Tag Archives: seabed

Fighting for the Seafloor: From Lawfare to Warfare

Seabed Warfare Week

By LTJG Kyle Cregge

As the United States Navy looks to space and cyber as new domains for warfare, it also ought to look deeper: to the seafloor. Increased competition for vital resources and the intent to control critical sea lines of communication will drive nations and their navies to the seabed. There are three serious operational challenges ahead for the U.S. Navy that will require both technical and intellectual investment to properly establish security on the seafloor.

In the context of seabed warfare the three challenges align with the first three operational phases of war as part of U.S. doctrine: 0, Shape the Environment; 1, Deter Aggression; and 2, Seize the Initiative. In Phase 0, the U.S. will have to grapple with the difficulty of shaping an environment governed by an international legal structure which the U.S. is not party to. In Phase 1, the U.S. will be challenged to deter potential seabed exploitation by submarines and unmanned or automated underwater vehicles (UUVs or AUVs) in the vast depths of the oceans. Such platforms will be limited in their communication with other vehicles or fleet command centers due to their distributed use and the inability to communicate quickly, reliably, and secretly at great water depths. When the Navy is required to seize the initiative in Phase 2, open warfare, the seabed will serve to expand the enemy threat area beyond the first thousand meters of the water column thereby increasing risk for forces entering and exiting critical straits, bays, and other waterways, which will require the greater allocation of assets down into the depths.

The South China Sea and the Seabed: A Blueprint for Future Lawfare

Lawfare, as defined by Maj. Gen. Charles Dunlap (Ret.) of Duke University, is “the use or misuse of law as a substitute for traditional military means to accomplish an operational objective.” The U.S. Navy is continuously involved in combating lawfare, such as the recent  freedom of navigation operation (FONOP) conducted by USS Hopper (DDG 70) in the vicinity of Scarborough Shoal in the South China Sea (SCS). While China claims these and similar operations are violations of territorial sovereignty, the U.S. executes the FONOPs in order to repudiate the excessive Chinese island claims, which, if otherwise accepted by international norms, would come with associated economic rights within the SCS.

The basis for the legal battle comes from the United Nations Convention on the Law of the Sea (UNCLOS), that the United States has not ratified, but recognizes as customary international law. Despite the ruling of the Permanent Court of Arbitration against China, island building in the SCS continues. Chinese lawfare for islands and their Exclusive Economic Zones (EEZ) is a blueprint that many nations could use to exploit the seabed, specifically because the primary reason the U.S. did not ratify UNCLOS was disagreement with Part XI of the Convention which deals with, “[the] area of the seabed and ocean floor and the subsoil… beyond the limits of national jurisdiction, as well as its resources.” The United Nations “Reaffirm[ed] that the seabed… as well as the resource[s]… are the common heritage of mankind,” and that developed nations capable of seabed mining should share both profits of mining and the technology to do so. Though there were limited discussions at the U.N. in the early 1990s to assuage U.S. concerns, UNCLOS remains unratified by the U.S. Senate.

Under the current UNCLOS legal structure nations may extend their EEZ based on scientific study and submission approved by the Commission on the Limits of the Continental Shelf. As the U.S. is not party to UNCLOS, there are no U.S. members on the Commission, nor are there currently U.S. civilian contracts for seabed exploitation through the International Seabed Authority (ISA). The ISA regulates the nearly 50 percent of the Earth which is outside the jurisdiction of national territories, and has contracts to explore for and potentially mine various lucrative metals with Russia, Japan, China, India, the UK, France, Germany, South Korea, Brazil, and other smaller nations. Without a cohesive national strategy or participation in an international legal framework, the United States government has left the shaping of the environment and the execution of national maritime strategy up to the otherwise apolitical Navy at the fleet operational level. Not only is there risk to U.S. forces failing to communicate intent clearly, but other near-peer nations will continue to use political lawfare to shape international norms to their preferences as the Chinese have in the South China Sea.

Seabed Deterrence: Limited Communications, Command and Control

As the Navy will shape and potentially deter actions at the seafloor, the assets called on to execute that mission will include surface ships, submarines, and AUV/UUVs. UUVs will be the only asset able to operate at the seabed, due to their ability to survive and work at depths beyond the first thousand feet of water, where submarines normally operate. Depending on the particular type of seabed exploitation, AUVs and commercial mining vehicles could be operating anywhere from 2,500 – 20,000 feet, with the support of surface vessels recovering both the vehicles themselves and the resources being mined. Yet while the depth of the water will be an issue for the Navy, the breadth of possible areas of operation is also staggering. The Clarion-Clipperton Zone (CCZ), which contains numerous polymetallic lodes ripe for mining, is a great deep-water plain as wide as the continental United States in the eastern Pacific Ocean. And while  there  will  be  competition  in  and  around  the  Pacific  Rim,  global  warming  and further  development  of  seabed  mining  technology  has  unearthed the  Arctic  Circle’s available  resources  to be mined which  includes  coal, diamonds,  uranium,  phosphate,  nickel,  platinum,  and  other  precious  minerals  and hydrocarbons. As nations including the United States seek to establish firm economic claims on the seabed, there is the potential for a massive area for coverage, defense, and support of the U.S. flagged seabed mining expeditions (as the U.S. Navy has supported oil platforms in the Arabian Gulf before) by a Navy already strapped for forces required in other areas around the world.

Each colored area on this map represents a different country’s mining claim in the Clario-Clipperton zone. (Map courtesy International Seabed Authority.)

Yet even if industry is able to rapidly develop a low priced AUV or UUV the Navy could serially buy, the UUVs will still be bound by the restrictions of massive water depths. Communication to a UUV at hundreds of meters below the water will at best be limited to the ELF spectrum, requiring massive antenna to transmit short messages, or using acoustic transmissions that would give away the position of a UUV to any enemy UUV’s passive sonar system. Other options include having the UUV surface for radio or satellite communications, or using a buoy to do the same while the UUV remains below the surface. Artificial intelligence may help in such a communications restricted environment by giving some level of control to a UUV with expected return and update patterns, but at the operational level UUVs will be not be a perfect solution in Phase 1, where potential escalation could happen rapidly due to a miscalculation. What might a near peer nation do if it was found that an AUV had sunk another AUV at the seabed? Or more critically, what if the AUV sunk a submarine or surface ship?

The U.S. Navy must think through all these potential ROE considerations before allowing lethal capability on an AUV, so that a computer’s miscalculation resulting in a seabed skirmish would not grow into an undesired broader conflict. Regardless of lethal autonomy, the U.S. Navy will continue to struggle to integrate unmanned systems in all domains. But deep-water seabed presence will remain especially difficult to properly resource for patrolling, as well as maintaining control of those assets, and communicating commander’s intent while deterring diverse enemies over massive areas.

Seizing the Initiative: Keeping the SLOCs Open

In a proposed Phase 2 environment, the seabed will be a fertile ground for exploitation by military assets, primarily as an extension of mine and anti-submarine warfare. While it is possible to imagine a strike warfare or air warfare capability, it would be incredibly difficult technologically to maintain assets such as missiles at the seabed in a ready configuration for extended periods to then be launched either at land targets without a ready communication system to initiate the launch, or at air threats when the system would lack an indigenous radar or missile guidance system. It is far easier for less complicated mines, torpedoes, or UUVs to be moved slowly along the seabed or deployed in waiting for a worthwhile target such as a ship or submarine. And much like in land warfare where terrain is critical, the Sea Lines of Communication (SLOCs) and the seafloor in the vicinity will be critical to control. SLOCs and other strategic maritime chokepoints have always been important, but much as the use of the seabed extends the water column for submariners, it will also expand the threat area posed by seabed mines and torpedo-capable UUVs. The U.S. Navy is already struggling to develop replacements for its aging Mine Counter Measures (MCM) fleet and an Explosive Ordnance Disposal team would be unable to access deeper seabed mines, given the incredible depths. The Navy would have to rely on other UUVs or Remotely Operated Vehicles to clear an area with limited certainty due to both the massive space required to clear, and the ability for more threats to be moved in via the seabed after time.

One can imagine the threat this poses either offensively or defensively to the Navy’s fleet. Commercial traffic for a large portion of the East Coast could be hampered if a vessel was sunk in the Chesapeake Bay by a seabed AUV during a broader conflict with a near-peer competitor. A UUV capable of traveling via the seabed could cross large portions of the oceans slowly, then maintain a position in a critical strait, bay, or harbor, unbeknownst to an enemy: waiting on a cue to activate and target enemy shipping or military vessels. Beyond homeports and harbors, seabed mines and UUVs could drastically change both the logistics and employment of forces for the U.S. Navy if  critical waterways were infested with numerous AUVs hunting specific acoustic signatures. The Navy’s ability to deploy warships to key maritime regions, such as the Mediterranean via the Suez Canal or Bab el-Mandeb Strait, could be completely denied by seabed-based platforms. Similarly, the thought process that the Navy used historically with the GIUK (Greenland, Iceland, United Kingdom) Gap is instructive. There, a listening network provided cues to friendly submarines to get underway and track Soviet submarines when they entered critical waterways. In the future, seabed listening stations could cue AUVs to track, report, and kill enemy UUVs, ships, and submarines.

Conclusion: An Arms Race

While the U.S. Navy will be tested to operate at or near the seafloor in the future, there is reason for hope. First, while the U.S. Navy will have difficulties reliably communicating with seafloor assets due to the environment, so too will its rivals. Second, all nations are vulnerable to seafloor-based attacks, which means the U.S. Navy could just as easily go on the offensive if attacked. Third, the costs associated with developing a sustainable deep water seabed military asset will remain expensive for all nations, and prohibitive for most, as no nation currently has UUVs able to withstand the pressure at depths of thousands of feet. Nevertheless, the United States will have to determine how it will shape its own law-based national security strategy considering America’s failure to ratify UNCLOS. At the operational  level, seabed UUVs will likely lead to an arms race given all of the discrete tactical opportunities they offer. In an inversion of land warfare, control of the low ground will grant victory on the high seas.

Lieutenant (junior grade) Kyle Cregge is a U.S. Navy Surface Warfare Officer. He served on a destroyer and is a prospective Cruiser Division Officer. The views and opinions expressed are those of the author and do not necessarily state or reflect those of the United States Government or Department of Defense.

Featured Image: Photo via actor212 from Flickr.

Seabed Warfare Week Kicks Off on CIMSEC

By Dmitry Filipoff

This week CIMSEC is publishing a series of articles focusing on the seabed as a domain of maritime conflict and competition. This topic week is launched in partnership with the U.S. Naval War College’s Institute for Future Warfare Studies who drafted the Call for Articles. Below is a list of articles featuring during the topic week that may be updated as prospective authors finalize additional publications.

Fighting for the Seafloor: From Lawfare to Warfare by LTJG Kyle Cregge
Forward…from the Seafloor? by David Strachan
Establish a Seabed Command by Joseph LaFave
Undersea Cables and the Challenges of Protecting Seabed Lines of Communication by Pete Barker

Dmitry Filipoff is CIMSEC’s Director of Online Content. Contact him at [email protected].

Featured Image: An ROV imaging a hydrothermal vent. (NOAA Office of Ocean Exploration and Research, 2016 Deepwater Exploration of the Marianas)

Institute for Future Warfare Studies Wants Your Writing on Seabed Warfare Concepts

By Bill Glenney

Articles Due: March 5, 2018
Week Dates: March 12–March 16, 2018

Article Length: 1000-3000 Words
Submit to: [email protected]

The U.S. Naval War College’s Institute for Future Warfare Studies is partnering with CIMSEC to solicit articles putting forth concepts for warfare on and from the seabed as part of the larger maritime battle.

While the broad matter of economics and sea lines of communications should drive a national and Navy interest in securing the seabed, the transformative nature of warfare on and from the seabed should capture the imagination and be of concern to the Navy.

Systems operating from the ocean seabed – to include unmanned systems, mini-submersibles, smart mines, special forces, and others – will one day be deployed against surface, air, and land systems and not just traditional undersea forces – adding yet another dimension to cross- or multi-domain warfare. Navies will be forced to consider not only the role of the seabed and undersea forces in seabed combat, but also how effects from the seabed can shape the behavior of forces on the surface, in the air, and on land.

At its heart, the assumption of U. S. undersea supremacy based on owning the top 1,000 feet of the water column will become invalid, ineffective, and wrong, just as aviators once assumed air supremacy was assured from owning airspace above 30,000 feet. Similarly, the Submarine Force will have to abandon its traditional assumptions about how operating within the undersea domain enhances survivability. Seabed threats may mean the U.S. Navy could have to fight its way out of CONUS home waters before it could project power abroad, and allow adversaries to persistently threaten the U.S. Navy’s flanks and rear support areas. Warfare under the sea may come to look more like tunnel warfare of World War One or suppression of enemy air defenses in Syria than ASW of the Cold War.

The seabed has already long suffered from neglect by the U. S. Navy. For example, modern sea mines can already project power from the seabed with little to no warning, but since the end of the Cold War the Navy and the Submarine Force “whistled past the graveyard” and routinely dismissed the threat from sea mines out of hand. This neglect was reflected in continual lack of substantive funding related to USN mine warfare capabilities and associated tactical development. This trend continued even as more U.S. warships were sunk or damaged in the aftermath of WWII by sea mines than by any other weapon while potential adversaries have tens of thousands of mines. Weapons on the seabed exacerbate the problem even more.

Illustration of how a CAPTOR smart mine functions. (via U.S. Militaria forum)

Nations and commercial entities can be expected to routinely map seabed terrain to support their interests and activities. Available seafloor bathymetry may become comparable to a typical topographic map available in hard copy. This level of detail will facilitate planning for and the placement of systems on the ocean floor, especially with a focus on ensuring they could not be readily detected or attacked. Weapons and supplies could be hidden in seabed caves, trenches, and other geographical features within the complicated seabed landscape.

The threat posed by systems operating from this part of the maritime environment will only grow with technological change and proliferation. The impending proliferation of commercially-developed undersea and seabed systems will make these systems readily available to anyone with even a modest amount of funding. These systems had long ago departed being a resource only for a rich nation-state or billionaires intent on finding the resting place of sunken ships.

Authors are invited to write on the tactical and operational challenges, and potential solutions, that may emerge as maritime warfare expands onto the seabed. How can the Navy’s future force adapt to this coming reality? Authors should send their submissions to [email protected].

Professor William G. Glenney, IV, is a researcher in the Institute for Future Warfare Studies at the U. S. Naval War College.

The views presented here are personal and do not reflect official positions of the Naval War College, DON or DOD.

Featured Image: Undersea submersible (Brian Skerry, National Geographic Creative)