of vessel was available to provide forward deployed ASW capabilities in the second scenario described above, the likelihood of RED submarines attacking BLUE would have diminished. While this particular USV would operate primarily for ASW purposes, it is completely feasible that the designers could equip the ACTUV with radar capabilities to provide additional ISR against air and surface threats. USVs simply provide an additional opportunity for operational commanders to provide ISR-T to weapons-bearing platforms.

The Combined Effect

The true value intrinsic to Autonomous Warfare stems from the combined effect of an appropriate C2 structure for DL that enables autonomous action and the force multiplier effect the operational commander realizes from unmanned systems. Distributed Lethality has serious potential for raising the status of our surface force as a formidable contender to one of deterrence. In an age where leaders measure warfighting capacity in technological advantage, it is refreshing to see an emerging concept that applies innovative thinking to warfighting techniques with the Navy we have today. A more autonomous C2 structure at the operational level will afford DL forces the flexibility to rapidly deliver offensive measures as contingencies develop. “By integrating unmanned systems in all domains, the U.S. Navy will increase its capability and capacity,” especially with respect to DL.41

Recommendations

It will take both time and effort to achieve an optimized Distributed Lethality construct through Autonomous Warfare. The following recommendations will assist in making this vision a reality:

1. There is risk that by disconnecting the AFPs from the CSG from a C2 perspective, the CSG becomes more vulnerable and unnecessarily sacrifices situational awareness. The Surface Warfare Directorate) N96 and the Distributed Lethality Task Force should further evaluate the tradeoffs associated with implementing a more autonomous C2 structure to DL at the operational level. Additionally, this paper proposes an operational C2 structure for DL. The conclusions derived from this paper should support further development of tactical level C2 for DL.

2. While many of the unmanned systems mentioned above are currently operational or under development, there is limited analysis of how to employ them in a Distributed Lethality environment. OPNAV N99 (Unmanned Warfare Systems), working in conjunction N96 and the DL Task Force, should consider incorporating unmanned systems within the DL concept as outlined above.

3. The U.S. Navy should conduct wargames and real world exercises to both validate the strengths of Autonomous Warfare and identify areas for improvement. Wargames will help refine Autonomous Warfare from a developmental approach. Naval exercises have two benefits: realistic testing provides proof of concept with the same force that will go to war. They also provide the opportunity to practice and inculcate new concepts.

4. Doctrine should begin to foster a culture of Autonomous Warfare throughout the U.S. Navy. The battlefield is becoming more volatile, uncertain, complex, and ambiguous. The more we enable our highly trained and experienced officers to think and act autonomously, the greater combat potential the Navy will realize. Submarines, by nature, operate this way on a continuous basis. Other warfare communities will benefit from having the ability to operate in a more autonomous manner. As Autonomous Warfare represents a paradigm shift from a “connected force” towards a more autonomous one, the U.S. Navy must understand and embrace Autonomous Warfare before implementing it.

Conclusion

Distributed Lethality’s impending contribution to the joint force depends on its ability to maintain flexibility. An autonomous C2 structure allows for localized assessment and force employment, rapid adaptation in the face of adversity, and the ability to combine forces and re-aggregate as the situation dictates. Aggressive employment of autonomous vehicles only enhances these principles. Unmanned systems operating across the maritime domains will provide valuable ISR-T and facilitate localized decision-making, while minimizing risk to the organic platforms. By providing a means of stealthy communication among ships within an AFP or even between adjacent ones, Autonomous Warfare fosters an environment of secure information sharing. Less need to reach back to a command node means that DL forces can spend more time taking the fight to the enemy and less time managing a complicated communications network.

Maritime warfare is a complex process. Characterized by uncertainty and ambiguity, no weapon, platform, or operating concept will eliminate the fog and friction of war. Commanders must mitigate these challenges by setting the conditions necessary for their subordinate leaders to prosper. Commanders at the tactical level earn the trust of their superiors before taking command. We should not compromise that trust by establishing rigid command and control structures that ultimately inhibit the subordinate’s ability to perform as trained. Applying the autonomous approach to C2 for distributed lethality will enable AFPs to operate in accordance with commander’s intent and is in keeping with the initiative to promote Mission Command throughout the U.S. Navy.

LT Coleman Ward is a Submarine Officer who is currently a student at the Naval War College. The preceding is his original work, and should not be construed for the opinions of views of the Department of Defense, the United States Navy, or the Naval War College.

Featured Image: The prototype of DARPA’s ACTUV, shown here on the day of its christening. Image Courtesy DARPA.

1. Timothy Walton and Bryan McGrath, “China’s Surface Fleet Trajectory: Implications for the U.S. Navy,” in China Maritime Study No. 11: China’s Near Seas Combat Capabilities, ed. Peter Dutton, Andrew Erickson, and Ryan Martinson, (U.S. Naval War College: China Maritime Studies Institute, February 2014), 119-121, accessed May 5, 2016, https://www.usnwc.edu/Research—Gaming/China-Maritime-Studies-Institute/Publications/documents/Web-CMS11-(1)-(1).aspx.; Peng Guangqian, Major General, People’s Liberation Army (Ret.), “China’s Maritime Rights and Interests,” in China Maritime Study No. 7: Military Activities in the EEZ, ed. Peter Dutton, (U.S. Naval War College: China Maritime Studies Institute, December 2010), 15-17, accessed May 12, 2106, https://www.usnwc.edu/Research—Gaming/China-Maritime-Studies-Institute/Publications/documents/China-Maritime-Study-7_Military-Activities-in-the-.pdf.

2. Walton and McGrath, “China’s Surface Fleet Trajectory: Implications for the U.S. Navy,” 119-121.

3. Thomas Rowden, Peter Gumataotao, and Peter Fanta, “Distributed Lethality,” U.S. Naval Institute, Proceedings Magazine 141, no. 1 (January 2015): 343, accessed March 11, 2016, http://www.usni.org/magazines/proceedings/2015-01/distributed-lethality.

4. Rowden et. al. “Distributed Lethality.”

5. James Bradford, America, Sea Power, and the World (West Sussex, UK: John Wiley and Sons, 2016), 339.

6. John Richardson, Admiral, Chief of Naval Operations, A Design for Maintaining Maritime Superiority (Washington, D.C.: Government Printing Office, January 2016), 6.

7. Matthew Hipple, “Distributed Lethality: Old Opportunities for New Operations,” Center for International Maritime Security, last modified February 23, 2016, accessed May 12, 2016, https://cimsec.org/distributed-lethality-old-opportunities-for-new-operations/22292.

8. Thomas Rowden et. al., “Distributed Lethality.”

9. U.S. Navy, U.S. Marine Corps, U.S. Coast Guard, A Cooperative Strategy for 21st Century Seapower (Washington, D.C.: Headquarters U.S. Navy, Marine Corps, and Coast Guard, March 2015), 9.

10. Thomas Rowden et. al, Distributed Lethality.

11. United States Navy, Naval Operations Concept 2010 (NOC): Implementing the Maritime Strategy (Washington D.C.: Government Printing Office, 2010), 54-55.

12. United States General Accounting Office, Comprehensive Strategy Needed to Improve Ship Cruise Missile Defense, GAO/NSIAD-00-149 (Washington, DC: General Accounting Office, July 2000), p. 5, accessed April 14, 2016, http://www.gao.gov/assets/230/229270.pdf.

13. Andrew Erickson and David Yang, “Using the Land to Control the Sea?,” Naval War College Review 62, no. 4, (Autumn 2009), 54.

14. United States Navy, Naval Operations Concept 2010: Implementing the Maritime Strategy, 54-56.

15. Andrew S. Erickson, Personal summary of discussion at “China’s Naval Shipbuilding: Progress and Challenges,” conference held by China Maritime Studies Institute at U.S. Naval War College, Newport, RI, 19-20 May 2015, accessed April 25, 2016, http://www.andrewerickson.com/2015/11/chinas-naval-shipbuilding-progress-and-challenges-cmsi-conference-event-write-up-summary-of-discussion/.

16. Thomas Rowden et. al., “Distributed Lethality.”

17. United States Navy. Naval Doctrine Publication (NDP) 1: Naval Warfare (Government Printing Office: Washington, D.C. March 2010), 35.

18. This is also referred to as “Mission Command” or “Command by Negation;” U.S. Office of the Chairman, Joint Chiefs of Staff, Joint Publication (JP) 3-32, Command and Control for Joint Maritime Operations (Washington D.C.: CJCS, August 7, 2013), I-2.

19. The Naval War College’s Gravely Group recently conducted a series of three DL Workshops with representation from offices across the Navy and interagency. One of the key findings was that “AFP SAG C2 architecture requires further development in view of information degraded or denied environments.” This paper proposes a notional operational level C2 structure – tactical level C2 is addressed in the recommendations section; William Bundy and Walter Bonilla. Distributed Lethality Concept Development Workshops I – III Executive Report. (U.S. Naval War College: The Gravely Group, December 29, 2015), 9.

20. This paper considers three types of maritime unmanned systems currently employed or under development: Unmanned Aerial Vehicles (UAVs), Unmanned Underwater Vehicles (UUVs), and Unmanned Surface Vessels (USVs).

21. See the below article featuring a newly developed Chinese drone similar to the U.S.’s Predator drone currently employed for operations in the Middle East; Kyle Mizokami, “For the First Time, Chinese UAVs are Flying and Fighting in the Middle East,” Popular Mechanics, last modified December 22, 2015, accessed May 10, 2016, http://www.popularmechanics.com/military/weapons/news/a18677/chinese-drones-are-flying-and-fighting-in-the-middle-east/.

22. This scenario does not represent a universal application for DL.

23. The Rowden “Distributed Lethality”article provides its own “Hunter-Killer Hypothetical” situation while supporting its main argument. However, the scenario is basic and does not afford the opportunity to explore how AFP C2 and unmanned systems would function in a complex maritime contingency.

24. Google Maps, “South Atlantic Ocean” map (and various others), Google (2016), accessed April 14, 2016, https://www.google.com/maps/@-50.3504488,-53.6341245,2775046m/data=!3m1!1e3?hl=en.

25. This is the same AFP force composition suggested in the Rowden Distributed Lethality article “Hunter-Killer Hypothetical” situation; Thomas Rowden et. al., “Distributed Lethality.”

26. For a full explanation of the CWC concept and roles and responsibilities of CWC warfare commanders, see: United States Navy, Navy Warfare Publication (NWP) 3-56: Composite Warfare Doctrine (Washington, D.C.: Government Printing Office, September 2010).

27. Larry LeGree, “Will Judgement be a Casualty of NCW?,” U.S. Naval Institute, Proceedings Magazine 130, no. 10 (October 2004): 220, accessed April 14, 2016, http://www.usni.org/magazines/proceedings/2004-10/will-judgment-be-casualty-ncw.

28. CNO’s Strategic Studies Group (XXII), Coherent Adaptive Force: Ensuring Sea Supremacy for SEA POWER 21, January 2004.

29. Michael Palmer, Command at Sea (Cambridge: Harvard University Press, 2005), 319.

30. Jimmy Drennan, “Distributed Lethality’s C2 Sea Change,” Center for International Maritime Security, last modified July 10, 2015, accessed April 14, 2016, https://cimsec.org/?s=Distributed+lethality+c2+sea+change.

31. Jeffrey Kline, “A Tactical Doctrine for Distributed Lethality,” Center for International Maritime Security, last modified February 22, 2016, accessed March 17, 2016, https://cimsec.org/tactical-doctrine-distributed-lethality/22286.

32. Palmer, Command at Sea, 322.

33. Jeffrey Kline, “A Tactical Doctrine for Distributed Lethality.”

34. Commander-in-Chief, U.S. Pacific Fleet, Current Tactical Orders and Doctrine, U.S. Pacific Fleet (PAC10), U.S. Navy, Pacific Fleet, June 1943, pg. v, section 111.

35. Paul Siegrist, “An Undersea ‘Killer App’,” U.S. Naval Institute: Proceedings Magazine 138, no. 7, (July 2012): 313, accessed April 30, 2016, http://www.usni.org/magazines/proceedings/2012-07/undersea-killer-app.

36. Thomas Rowden et. al., “Distributed Lethality.”

37. Ibid.

38. Robert Rubel, “Pigeon Holes or Paradigm Shift: How the Navy Can Get the Most of its Unmanned Vehicles,” U.S. Naval Institute News, last modified February 5, 2013, https://news.usni.org/2012/07/25/pigeon-holes-or-paradigm-shift-how-navy-can-get-most-its-unmanned-vehicles.

39. Jonathan Soloman, “Maritime Deception and Concealment: Concepts for Defeating Wide-Area Oceanic Surveillance-Reconnaissance-Strike Networks,” Naval War College Review 66, no. 4 (Autumn 2013): 89.

40. Scott Littlefield, “Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV),” Defense Advanced Research Projects Agency, accessed April 30, 2016, http://www.darpa.mil/program/anti-submarine-warfare-continuous-trail-unmanned-vessel.

41. Robert Girrier, Rear Admiral, Director, Unmanned Warfare Systems (OPNAV N99), “Unmanned Warfare Systems,” Lecture at U.S. Naval War College, May 11, 2016.

Featured Image: PHILIPPINE SEA (Oct. 4, 2016) The forward-deployed Arleigh Burke-class guided-missile destroyer USS McCampbell (DDG 85) patrols the waters while in the Philippine Sea. McCampbell is on patrol with Carrier Strike Group Five (CSG 5) in the Philippine Sea supporting security and stability in the Indo-Asia-Pacific region. (U.S. Navy photo by Petty Officer 2nd Class Christian Senyk/Released)

Unmanned-Centric Force Structure

Alternative Naval Force Structure Week

By Javier Gonzalez 

The U.S. Navy is currently working on a new Fleet Structure Assessment, the results of which will eventually help inform the long-term force structure goals of the Navy’s 30-year shipbuilding plan. This ongoing analysis was generated due to the realization that some of the assumptions used to develop the current goal of 308 ships have changed significantly since its proposal in 2014. The Russian resurgence and China’s rapid military buildup defied expectations, and a review of the Navy’s force structure was absolutely warranted. The conundrum and implied assumption, with this or similar future force structure analyses, is that the Navy must have at least a vague understanding of an uncertain future. However, there is a better way to build a superior and more capable fleet—by continuing to build manned ships based on current and available capabilities while also fully embracing optionality (aka flexibility and adaptability) in unmanned systems. Additionally, and perhaps the better argument, is that a new, unmanned-centric fleet can be more affordable while maintaining its relevance over the expected service life.

Optionality

A relevant fleet is one that is robust, flexible, and adaptable—one that embraces optionality to anticipate uncertain and changing requirements. The author Nassim Taleb describes optionality as “the property of asymmetric upside with correspondingly limited downside.” The implication here is to clearly identify which options will provide the best ability to achieve this “asymmetric upside.” Systems such as the vertical launch system provide a certain degree of flexibility by allowing for the rapid fielding of any weapons that fit inside a missile. In addition, the concepts of modularity (Littoral Combat Ship program), modular hulls, containers interfaces, flexible infrastructures, and electronic modular enclosures are other examples of the Navy’s explicit efforts to add flexibility and adaptability into the fleet. The upsides of adding flexibility are self-evident—by having options added early in the design process, the Navy can quickly and affordably react to new geo-political situations and adjust to technological innovations. However, adding optionality is not an easy proposition, especially because today’s capabilities fielding process values optimization, affordability, and a discernable return on investment over adaptability and flexibility.

Optimization is contrary to optionality, but it is a main factor in today’s ship design. For instance, space optimization is intuitive—the better optimized a space, given today’s capabilities, the smaller the ship needs to be and, consequently, the more affordable it should be. However, this approach infers a level of certainty and inflexibility to change, contrary to optionality. The reality is that optimization is at times necessary on a manned warship. However, new unmanned system designs can provide a canvas to shift this focus to one that values optionality and takes advantage of uncertainty. The suggestion is to make the long-term investment on the unmanned “bus,” not the capabilities. These new unmanned buses must be designed to maximize power generation, cooling, and space availability. The design also needs a robust command and control system to enable the employment of multiple unmanned systems in a cooperative environment.

Affordable Fleet

The affordability of the fleet is not simply a function of budget availability. In 2014, the Chief of Naval Operations, Adm. Jonathan Greenert, testified to Congress that the Navy needed a 450 ship fleet to meet the global demands by the Combatant Commanders. This 450 ship number is likely better equipped to meet future Combatant Commanders’ needs than the current proposal of a 308 ship Navy. At a minimum, a 450 ship Navy provides more options to fulfill future requirements. However, the current and expected future fiscal environment suggests that building more ships is not an option unless a radical change occurs. Also, the enemy has a crucial vote on the affordability of the fleet. The fall of the USRR can be traced back to the U.S. strategy, in the 1970s and 1980s, to impose great costs on the Soviets by making investments to render their warfighting systems obsolete. This obsolescence created an incentive for the Soviets to make costly investments in an attempt to match the technology introductions by the United States. This strategy’s success was achieved in great part due to the apparent U.S. technological advantage over the Soviets. Today, the United States finds itself in a similar predicament as the Soviets in the Cold War, where technology is leaping in new and unexpected ways and China, in particular, is fielding systems that make many U.S. systems obsolete. The rapid fielding of “game changing” technology by China, such as the first quantum communications satellite or the DF-21D missile, results in a predictable reaction by the DoD to invest in more capable and expensive advancements to counter their efforts. If the Soviets are any indication of the dangers of this strategy, especially if the United States acknowledges that the technological edge over near competitors in the 20th century will no longer be assured, then the United States needs to shift its competitive model to one flexible enough to rapidly and affordably adjust to unforeseen challenges.

Sea Hunter, an entirely new class of unmanned ocean-going vessel gets underway on the Williammette River following a christening ceremony in Portland, Oregon. (U.S. Navy photo by John F. Williams/Released)
Sea Hunter, an entirely new class of unmanned ocean-going vessel gets underway on the Williammette River following a christening ceremony in Portland, Oregon. (U.S. Navy photo by John F. Williams/Released)

 Additionaly, long-term shipbuilding is inherently expensive and dependent on current and mature capabilities. Trying to build a ship with immature technologies can result in unnaceptable acquisition blunders. For instance, the Navy’s next-generation nuclear carrier, CVN-78 Gerard P. Ford, has resulted in massive cost overruns due in great part to the risk incurred in trying to include new and immature technologies into the shipbuilding plan. An unmanned-centric fleet provides the flexibility to value building manned ships based on current and available capabilities while also fully embracing optionality in unmanned systems. An added benefit of having optionality combined with unmanned systems is that it allows for prospective capabilities to be more rapidly prototyped while offering a robust means for experimentation both for technology and future concept of operations development. Unmanned systems could function similarly to a smartphone and its many applications. The benefit of this approach is that it provides an environment with stressors that will allow new technology to fail early and facilitate rapid change, evolution, and dramatically quicken the research and capabilities fielding cycles. The next Fleet Structure Assessment should also embrace optionality by finding the optimal mix of manned and unmanned vessels that will yield an asymmetric upside.

Unmanned-Centric

An unmanned-centric force structure will be dramatically different than today’s Navy, and it will require a departure from the 450 ship manned Navy ideal or the current 308 ship goal. The right mix of manned versus unmanned systems can be derived from a concept of operations that promotes judicious force structure discussions. The basis of this new concept is a fleet with more unmanned systems than manned systems where these platforms are fully integrated. For instance, instead of having a Surface Action Group (SAG) comprised of three manned ships, new SAGs could be comprised of a manned ship and at least two unmanned surface vehicles. Incorporating vehicles like DARPA’s ASW Continuous Trail Unmanned Vessel or General Dynamics’ Fleet-class unmanned surface vessel could add capabilities that will immediately increase lethality and adaptability. In the amphibious realm, the Navy could leverage unmanned platforms as resupply distribution systems for Marines on the beach. This could be of particular importance in a contested environment while supporting multiple fronts in an archipelago-like scenario. Further in the future, instead of having eleven 100,000-ton aircraft carriers, a mix of eight traditional carriers with eight to ten smaller (~40,000 ton) all-unmanned combat air vehicle carriers will provide the flexibility and presence that all Combatant Commanders are desperately seeking.

Presence is about having the right capability, in the right place, at the right time. To accomplish this the Navy will essentially need more assets. A plausible solution could be a force structure where the main employment of unmanned systems will be around unmanned-centric Surface Action Groups as the smallest force package to fulfill theater needs. The current 308 ship Navy plan is structured as follows:

CVNLSCSSCSSNSSGNSSBNAWSCLFSuptTotal
11885248012342934308

CVN – Carrier, LSC – Large Surface Combatants, SSC – Small Surface Combatants, SSN – Fast attack submarines, SSBN – Ballistics Submarines, AWS – Amphibious Warfare Ships, CLF – Combat Logistic Force, Supt – Support vessels.

A future force structure could start with trading large and small surface combatants for a new fleet of Unmanned Vessels. The affordability comes from the added presence afforded by the nature of an unmanned autonomous system and the need for fewer personnel to support their operations. The added capability comes from the introduction of 19 capable Surface Action Groups comprised of a manned ship with two unmanned vessels as depicted below and further explained in table I:

CVNLSCSSCUSVSSNSSBNAWSCLFSuptTotal
118450384812342934340

CVN – Carrier, LSC – Large Surface Combatants, SSC – Small Surface Combatants, USV – Unmanned Surface Vessel, SSN – Fast attack submarines, SSBN – Ballistics Submarines, AWS – Amphibious Warfare Ships, CLF – Combat Logistic Force, Supt – Support vessels.

screenshot_11– Rule of thumb used: 3 ships at home for every one deployed (for repairs, maintenance, training, and other requirements).
-Out of the 140 surface combatants (large and small) proposed in current 308 ship plan, 35 could be deployed at any time (based on rule of thumb).  Assuming 4 carriers deployed with an escort composition of three manned surface combatants per deployed carrier – the Navy could have 23 manned surface combatants available for tasking.
-Based on GAO yearly operational costs of a DDG ($70k per day) and assumed cost of DARPA’s ACTUV  ($15-20k per day) then one DDG is equivalent to 12 USVs (no personnel = affordability). Force structure was determined by trading 4 DDGs to provide 38 USVs. Four less DDGs = 19 very capable Surface Action Groups (a manned ship and two unmanned vessels).

Conclusion

The most important attributes for future force structures are relevance and affordability. This goal can be achieved by pivoting from the traditional to place the emphasis on developing unmanned capable buses that can accommodate all current technologies and have the capacity to flex and adapt to future technologies. Optionality to ship-building and unmanned systems integration can provide the flexibility and adaptability the Navy requires to remain relevant in an uncertain future. The result is a force structure that is more capable and conceptually more affordable. All great plans start with the end in mind – the upcoming Fleet Structure Assessment needs to showcase what the end of the Navy’s 30-year vision looks like. The suggestion is an unmanned-centric, man-led fleet.

Commander Javier Gonzalez is a Navy Federal Executive Fellow at the John Hopkins University Applied Physics Laboratory and a career Surface Warfare Officer. These are his personal views and do not reflect those of John Hopkins University or the Department of the Navy.

Featured Image: An artist’s concept of ACTUV (DARPA)

Publication Release: The Future of Naval Aviation

Released: August 2016

In August of 2015 CIMSEC published a Call for Articles soliciting analysis on the future of naval aviation. The following month, contributors responded with submissions that assessed the impact unmanned aviation will have on threat environments, the evolution of the carrier air wing, and other topics related to naval aviation. This compendium consists of the articles that featured during the topic week.

Screenshot_3
Click to read.

Authors:
Ben Ho Wan Beng
Jon Paris
Tim Walton
Greg Smith
Michael Glynn
Peter Mairno
Wick Hobson

Editors:
Wick Hobson
Dmitry Filipoff

Matthew Hipple
Matthew Merighi
John Stryker

 

Download Here

Articles:
What’s the Buzz? Ship-Based Unmanned Aviation and its Influence on Littoral Navies in Combat Operations by Ben Ho Wan Beng
Parallax and Bullseye Buoys: The Future of Naval Aviation by LT Jon Paris
The Evolution of the Modern Carrier Air Wing by Timothy A. Walton
Trusting Autonomous Systems: It’s More than Just Technology by CDR Greg Smith
Information Management and the Future of Naval Aviation by Michael Glynn
Aiding India’s Next Generation Aircraft Carrier: A Review by Peter Marino
Naval Aviation Week: The Conclusion by Wick Hobson

Be sure to browse other compendiums in the publications tab, and feel free send compendium ideas to [email protected].

Featured Image: A Major from the USMC, serving with 801 NAS, landed on the flight deck of HMS Illustrious, as part of Exercise Neptune Warrior. (Billy Bunting/UK MOD)

Unmanned Systems: A New Era for the U.S. Navy?

By Marjorie Greene

The U.S. Navy’s Unmanned Systems Directorate, or N99, was formally stood up this past September with the focused mission of quickly assessing emerging technologies and applying them to unmanned platforms. The Director of Unmanned Warfare Systems is Rear Adm. Robert Girrier, who was recently interviewed by Scout Warrior, and outlined a new, evolving Navy Drone Strategy.

The idea is to capitalize upon the accelerating speed of computer processing and rapid improvements in the development of autonomy-increasing algorithms; this will allow unmanned systems to quickly operate with an improved level of autonomy, function together as part of an integrated network, and more quickly perform a wider range of functions without needing every individual task controlled by humans. “We aim to harness these technologies. In the next five years or so we are going to try to move from human operated systems to ones that are less dependent on people. Technology is going to enable increased autonomy,” Admiral Girrier told Scout Warrior.

Forward, into Autonomy

Although aerial drones have taken off a lot faster than their maritime and ground-based equivalent, there are some signs that the use of naval drones – especially underwater – is about to take a leap forward. As recently as February this year, U.S. Defense Secretary Ash Carter announced that the Pentagon plans to spend $600 million over the next five years on the development of unmanned underwater systems. DARPA (the Defense Advanced Research Projects Agency) recently announced that the Navy’s newest risk taker is an “unmanned ship that can cross the Pacific.”

DARPA’s initial launch and testing of Sea Hunter. (Video: DARPA via YouTube)

Called the Sea Hunter, the vessel is a demonstrator version of an unmanned ship that will run autonomously for 60 – 80 days at a time. Known officially as the Anti-Submarine Warfare Continuous Trail Unmanned Vessel (ACTUV), the program started in 2010, when the defense innovations lab decided to look at what could be done with a large unmanned surface vessel and came up with submarine tracking and trailing. “It is really a mixture of manned-unmanned fleet,” said program manager Scott Littlefield. The big challenge was not related to programming the ship for missions. Rather, it was more basic – making an automated vessel at sea capable of driving safely. DARPA had to be certain the ship would not only avoid a collision on the open seas, but obey protocol for doing so.

As further evidence of the Navy’s progress toward computer-driven drones, the Navy and General Dynamics Electric Boat are testing a prototype of a system called the Universal Launch and Recovery Module that would allow the launch and recovery of unmanned underwater vehicles from the missile tube of a submarine. The Navy is also working with platforms designed to collect oceanographic and hydrographic information and is operating a small, hand-launched drone called “Puma” to provide over-the-horizon surveillance for surface platforms.

Both DARPA and the Office of Naval Research also continue to create more sophisticated Unmanned Aircraft Systems. DARPA recently awarded Phase 2 system integration contracts for its CODE (Collaborative Operations in Denied Environment) program to help the U.S. military’s unmanned aircraft systems (UAS) conduct dynamic, long-distance engagements against highly mobile ground and maritime targets in denied or contested electromagnetic airspace, all while reducing required communication bandwidth and cognitive burden on human supervisors.

An artist's rendition of DARPA's CODE concept, designed to enable operations in a electromagnetically contested environment. Illustration: DARPA
An artist’s rendition of DARPA’s CODE concept, designed to enable operations in a electromagnetically contested environment. (DARPA)

CODE’s main objective is to develop and demonstrate the value of collective autonomy, in which UAS could perform sophisticated tasks, both individually and in teams under the supervision of a single human mission commander. The ONR LOCUST Program allows UAVs (Unmanned Aerial Vehicles) to stay in formation with little human control. At a recent demonstration, a single human controller was able to operate up to 32 UAVs.

The Networked Machine…

The principle by which individual UAVs are able to stay in formation with little human control is based on a concept called “swarm intelligence,” which refers to the collective behavior of decentralized, self-organized systems, as introduced by Norbert Wiener in his book, Cybernetics. Building on behavioral models of animal cultures such as the synchronous flocking of birds, he postulated that “self-organization” is a process by which machines – and, by analogy, humans – learn by adapting to their environment.

The flock behavior, or murmuration, of starlings is an excellent demonstration of self-organization. (Video: BBC via YouTube)

Self-organization refers to the emergence of higher-level properties and behaviors of a system that originate from the collective dynamics of that system’s components but are not found in nor are directly deducible from the lower-level properties of the system. Emergent properties are properties of the whole that are not possessed by any of the individual parts making up that whole. The parts act locally on local information and global order emerges without any need for external control. In short, the whole is truly greater than the sum of its parts.

There is also a relatively new concept called “artificial swarm intelligence,” in which there have been attempts to develop human swarms using the internet to achieve a collective, synchronous wisdom that outperforms individual members of the swarm. Still in its infancy, the concept offers another approach to the increasing vulnerability of centralized command and control systems.

Perhaps more importantly, the concept may also allay increasing concerns about the potential dangers of artificial intelligence without a human in the loop. A team of Naval Postgraduate researchers are currently exploring a concept of “network optional warfare” and proposing technologies to create a “mesh network” for independent SAG tactical operations with designated command and control.

…And The Connected Human

Adm. Girrier was quick to point out that the strategy – aimed primarily at enabling submarines, surface ships, and some land-based operations to take advantage of fast-emerging computer technologies — was by no means intended to replace humans. Rather, it aims to leverage human perception and cognitive ability to operate multiple drones while functioning in a command and control capacity. In the opinion of this author, a major issue to be resolved in optimizing humans and machines working together is the obstacle of “information overload” for the human.

Rear Admiral Girrier, Director of N99, delivers a presentation on the future of naval unmanned systems at the Center for Strategic and International Studies.
Rear Admiral Robert P. Girrier, Director of N99, delivers a presentation on the future of naval unmanned systems at the Center for Strategic and International Studies, January 29, 2016. See the presentation here. (CSIS)

Captain Wayne P. Hughes Jr, U.S. Navy (Ret.), a professor in the Department of Operations Research at the Naval Postgraduate School, has already noted the important trend in “scouting” (or ISR) effectiveness. In his opinion, processing information has become a greater challenge than collecting it. Thus, the emphasis must be shifted from the gathering and delivery of information to the fusion and interpretation of information. According to CAPT Hughes, “the current trend is a shift of emphasis from the means of scouting…to the fusion and interpretation of massive amounts of information into an essence on which commanders may decide and act.”

Leaders of the Surface Navy continue to lay the intellectual groundwork for Distributed Lethality – defined as a tactical shift to re-organize and re-equip the surface fleet by grouping ships into small Surface Action Groups (SAGs) and increasing their complement of anti-ship weapons. This may be an opportune time to introduce the concept of swarm intelligence for decentralized command and control. Technologies could still be developed to centralize the control of multiple SAGs designed to counter adversaries in an A2/AD environment. But swarm intelligence technologies could also be used in which small surface combatants would each act locally on local information, with systemic order “emerging” from their collective dynamics.

Conclusion

Yes, technology is going to enable increased autonomy, as noted by Adm. Girrier in his interview with Scout Warrior. But as he said, it will be critical to keep the human in the loop and to focus on optimizing how humans and machines can better work together. While noting that decisions about the use of lethal force with unmanned systems will, according to Pentagon doctrine, be made by human beings in a command and control capacity, we must be assured that global order will continue to emerge with humans in control.

Marjorie Greene is a Research Analyst with the Center for Naval Analyses. She has more than 25 years’ management experience in both government and commercial organizations and has recently specialized in finding S&T solutions for the U. S. Marine Corps. She earned a B.S. in mathematics from Creighton University, an M.A. in mathematics from the University of Nebraska, and completed her Ph.D. course work in Operations Research from The Johns Hopkins University. The views expressed here are her own.

Featured Image: An MQ-8B Fire Scout UAS is tested off the Coast Guard Cutter Bertholf near Los Angeles, Dec. 5 2014. The Coast Guard Research and Development Center has been testing UAS platforms consistently for the last three years. (U.S. Coast Guard)