Tag Archives: Mine Warfare

Defeating Floating IEDs with USVs

By CDR Jeremy Thompson, USN

This concept proposal explores a technology solution to the problem of risk to first responders when identifying, neutralizing, and exploiting “surface-floating” maritime improvised explosive devices (SF/MIEDs).

Does the Navy need a maritime equivalent of the Talon Counter-IED robot?
Does the Navy need a maritime equivalent of the Talon Counter-IED robot?

When considering the proliferation of technology for use against land-based improvised explosive devices (IEDs), it may be puzzling to many observers why remote IED Defeat (IEDD) technologies, particularly robots, have yet to fully cross over into the maritime domain. Although some unmanned underwater vehicle programs designed for limpet mine-like object detection on ships are in development, much less attention has been given to countering SF/MIEDs. In general, the purpose of MIEDs is to destroy, incapacitate, harass, divert, or distract targets such as ships, maritime critical infrastructure and key resources (CI/KR), and personnel. MIEDs may also present obstacles (real or perceived) with the purpose of area denial or egress denial. As a subset of the MIED family, the “surface-floating” MIED operates on the water’s surface in environments such as harbors, the littorals, the riparian, and the open ocean. It may be either free floating or self-propelled, with remote control (manual or pre-programmed) or with no control (moves with the current). It is a tempting low-tech, low-cost option for an adversary.

Thankfully, SF/MIED incidents have been rare in recent times, the last significant use occurring during the Vietnam war. Nonetheless, a capability gap is highlighted by the challenge they represent—namely, that a human must unnecessarily expose themselves to the object. One material solution to a surface-floating IED may be to develop an IED Defeat Unmanned Surface Vessel (USV) around a design philosophy based on IEDD robots used in land warfare. Protection of high value units and critical infrastructure / key resources would be its primary missions along with counter-area denial. Its most likely operating environment would be CI/KR dense areas such as harbors and seaports as well as the riparian environment since rivers are constricted in the water space available to shipping to maneuver around SF/MIED threats. A key element of design philosophy in an IEDD USV would be to meet the expectations of the customer—the first responder. Military explosive ordnance disposal (EOD) units and civilian bomb squads are much more likely to accept a platform in which the console and all other human interface features are nearly identical in look, placement, feel, and responsiveness as the most popular robots they have been accustomed to operating such as the TALON robot by QinetiQ and Packbot by iRobot.

A functional hierarchy could be drawn around major tasks such as reacquisition of a suspected surface-floating IED, identify/classify, threat removal, neutralization, and recovery of the IED for exploitation. Modularized payload packages to execute these tasks may include a towing package, an attachments package (e.g. hooks, magnets), a neutralization tool package to include both precision and general disruption EOD tools, an explosives, chemical, and radiological detection package, and an electronic counter-measures package.

Numerous trade-offs between weight, power, stability, and the complexity of modular packages would need to be considered and tested, however, variants like a “high-low” combination of a complex and simple USV working together may minimize some of the trade-off risk. If an IEDD USV were to be developed key recommendations include:

  • Official liaison between NAVSEA (US Naval Sea Systems Command) between PMS-406 (Unmanned Maritime Systems) and PMS-408 (EOD/CREW program) to ensure the transfer of USV expertise between PMS divisions.
  • A DOTMLPF assessment to determine whether limpet mines or surface-floating IEDs are more likely and more dangerous to U.S. assets and personnel given the uncertainty of future naval operations.
  • Including civilian bomb squads in the design and development process early to increase the potential for demand and cross-over with the law enforcement sector and therefore reduced long-term program costs.

Current UUV programs under development include the Hull UUV Localization System (HULS) and Hovering Autonomous Underwater Vehicle (HAUV).

This article was re-posted by permission from, and appeared in its original form at NavalDrones.com.

What You Can’t Find…

 

Every Drone Can Be a Minesweeper?

A frequently cited fact in my days training to be a naval officer was that the most common weapon for damaging a warship since World War II was the naval mine.  The recently concluded International Mine Countermeasures Exercise 2012 (IMCMEX 12), held in 3 distinct OPAREAs throughout the U.S. Fifth Fleet Area of Responsibility (AOR), demonstrated both the difficulty of mine countermeasures (MCM) operations (detecting and clearing mines) and the potential of new technology to mitigate those dangers.

PBS’ News Hour quotes a retired naval officer and observer of the exercise, Capt. Robert O’Donnell, stating of the 29 simulated mines in the exercise, “I don’t think a great many were found…It was probably around half or less.”

The response from the Navy is a little confusing:

The Navy declined to provide data on how many practice mines were located during the two-week naval drill but did not dispute that less than half were found. However, a spokesman insisted that the figures do not tell the whole story and that the event was “‘not just about finding” the dummy mines.

“We enjoyed great success,” said Cdr. Jason Salata, the top public affairs officer for the 5th Fleet. “Every platform that was sent to find a shape found a shape. We stand by that.” Salata asserted that “there were no missed mines, each platform that had an opportunity to find the mine did so.”

While it is true that a 100% detection rate is not what the exercise was all about, that rate is still an interesting figure.  It could indicate that every mine was found, but perhaps not by every platform – instead as a result of the cumulative MCM effort.  It’s likewise unknown how the success rate broke down by platform and nation – more than 27 international partners operated with U.S. Fifth Fleet as part of the exercise.  What is known is that MCM remains a difficult and deadly business, particularly in the context of some of the most likely future conflict scenarios, including Iran and North Korea. 

While the exercise results will disappoint some (again, we don’t know who or what had difficulty finding what types of mines), they will also serve to reinforce the arguments for recapitalizing the Avenger-class MCMs, outfitting the USS Ponce as an Afloat Forward Staging Base, and placing rigorous demands on getting the LCS MCM mission package right.  As mentioned above, the exercise was additionally an opportunity to test out some new kit.  Before the exercise got underway, NavalDrones provided a preview of some of the Remotely Operated Vehicles (ROVs) and Autonomous Underwater Vehicles (AUVs) slated for testing in the drill, as well as a recap of other drones designed for MCM duties.  Furthermore, a pair of similar threats might spark the development of crossover technology for use in MCM.

In addition to the more traditional types of naval mines, detecting and defeating the waterborne IEDs and enemy drones (AUVs and ROVs) of both state and non-state actors is seen by some as increasing in importance, and may rely on many of the same technologies used in MCM.  Like the land-based IED/counter-IED arms-race of the past decade, we could be witnessing the start of a similar set of opposing innovation escalations.  Foreign Policy earlier this week reported that the creation of the Iraq/Afghanistan wars, the Joint IED Defeat Organization (JIEDDO), is executing its own Pivot to the Pacific to focus on the typically lower-tech threats of waterborne terrorists and IEDs.  Meanwhile NavalDrones last week highlighted some of the detection and clearance technologies that could be used against the evolving undersea drone fleets.  The next decade is shaping up to be an interesting time for technology under the waves.

 

LT Scott Cheney-Peters is a surface warfare officer in the U.S. Navy Reserve and the former editor of Surface Warfare magazine. He is the founding director of the Center for International Maritime Security and holds a master’s degree in National Security and Strategic Studies from the U.S. Naval War College.

 

The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy.