Tag Archives: drones

3D Printing/Drone Logistics Mash-up

Last Spring, the guys at CIMSEC wrote a series on how 3-D printing would revolutionize naval logistics. Their vision is much closer to reality than science fiction. The nexus of on-demand fabrication and unmanned vehicles was recently demonstrated in small scale at a venue where one would least expect to see cutting edge military concepts tested. In another example of performance art-turned dual-use UAS military application, at the Burning Man Festival this year, a social entrepreneurship project called Blue Sky allowed visitors to scan an image of themselves, sculpt a miniature likeness of the person with a 3D printer, and deliver it to the consignee with an experimental octo-rotor UAV. Despite challenges with wind, dust, and safety, the proof of concept demonstration was a success.

The ability to print and deliver parts on demand locally and rapidly deliver them to forward operating forces will greatly streamline naval supply chains. Last December, the Marine Corps VMU-1 squadron began logistics deliveries to remote combat outposts in Afghanistan with an unmanned version of the K-Max dual rotor helicopter. A contracted manned K-Max variant had previously flown thousands of logistics missions for U.S. Navy ships during the 1990s. The Marines’ two unmanned K-Max vehicles delivered more than a million pounds of cargo between December and May and have were so successful the trials have been extended until 30 September.

Reprinted with permission from navaldrones.com

Dual-Use Drone Swarms

 

Weaponizing individual drones is just the beginning…

By Chris Rawley

Last winter over at Information Dissemination, I made the observation that swarming robots will irreversibly transform warfare, and I hold to that argument.  The discussion and progress in this area is developing quickly.  Much of this conversation involves non-military uses for drone technology, but as with many tools, there are also applications for warfare.  A host of militarily useful scenarios can be envisioned to employ very small unmanned naval platforms in a non-lethal fashion.

In the videos below, quadrotors are used to perform simple construction tasks. The technology that is today viewed as modern performance art could some day be utilized to build an expeditionary forward operating base remotely.  A C-130 would fly over a likely FOB site and deploy hundreds of UAVs, which would quickly go to work filling Hesco Barriers and building fighting positions all night long based on a pre-programmed design, a scoop of sand at a time.  Out of power, the drones could then land on the FOB and relay observations to the incoming troops. The site would be defensible as soon as the first Marines arrived, leaving Sea Bees for more valuable construction projects.

 

Researchers in the UK are developing autonomous vehicles which will replace the tedious role of scuba divers who painstakingly seed damaged coral reefs.  The alternative being worked is to allow “multiple small autonomous robots following a simple set of rules and seeking out coral fragments and re-cementing them to the reef.  But first the robot needs to be driven by a computer ‘trained’ to recognise coral fragments from other objects such as rocks, litter, sponges and other sea creatures… The swarm of autonomous underwater robots will operate according to a simple set of ‘micro-rules’ to seek out coral fragments and re-cement them to the reef.”

A swarm of nano-UUVs similarly equipped as the “coralbots” could quietly infiltrate an enemy naval port and use sensors and algorithms to recognize seawater intakes on ships.  These intakes are indispensable on just about every vessel and are used for heat exchangers cooling engines and various pumps, to make fresh water for the crew, and to propel water-jet equipped ships like the LCS.  The UUVs could inject a combination of mud or sand scooped up from the harbor with epoxy into these intakes, effectively rendering the fleet useless and unable to get underway.  A similar attack could gunk up the intakes to power plants, refineries, and other coastal infrastructure.

 

The idea of drones mimicking insects might have other applications.  Like bees or fire ants who can subdue a much larger predator, disposable micro-UAVs – too small to defeat with CIWS or other weapons systems – might swarm an Aegis combatant, each spraying a tiny amount of radar absorbent paint on the SPY array, achieving a mission kill of the most powerful air and missile defense system in the world. 

Of course, these sorts of aerial swarms might be vulnerable to jamming, EMP, and the like, but here, LT Matt Hipple offers some recommendations to build resiliency into drone swarms.  The rapid evolution of drone swarm technology can be expected to continue until concepts like these are deployed operationally; likely sometime in the next decade.

This article was re-posted by permission from NavalDrones.com

Insights into Unmanned ASW

Last week the U.S. government’s defense technology innovator, DARPA, awarded Science Applications International Corporation (SAIC) a $58M contract to develop the next phases of its Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vehicle (ACTUV) technology demonstrator. Besides a fine example of the DoD’s love of nested acronyms, the ACTUV program provides a peek into the promises and challenges of the future of unmanned ASW.

It’s important to note that note that the award is for a technology demonstration, not a program of record. The ACTUV will help the Navy mature technologies useful for future capabilities but is not expected to enter active fleet service itself. According to DARPA’s ACTUV website, the first, completed phase:

“refined and validated the system concept and associated performance metrics, completing risk reduction testing to inform program risks associated with submarine tracking sensors and maritime autonomy.”

SAIC is tasked with phases 2-4, specifically to “design a vessel (phase 2); build a vessel (phase 3) and test the vessel (phase 4). Operational prototype at-sea testing is expected in mid-2015.

As stated in DARPA’s press release, the goal of the program is an “unmanned vessel that tracks quiet diesel electric submarines for months at a time spanning thousands of kilometers of ocean with minimal human input.” The website adds that an objective of generating a vessel design that “exceeds state-of-the art platform performance to provide complete propulsive overmatch against diesel electric submarines at a fraction of their size and cost.” In other words the vessel must be small and cheap (target cost goal of $20M apiece), yet robust enough to operate for 80 days and 6,200km without human maintainers or refueling.

The approach the program takes for propulsion will be interesting to see develop, as most long-range drone concepts have relied on solar panels or wave propulsion at the sacrifice of top speeds. Part of ACTUV’s endurance and speed will come from the drone’s design. According to navaldrones.com, the SAIC-built concept’s use a trimaran hull seen (see the video) offers better speeds over long ranges than traditional monohull designs. Additionally, going sans-crew frees up space normally devoted to crew-support systems to fill with more fuel tanks.

No one can escape my cones of many colors!

Hunting its prey, the ACTUV will have an edge during lower sea-state levels and due to the necessity of diesel electric subs to snorkel with regularity. High sea-states and advanced air-independent propulsion (AIP) diesel subs pose a greater challenge, although the former is mitigated by the lack of crew-safety requirements (no need to worry about the wardroom’s pitchers of kool-aid flying into SUPPO’s lap).  As discussed in previous posts on our site, increasing a drone’s level of autonomy as DARPA intends with
the ACTUV – through “a sparse remote supervisory control model” –
will decrease its susceptibility to hacking. However the need for two-way contact through communication and command protocols will still create vulnerabilities to guard against. The more the ACTUV communicates, especially in transmission, the more it increases the chance of being detected. In fact, although as a smaller vessel it might have a radar cross section akin to a pleasure craft or fishing vessel, its speed, sensor suite, and the simple fact that it’s a surface vessel will probably make it rather easy to detect – especially by the sub it is following. As a whole, this vessel will probably not be that stealthy, more often used in “we don’t care you know we know” type situations. 

Automated responses also create the possibility of a dependable error that an enemy can exploit (think of a video game that freezes every time one particular action is performed). This is a more remote worry as the error would have to unknown or uncorrected by the U.S., be discovered by a foe, and be of practical tactical use (it doesn’t matter much if the ACTUV shuts down when trying to avoid whales if you can’t drive the ACTUV into a whale).

Another interesting requirement is the need for ACTUV to abide by maritime traffic conventions and legal restrictions. In practice this means preventing it from, say, running over a civilian on a jet ski or straying into protected marine habitats. But the day will come when some unmanned surface or subsurface vehicle does cause damage, and the legal and operational fallout will be quite interesting to watch.

Lastly, as noted in Aviation week, the ACTUV will not perform organic ASW search functions, but will instead rely on other ASW assets and intel to cue its tracking opportunities. Once acquired, the vessel will use “onboard acoustic, electro-optical, radar and lidar sensors to acquire and follow its submarine target.”

If it proves successful, the ultimate benefit of an ACTUV follow-on is therefore that it will free up more expensive assets to do other things. As configured, an engagement would require integration with a weapon-delivery platform, most practically an aircraft. However, like the predator, which made its debut as a strictly ISR platform, a future iterations could quite conceivably carry their own weapons. The ACTUV is a program to keep an eye on.

LT Scott Cheney-Peters is a surface warfare officer in the U.S. Navy Reserve and the former editor of Surface Warfare magazine. He is the founding director of the Center for International Maritime Security and holds a master’s degree in National Security and Strategic Studies from the U.S. Naval War College.

The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy. 

Securing the Swarm: New Dogs, Old Tricks

As the tide of automated warfare rises, optimists are already attempting to ride the wave.  I do so in Proceedings, suggesting possible paths of development for autonomous platforms, and at the Disruptive Thinkers blog Ben Kohlman and I imagine future scenarios in which automated platforms might be used. Admittedly, we often ignore the many ways our concepts can wipe out: particularly signals hijacking and spoofing of navigational systems. As illustrated by eavesdropping on Predator communications and the recent forced crash of a drone in Texas, determined enemies can steal information or cause mayhem if they break the code on combat robot (ComBot) operations. Ideas for securing these advanced automated armadas can be found in some of the oldest methods in the book.

Paleo-Wireless: Communicating in the Swarm
In 2002, LtGen Paul Van Riper became famous for sinking the American fleet in a day during the Millennium Challenge exercise; he did so by veiling his intentions in a variety of wireless communications. We assume wireless to mean the transfer of data through the air via radio signals, but lights, hand signals, motorcycle couriers, and the like are all equally wireless.  These paleo-wireless technologies are just what ComBots need for signal security.

ComBot vulnerabilities to wireless hacks are of particular concern for planners. Data connections to operators or potential connections between ComBots serve as a way for enemies to detect, destroy, or even hijack our assets.  While autonomy is the first step in solving the vulnerability of operator connections, ComBots in the future will work as communicating teams. Fewer opportunities will be provided for subversion by cutting the long link back to the operator  while maintaining the versatility of a small internally-communicating team. However, data communication between ComBots would still be vulnerable. Therefore, ComBots must learn from LtGen Van Riper and move to the wireless communications of the past. Just as ships at sea communicate by flags and lights when running silent or soldiers might whisper or motion to one another before breaching a doorway, ComBots can communicate via light, movement, or sound.

Unlike a tired Junior Officer of the Deck with a NATO code-book propped open, computers can almost instantly process simple data. If given the capability, a series of blinking lights, sounds, or even informative light data-transmissions  could allow ComBots of the future to coordinate their actions in the battlefield without significantly revealing their position. ComBots would be able to detect and recognize the originator of signals, duly ignoring signals not coming from the ComBot group. With the speed and variation of their communications, compressed as allowed by their processing power, ComBots can move through the streets and skies with little more disruption than a cricket, lightening bug, or light breeze. High- and low-pitch sounds and infrared light would allow for communications undetectable to the average soldier.

LtGen Van Riper melded a deadly combo of new weaponry with old communications to build a force capable of, with the greatest surprise, wiping out a force armed with the greatest technology in every category. Utility, not technology, is what gives us the edge in the battlefield. Sometimes it is a combination of the old and new that allows for the potency. Perhaps, one day, ComBots will be set loose into the battlefield where they will operate more as a pack driven by sight and sound than a military formation managed over a data link.

GPS: How About a Map?

The Texas incident has broken open the doors on a previously low-key vulnerability for ComBot systems, navigation. While speculation is rife as to how the CIA lost a drone in Iran, it is quite clear that the researchers in Texas were able to spoof a ComBot into destroying itself. Spoofing of externally-based navigational systems is a potential way to turn aerial ComBots in particular into weapons against us.  It is often forgotten that systems that are “autonomous” still rely on outside guidance references that can be manipulated. While civilian GPS is less secure than military-grade GPS, the potential for GPS spoofing to lay-low a combat force is a chilling one. However, the solution can be found by augmenting legacy techniques with modern processing.

Terrain Contour Matching (TERCOM) and Digital Scene Mapping Correlation (DSMAC) are non-GPS methods of navigation that specifically use internal recognition of local terrain and urban landmarks to maneuver Tomahawk missiles. This is another way of, “looking around and reading a map.” Processing power advances since the system was first introduced during the Cold War mean greater amounts of recognition data can be processed in shorter amounts of time by smaller platforms. ComBots deployed to specific areas can upload local data to allow localization based on terrain from high altitude or Google-maps-style scene matching from rooftops or even street-by-street. With adaptive software, ComBots could even “guess” their location if the battlefield changes due to combat destruction, noting changes in their environment as damage is done.  While GPS can be spoofed, unless the enemy has been watching too much Blazing Saddles, DSMAC and TERCOM will be nigh impregnable navigational systems.

This defense for ComBot operations can also act as a navigational redoubt for a fighting force. The downing of GPS satellites or the spoofing of signals effects everyone using electronic navigation systems. Aerial ComBots outfitted with TERCOM and DSMAC could act as a secondary GPS system in an area with a GPS outage. If signals are jammed or satellites taken out, warfighters or other navigationally lesser-developed ComBots could triangulate their positions based on the system of ComBots with locations determined by TERCOM and DSMAC. By adding these recognition systems to autonomous drones, commanders will defend ComBots from hijackers and combatants from the choking fog of war.

Riding the Wave

The key to the safe and effective use of ComBots is to avoid the extremes of optimists and luddites. Optimists will look far into the realm of capability before necessarily researching vulnerabilities, abandoning the old for every shiny new development. Luddites will make certification and security processes long and complicated, cowering from the strange light new technology brings; ComBots would run on Windows 95 and take 30 minutes to log on to themselves. It is best to advance fearlessly, but take our hard-learned lessons with us. Non-digital communications, aka speech and signals, and localized navigational systems, aka carrying maps, offer ComBot developers a shield against interlocutors.  Our new dogs will be best defended by some of the oldest tricks.

This article appeared in its original form at Small Wars Journal.

Matt Hipple is a surface warfare officer in the U.S. Navy. The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy.