Tag Archives: AI

Hyper-Converged Networks and Artificial Intelligence: Fighting at Machine Speed

By Travis Howard

Lieutenant Stacey Alto sits in the Joint Intelligence Center aboard the Wasp-class Amphibious Assault ship USS ESSEX (LHD 2). As the Force Intelligence Watch Officer (FIWO), her job is to absorb relevant information related to current and future operations of the Essex Amphibious Ready Group, as well as the general intelligence within the operating theater. Her zero-client, virtual desktop environment (VDE) 6-panel display at her watch station allows her a single-pane-of-glass into Unclassified, Secret, Top Secret, and Coalition enclaves through the Consolidated Afloat Networking and Enterprise Services (CANES) network.

One of her watch standers, an Intelligence Specialist Second Class, approaches her desk with new information from the Joint Operations Center (JOC), the nerve center of ARG operations, announcing new orders from the fleet commander to enter the Gulf of Oman, which represents a shift in operating theater from their current position in the Arabian Sea.

Stacey goes to work immediately, enlisting the help of two Intelligence Specialists and one of the Information Systems Technicians standing watch in the Ship’s Signal Exploitation Space (SSES). She queries the onboard widget carousel on her CANES SECRET terminal. Using a combination of mouse, keyboard, and touchscreen, she pulls together several ready-made widgets and snaps them into place, each taking advantage of a pool of “big data” information stored on the ship’s carry-on Distributed Common Ground System-Navy (DCGS-N) and off-ship sources from the intelligence cloud. Her development work gets passed to the next watch team, as they set the application’s variables for data parsing, consolidating inputs, and terrain mapping to put together a relevant, real-time intelligence picture.

By the time Stacey returns to her watch station almost 24 hours later, the IT personnel in SSES have put the new application through the automated cybersecurity testing process and have released it to the onboard “app store,” which Stacey can now install on her virtualized, thin-client desktop within seconds. She calls the JOC, the Marine Landing Force Operations Center (LFOC), and the ship’s Combat Information Center (CIC) announcing the system’s readiness with separate logins at the appropriate classification level for each watch station. By the time ESSEX enters the Gulf of Oman, the application has mapped adversarial positions and capabilities, pulled from several disparate databases afloat and ashore, all at varying levels of classification necessary for operational planning throughout the ship.

Building a More Maneuverable Network Afloat

The above scenario is almost a reality, representing several emergent advances in network technology and application portability (the “mobility” factor) that the Navy will soon capitalize on: a hardware and network-layer software architecture known as hyper converged infrastructure (HCI). The performance and cost efficiencies realized by this architecture will pave the way for disruptive changes to how we maneuver the network across the entire spectrum of operations: as a business system, as a decision support system, and as a warfighting platform.

Hyper-convergence is the integration of several hardware devices through a hypervisor, which acts as an intermediary and resource broker between software and hardware. Independent IT components are no longer siloed but combined, simplifying the entire infrastructure and improving speed and agility of the virtual network.1 The advantages of HCI seem obvious, but the real disruptive effect is how we can build upon it. The opening scenario describes on-demand application development at the tactical edge. This is achievable through HCI efficiency and another emerging network process known as Agile Core Services (ACS), a joint software development initiative being built into several programs throughout the Navy and Air Force, and one that CANES (as the afloat and maritime operations center network provider) is leveraging.

Hyper-Convergence in Network Hardware combines storage and processing power into a single appliance for simplified management, faster deployment, and could even lower acquisition costs ( Helixstorm.com)

ACS allows applications to use a common mix of services at the platform level, reducing cost and time of development but also forcing all applications to “speak the same language.” All that is needed to make on-demand, tactical application delivery a reality is a framework for plug-ins that takes advantage of big data we already have aboard ships and available at both the operational and tactical levels of war.

Previous articles in the United States Naval Institute’s magazine Proceedings have argued for thin-client solutions aboard warships,2 leveraging the CANES network program to ultimately achieve network efficiency that can remove “fat clients” (standard computer desktops) from the architecture to be replaced by thin or zero-clients (user workstation nodes with virtualized desktops and no onboard storage or input devices beyond keyboard and mouse). Removing clients from the equation eases the burden on shipboard technicians, consolidates the information security posture, and overall presents a more efficient network management picture through smart automation that makes better use of available manpower. HCI is the architecture solution that will eventually enable a full-scale, afloat, thin-client solution.

Hyperconverged.org is a website dedicated to delivering the message of advantages that HCI can bring,3 and lists ten compelling advantages that HCI brings to any IT infrastructure, to include:

  • Focus on software-defined data centers to allow faster software modernization and more agile vulnerability patching
  • Use of commercial off the shelf (COTS) commodity hardware that provides failure avoidance without the additional costs
  • Centralized systems and management
  • Enhanced agility in network management, automation, virtualization of operating systems, and shared resources across a common resource manager (such as hypervisor)
  • Improved scalability and efficiency
  • Potentially lower costs (caveat: in the commercial sector this may be truer than in the government sector, but smart contract competitions and vendor choices can drive down costs for the government as well)
  • Consolidated data protection through improved backup and recovery options, more efficient resource utilization, and faster network management tools

The advantages of HCI are numerous, and represent the true next step in IT architecture that will enable future software capabilities. How can we, as warfighters, take advantage of this emerging technology? It cannot be overstated that our current processes for procuring and delivering software-based services and capabilities must be revamped to keep pace with industry and take advantage of the speed and agility that HCI brings.

Faster, More Efficient Application Development is the Next Step

In our current hardware development methodology, programs of record within the Department of Defense (DoD) have little difficulty determining a clear modernization path that fits within the cost, schedule, and performance constraints outlined by the DoD acquisition framework. However, software development is an entirely different story, and is no longer agile enough to suit our needs. If we can iterate hardware infrastructure at near the speed of industry, then software and application development becomes the pacing function that we must address before we can realize the opening scenario of this essay.

The key term when discussing the speed of system development is agility, defined by the Massachusetts Institute of Technology (MIT) as “the speed of operations within an organization and speed in responding to customers…or reduced cycle times.”4 The federal government, DoD in particular, has been struggling with acquisition reform for some time, and with the signing of the National Defense Authorization Act in fiscal year 2010, Congress placed renewed emphasis on the need to transform the acquisition process for information technology. Several programmatic changes to acquisition helped (such as the approval of the “IT Box” programmatic framework in the joint requirements process), but the agility of software development and modernization remains challenged. Ensuring proper testing and evaluation (T&E) methodology, bureaucratic approval processes to ensure affordability, joint interoperability testing, and lengthy proof-in testing are just some of the processes facing software applications prior to gaining approval for full-rate production and fielding to the warfighter.

Matthew Kennedy and Lieutenant Colonel Dan Ward (U.S. Air Force), in a 2012 article for Defense Acquisition University, argued for agility in system development by discussing flaws in the current “agile software development” model.5 Developed in the early 2000s, this model is not as agile as the name would imply, and still defines requirements to be developed in advance, which doesn’t leave room for innovation or rapid, iterative changes to keep pace with the speed of industry. Exciting initiatives are being fielded in the commercial sector, such as cloud-based development and learning models, and mobility technology that many of the services would use to great effect. Innovative prototyping of disruptive technology at the service or component level of DoD, such as the now-disbanded Chief of Naval Operation’s Rapid Innovation Cell (CRIC), proved that there are operational advantages to emerging tech such as wearable mobile devices, if only we could “turn a tighter circle” within our acquisition framework and work with agility to field newer and better versions to the force.

Thankfully, we don’t have to reinvent the wheel when implementing a more agile software development framework; we must take lessons from industry and apply them to the unique needs of each of the DoD components. This may be easier said than done, but Kennedy and Ward, and indeed likely many other acquisition professionals and scholars, would agree that it is entirely possible if leadership demanded it, and the policies, procedures, and resourcing followed suit to support it. Kennedy and Ward offered a common set of software and business aspect practices to support agile practices that would allow a predictable, faster software refresh cycle (not just patches, but cumulative updates) to ensure software remains agile and relevant to the warfighter. Using small teams for incremental development, lean initiatives to shorten timelines, and continuous user involvement with co-located teams are just some of the practices offered.6

Improving our software development and modernization framework to be even more agile than it is now is necessary considering the recent industry shift to software-as-a-service and cloud-based business models. No longer will software versions be deliberate releases, but rather iterative updates such as Microsoft’s “current branch for business” (CBB) model. With this model, Microsoft envisions that Windows 10 could be the last “version” of Windows to be released, which will then be built upon in future “service pack-like” updates every 12-18 months. Organizations that do not update their operating systems to the latest CBB will be left behind with unsupported versions. Not only does such a change demand a rapid speed-to-force update solution for DoD, but it represents a disruptive process change that will ultimately allow us to reach the opening scenario’s on-demand tactical application process, leveraging big data in a way that units at the tactical edge have never done before – and in a way that may never have been imagined by the system’s original developers.

Hyper-convergence infrastructure, together with agility-based application development and modernization, represents a near-term possibility that will enable true innovation at the tactical level of war and put the power of information superiority into the hands of the warfighter. While re-developing the acquisition framework to achieve this may be difficult, it is entirely possible and, many would say, necessary if DoD is to keep pace with emerging threats, take advantage of emerging technology and innovation, and ultimately retain its status as the best equipped and trained force the world has ever known.

Artificial Intelligence: The Next AEGIS Combat System

Now let’s imagine another scenario. USS LYNDON B. JOHNSON (DDG 1002), last of the Zumwalt-class destroyer line and used primarily to test emergent technology prototypes in real-world scenarios, slips silently through the South China Sea in the dead of night. She is the first ship in the U.S. Navy to possess Nelson, a recursively-improving artificial intelligence (RIAI). Utilizing an HCI supercomputer core, Nelson acts as an integrator for the various shipboard combat systems in a similar concept to today’s AEGIS Combat System, except much faster and with machine-speed environmental adaption.

American relations with China have broken down, resulting in a shooting war in the South China Sea that threatens to spill into the Pacific proper, and eventually reach Hawaii. In an effort to change the dynamic, DDG-1002 forward deploys in stealth to collect intelligence on enemy force disposition and, if the opportunity presents itself, offer a first-strike capability to the U.S. Pacific Command. JOHNSON is spotted by a surface action group of three Chinese destroyers, who take immediate action by firing a salvo of anti-ship cruise missiles followed by surface gunnery fire once in range.

At the voice command of the Tactical Action Officer, Nelson goes to work, taking control of the ship’s self-defense system and prioritizing targets in a similar fashion to Aegis, only much faster, while constantly providing voice feedback on system readiness, target status, and battle damage assessments through the internal battle circuit, essentially acting as a member of the CIC team. Nelson’s adaptability as an AI allows it to evolve its tactical recommendations based on the environment and the sensory input from the ship’s 3D and 2D radars, intelligence feeds, and even the voice reports over the battle circuit. Compiling the tactical picture on a large display in CIC, Nelson simultaneously responds to threats against the ship while providing a fused battle management display to the Captain and Tactical Action Officer. The RIAI does much to lift the fog of war, and automates enough of the ship’s defensive and information-gathering functions to allow the humans to focus on tactically employing the ship to stop the threat rather than reacting to it.

While hyper-convergence, coupled with agile and rapidly-developed software innovation, is the emerging technology, recursively-improving artificial intelligence is the ultimate disruptive technology in the near to medium-term and represents the giant leap forward that many research and development efforts are striving towards. AI has often been relegated to the work of science fiction, and while many futurists see it as the inevitable “singularity” to happen as soon as the mid-21st century, it has not quite gained acceptance in the mainstream technical community. What must be focused on from a warfighter’s perspective is the near-term (within the next 30-50 years) prospects of advances in quantum computing, neural networks, robotics, nanotechnology, and hyper-convergence. These advances could put us on a path towards artificial intelligence within the lifetime of generations currently serving or about to serve in the armed forces.

The debate over whether recursively self-improving artificial intelligence is possible continues,5 with some theorists stating that such an AI cannot be achieved because intelligence could be “upper bounded” in a way that transcends processor speed, available memory, and sensor resolution improvements. Others suggest that intelligence “is the ability to find patterns in data”7 and that, regardless of the more fringe theories surrounding AI, transhumanism, and the ontological discussions of the singularity, “a sub-human level system capable of self-improvement can’t be excluded.”8  It is the sub-human AI, capable of adapting to changing data patterns, that makes a combat system AI an exciting near-future prospect. 

Conclusion

This article presented two hypothetical scenarios. In the near-term, a Navy watchstander takes advantage of a hyper-converged infrastructure network environment onboard a U.S. Navy warship to rapidly develop a tactical application to take advantage of disparate databases and cloud data resources, ultimately producing a battle management aid for the ship’s next mission. This scenario took advantage of two emerging technological concepts: hyper-convergence in hardware infrastructure, a reality some major defense acquisition programs such as the Navy’s CANES has already resourced and on-track to field in the coming years, and agile software development in defense acquisition, which is a conceptual framework that must be developed to ensure more rapid and innovative software capabilities are delivered to the force.

The funding for these technological advances must remain stable to deliver HCI to our operating forces as a hardware baseline for future development, and policy makers must continue to find efficiencies in IT acquisition that lead to agile software development to really take advantage of the efficiencies HCI brings. Additionally, DoD IT leaders must think critically and dynamically about how future software updates will be tested and fielded rapidly; our current lengthy testing and evaluation cycle is no longer compatible with either the speed of industry’s vulnerability patching, a fluid content upgrade schedule, or the pace of adversarial threats.

The second scenario describes a near-future incorporation of recursively-improving artificial intelligence within a combat system, which builds upon hyper converged hardware and recursively improving software to deliver a warfighting platform that can defend itself more rapidly and learn from its tactical situation. The simple fact is that technology is changing at a pace no one dared dream as early as 20 years ago, and if we don’t build it, our adversaries will. A recent (2016) article in Reuters, and reported in other media outlets, showcases the People Republic of China’s (PRC) desire to build AI-integrated weapons,9 citing Wang Changqing of China Aerospace and Industry Corp with saying “our future cruise missiles will have a very high level of artificial intelligence and automation.” DoD must adapt its processes to keep pace and remain the world’s leader in incorporating emerging and disruptive technology into its warfighting systems.

Travis Howard is an active duty U.S. Naval Officer assigned to the staff of the Chief of Naval Operations in Washington D.C. He holds advanced degrees and certifications in cybersecurity policy and business administration, and has over 16 years of enlisted and commissioned experience in surface warfare and Navy information systems. The views expressed here are solely those of the author and do not necessarily reflect those of the Department of the Navy, Department of Defense, or the United States Government.

References

1. Scott Morris. “Putting The ‘Hyper’ Into Convergence.” NetworkWorld Asia 12.2 (2015): 44. 28 Jan 2017.

2. Travis Howard, LT, USN. “’The Next Generation’ of Afloat Networking.” Proceedings Magazine, Mar 2015, Vol. 141/3/1,345

3. Hyperconverged.org. “Ten Things Hyperconverged Can Do For You: Leveraging the Benefits of Hyperconverged Infrastructure.” Retrieved Feb 2 2017, http://www.hyperconverged.org/10-things-hyperconvergence-can-do/

4. Matthew Kennedy & Lt Col Dan Ward. “Inserting Agility In System Development.” Defense Acquisition Research Journal: A Publication Of The Defense Acquisition University 19.3 (2012): 249-264. 4 Feb 2017.

5. Ibid

6. Ibid

7. Roman Yampolskiy. “From Seed AI to Technological Singularity via Recursively Self-Improving Software.” Cornell University Library. arXiv:1502.06512 [cs.AI]. 23 Feb 2015.

8. Ibid

9. Ben Blanchard. “China eyes artificial intelligence for new cruise missiles.” Reuters, World News. 19 Aug 2016, http://www.reuters.com/article/us-china-defence-missiles-idUSKCN10U0EM

Featured Image: Electronic Warfare Specialist 2nd Class Sarah Lanoo from South Bend, Ind., operates a Naval Tactical Data System (NTDS) console in the Combat Direction Center (CDC) aboard the USS Abraham Lincoln as it conducts combat operations in support of Operation Southern Watch. (U.S. Navy photo by Photographer’s Mate 3rd Class Patricia Totemeier)

Fast Followers, Learning Machines, and the Third Offset Strategy

The following article originally featured in National Defense University’s Joint Force Quarterly and is republished with permission. Read it in its original form here.

By Brent Sadler

It is change, continuing change, inevitable change, that is the dominant factor in society today. No sensible decision can be made any longer without taking into account not only the world as it is, but the world as it will be. . . . This, in turn, means that our statesmen, our businessmen, our everyman must take on a science fictional way of thinking.

—Isaac Asimov

Today, the Department of Defense (DOD) is coming to terms with trends forcing a rethinking of how it fights wars. One trend is proliferation of and parity by competitors in precision munitions. Most notable are China’s antiship ballistic missiles and the proliferation of cruise missiles, such as those the Islamic State of Iraq and the Levant claimed to use to attack an Egyptian ship off the Sinai in 2014. Another trend is the rapid technological advances in artificial intelligence (AI) and robotics that are enabling the creation of learning machines.

Failure to adapt and lead in this new reality risks U.S. ability to effectively respond and control the future battlefield. However, budget realities make it unlikely that today’s DOD could spend its way ahead of these challenges or field new systems fast enough. Consider that F-35 fighter development is 7 years behind schedule and, at $1.3 trillion, is $163 billion over budget.1 On the other hand, China produced and test-flew its first fifth-generation fighter (J-20) within 2 years. These pressures create urgency to find a cost-effective response through emergent and disruptive technologies that could ensure U.S. conventional deterrent advantage—in other words, the so-called Third Offset Strategy.

sadler-1
Unmanned Combat Air System X-47B demonstrator flies near aircraft carrier USS George H.W. Bush, first aircraft carrier to successfully catapult launch unmanned aircraft from its flight deck, May 14, 2013 (U.S. Navy/Erik Hildebrandt)

Narrowing Conventional Deterrence

In 1993, Andrew Marshall, Director of Net Assessment, stated, “I project a day when our adversaries will have guided munitions parity with us and it will change the game.”2 On December 14, 2015, Deputy Secretary of Defense Robert Work announced that day’s arrival when arguing for a Third Offset during comments at the Center for a New American Security.3

An offset seeks to leverage emerging and disruptive technologies in innovative ways in order to prevail in Great Power competition. A Great Power is understood to be a rational state seeking survival through regional hegemony with global offensive capabilities.4 The First Offset Strategy in the 1950s relied on tactical nuclear superiority to counter Soviet numerical conventional superiority. As the Soviets gained nuclear parity in the 1960s, a Second Offset in the 1970s centered on precision-guided munitions and stealth technologies to sustain technical overmatch, conventional deterrence, and containment for another quarter century. The Third Offset, like previous ones, seeks to deliberately change an unattractive Great Power competition, this time with China and Russia, to one more advantageous. This requires addressing the following challenges.

Fast Followers. Russia and China have been able to rapidly gain and sustain near-parity by stealing and copying others’ technologies for their own long-range precision capabilities, while largely pocketing developmental costs. Lateral thinking5 is required to confound these Fast Followers, as Apple used with Microsoft when it regained tech-sector leadership in the early 2000s.6

Hybrid Warfare. Russia’s actions in Crimea and ongoing activities in Eastern Ukraine indicate both that Russia is undeterred and that it was successful in coordinating asymmetric and unconventional tactics across multiple domains.

Narrowing Conventional Advantage. The loss of the precision-munitions advantage increases cost for U.S. intervention, thus reducing deterrence and inviting adventurism. Recent examples include Russian interventions (Georgia, Ukraine, Syria) and increasingly coercive Chinese activities in the East and South China seas, especially massive island-building in the South China Sea since 2014.

Persistent Global Risks from Violent Extremists. While not an existential threat, left unchecked, violent extremism is inimical to U.S. interests as it corrodes inclusive, open economies and societies. As a long-term ideological competition, a global presence able to monitor, attack, and attrite violent extremist networks is required.

In response to these challenges, two 2015 studies are informing DOD leadership on the need for a new offset: the Defense Science Board summer study on autonomy and the Long-Range Research and Development Planning Program. From these studies, Deputy Secretary Work has articulated five building blocks of a new offset:

  • autonomous deep-learning systems
  • human-machine collaboration
  • assisted human operations
  • advanced human-machine combat teaming
  • network-enabled semi-autonomous weapons.

Central to all are learning machines that, when teamed with a person, provide a potential prompt jump in capability. Technological advantages alone, however, could prove chimerical as Russia and China are also investing in autonomous weapons, making any U.S. advantage gained a temporary one. In fact, Russia’s Chief of the General Staff, General Valery Gerasimov, predicts a future battlefield populated with learning machines.7

A Third Offset Strategy could achieve a qualitative edge and ensure conventional deterrence relative to Fast Followers in four ways: One, it could provide U.S. leaders more options along the escalation ladder. Two, a Third Offset could flip the cost advantage to defenders in a ballistic and cruise missile exchange; in East Asia this would make continuation of China’s decades-long investment in these weapons cost prohibitive. Three, it could have a multiplicative effect on presence, sensing, and combat effectiveness of each manned platform. Four, such a strategy could nullify the advantages afforded by geographic proximity and being the first to attack.

Robot Renaissance

In 1997, IBM’s Deep Blue beat chess champion Garry Kasparov, marking an inflection point in the development of learning machines. Since then, development of learning machines has accelerated, as illustrated by Giraffe, which taught itself how to play chess at a master’s level in 72 hours.8 Driving this rapid development have been accelerating computer-processing speeds and miniaturization. In 2011, at the size of 10 refrigerators, the super-computer Watson beat two champions of the game show Jeopardy. Within 3 years, Watson was shrunk to the size of three stacked pizza boxes—a 90-percent reduction in size along with a 2,700-percent improvement in processing speed.9 Within a decade, computers likely will match the massive parallel processing capacity of the human brain, and these machines will increasingly augment and expand human memory and thinking much like cloud computing for computers today, leading to accelerating returns in anything that can be digitized.10 This teaming of man and machine will set the stage for a new renaissance of human consciousness as augmented by learning machines—a Robot Renaissance.11 But man is not destined for extinction and will remain part of the equation; as “freestyle chess” demonstrates, man paired with computers utilizing superior processes can prevail over any competitor.12

Augmenting human consciousness with learning machines will usher in an explosion in creativity, engineering innovation, and societal change. This will in turn greatly impact the way we conceptualize and conduct warfare, just as the Renaissance spurred mathematical solutions to ballistic trajectories, metallurgy, and engineering for mobile cannons. Such a future is already being embraced. For example, Bank of America and Merrill Lynch recently concluded that robotics and AI—learning machines—will define the next industrial revolution and that the adoption of this technology is a foregone conclusion. Their report concludes that by 2025 learning machines will be performing 45 percent of all manufacturing versus 10 percent today.13 It would be a future of profound change and peril and was the focus of the 2016 Davos Summit whose founder, Klaus Schwab, calls the period the Fourth Industrial Revolution.14 As the Industrial Revolution demonstrated, the advantage will be to the early adopter, leaving the United States little choice but to pursue an offset strategy that leverages learning machines.

Garry Kasparov, chess grandmaster and former world champion, speaking at Turing centennial conference at Manchester, June 25, 2012 (Courtesy David Monniaux)
Garry Kasparov, chess grandmaster and former world champion, speaking at Turing centennial conference at Manchester, June 25, 2012 (Courtesy David Monniaux)

Advantages of Man-Machine Teaming

Learning machines teamed with manned platforms enabled by concepts of operations will be a key element of the Third Offset Strategy. Advantages of this approach include:

  • Speed Faster than Adversaries. Staying inside an adversary’s OODA (observe, orient, decide, act) loop necessitates learning machines that are able to engage targets at increasing speed, which diminishes direct human control.15
  • Greater Combat Effect per Person. As extensions of manned platforms, teaming increases the combat effect per person through swarm tactics as well as big data management. Moreover, augmenting the manned force with autonomous systems could mitigate deployment costs, which have increased 31 percent since 2000 and are likely unsustainable under current constructs.16
  • Less Human Risk. Reduced risk to manned platforms provides more options along the escalation ladder to commanders and allows a more forward and pervasive presence. Moreover, autonomous systems deployed in large numbers will have the long-term effect of mitigating relative troop strengths.
  • High-Precision, Emotionless Warfare. Learning machines provide an opportunity for battlefield civility by lessening death and destruction with improved precision and accuracy. Moreover, being non-ethical and unemotional, they are not susceptible to revenge killings and atrocities.
  • Hard to Target. Learning machines enable disaggregated combat networks to be both more difficult to target and more fluid in attack. Some capabilities (for example, cyber) could reside during all phases of a conflict well within a competitor’s physical borders, collecting intelligence while also ready to act like a “zero-day bomb.”17
  • Faster Acquisition and Improvement. Incorporation of learning machines in design, production, and instantaneous sharing of learning across machines would have a multiplicative effect. However, achieving such benefits requires overcoming proprietary constraints such as those encountered with the Scan Eagle unmanned vehicle if better intra-DOD innovation and interoperability are to be achieved.

Realizing these potential benefits requires institutional change in acquisition and a dedicated cadre of roboticists. However, pursuing a Third Offset Strategy is not without risks.

Third Offset Risks

Fielding learning machines presents several risks, and several technical and institutional barriers. The risks include the following challenges.

Cyber Intrusion and Programming Brittleness. DOD relies on commercial industry to develop and provide it with critical capabilities. This situation provides some cost savings, while presenting an Achilles’ heel for cyber exploitation during fabrication and in the field. One avenue for attack is through the complexity of programming, which leads to programming brittleness, or seams and back rooms causing system vulnerabilities.18 Another is through communications vital to proper human control. Additionally, swarm tactics involving teams of machines networking independently of human control on a near-continuous basis could further expose them to attack and manipulation.19 Mitigating such threats and staying inside an adversary’s accelerating OODA loop would drive increasing autonomy and decreasing reliance on communications.20

Proliferation and Intellectual Insecurity. The risk of proliferation and Fast Followers to close technological advantage makes protecting the most sensitive elements of learning machines an imperative. Doing so requires addressing industrial espionage and cyber vulnerabilities in the commercial defense industry, which will require concerted congressional and DOD action.

Unlawful Use. As competitors develop learning machines, they may be less constrained and ethical in their employment. Nonetheless, the international Law of Armed Conflict applies, and does not preclude employing learning machines on the battlefield in accordance with jus in bello—the legal conduct of war. Legally, learning machines would have to pass the same tests as any other weapons; their use must be necessary, discriminate, and proportional against a military objective.21 A key test for learning machines is discrimination; that is, the ability to discern noncombatants from targeted combatants while limiting collateral damage.22

Unethical War. When fielded in significant numbers, learning machines could challenge traditions of jus ad bellum—criteria regarding decisions to engage in war. That is, by significantly reducing the cost in human life to wage war, the decision to wage it becomes less restrictive. Such a future is debatable, but as General Paul J. Selva (Vice Chairman of the Joint Chiefs of Staff) suggested at the Brookings Institution on January 21, 2016, there should be an international debate on the role of autonomous weapons systems and jus ad bellum implications.

A New Fog of War. Lastly, the advent of learning machines will give rise to a new fog of war emerging from uncertainty in a learning machine’s AI programming. It is a little unsettling that a branch of AI popular in the late 1980s and early 1990s was called “fuzzy logic,” due to an ability to alter its programming that represents a potential loss of control and weakening of liability.

Seven teams from DARPA’s Virtual Robotics Challenge continue to develop and refine ATLAS robot, developed by Boston Dynamics (DARPA)
Seven teams from DARPA’s Virtual Robotics Challenge continue to develop and refine ATLAS robot, developed by Boston Dynamics (DARPA)

Third Offset Barriers

Overcoming the barriers to a Third Offset Strategy requires advancing key foundational technologies, adjustments in acquisition, and training for man–learning machine interaction.

Man-Machine Interaction. Ensuring proper human interface with and the proper setting of parameters for a given mission employing learning machines requires a professional cadre of roboticists. As with human communication, failure to appropriately command and control learning machines could be disastrous. This potential was illustrated in the movie 2001: A Space Odyssesy when the HAL 9000 computer resolved a dilemma of conflicting orders by killing its human crew. Ensuring an adequately trained cadre is in place as new systems come online requires building the institutional bedrock on which these specialists are trained. Because it will take several years to build such a cadre, it is perhaps the most pressing Third Offset investment.

Trinity of Robotic Capability. Gaining a sustainable and significant conventional advantage through learning machines requires advances in three key areas. This trinity includes high-density energy sources, sensors, and massive parallel processing capacity. Several promising systems have failed because of weakness in one or all of these core capabilities. Fire Scout, a Navy autonomous helicopter, failed largely due to limited endurance. The Army and Marine Corps Big Dog was terminated because its noisy gasoline engine gave troop positions away. Sensor limitations undid Boomerang, a counter-sniper robot with limited ability to discern hostiles in complex urban settings.23

Agile Acquisition Enterprise. As technological challenges are overcome, any advantage earned would be transitory unless acquisition processes adapt in several key ways. One way is to implement continuous testing and evaluation to monitor the evolving programming of learning machines and ensure the rapid dissemination of learning across the machine fleet. A second way is to broaden the number of promising new capabilities tested while more quickly determining which ones move to prototype. A third way is to more rapidly move prototypes into the field. Such changes would be essential to stay ahead of Fast Followers.

While acquisition reforms are being debated in Congress, fielding emerging and disruptive technologies would need to progress regardless.24 However, doing both provides a game-changing technological leap at a pace that can break today’s closely run technological race—a prompt jump in capability.

Chasing a Capability Prompt Jump

Actualizing a nascent Third Offset Strategy in a large organization such as DOD requires unity of effort. One approach would be to establish a central office empowered to ensure coherency in guidance and oversight of resource decisions so that investments remain complementary. Such an office would build on the legacy of the Air Sea Battle Office, Joint Staff’s Joint Concept for Access and Maneuver in the Global Commons, and Strategic Capabilities Office (SCO). Therefore, a central office would need to be resourced and given authority to direct acquisition related to the Third Offset, develop doctrine, standardize training, and conduct exercises to refine concepts of operation. First steps could include:

  • Limit or curtail proprietary use in Third Offset systems while standardizing protocols and systems for maximum cross-Service interoperability.
  • Leverage legacy systems initially by filling existing capacity gaps. SCO work has been notable in pursuing rapid development and integration of advanced low-cost capabilities into legacy systems. This approach results in extension of legacy systems lethality while complicating competitors’ countermeasures. Examples include shooting hypersonic rounds from legacy Army artillery and the use of digital cameras to improve accuracy of small-diameter bombs.25 The Navy could do this by leveraging existing fleet test and evaluation efforts, such as those by Seventh Fleet, and expanding collaboration with SCO. An early effort could be maturing Unmanned Carrier-Launched Airborne Surveillance and Strike, which is currently being developed for aerial refueling, into the full spectrum of operations.26
  • Standardize training and concepts of operations for learning machines and their teaming with manned platforms. Early efforts should include formally establishing a new subspecialty of roboticist and joint exercises dedicated to developing operational concepts of man-machine teaming. Promising work is being done at the Naval Postgraduate School, which in the summer of 2015 demonstrated the ability to swarm up to 50 unmanned systems at its Advanced Robotic Systems Engineering Laboratory and should inform future efforts.
  • Direct expanded investment in the trinity of capabilities—high-density energy sources, sensors, and next-generation processors. The DOD Defense Innovation Initiative is building mechanisms to identify those in industry advancing key technologies, and will need to be sustained as private industry is more deeply engaged.

DOD is already moving ahead on a Third Offset Strategy, and it is not breaking the bank. The budget proposal for fiscal year 2017 seeks a significant but manageable $18 billion toward the Third Offset, with $3 billion devoted to man-machine teaming, over the next 5 years; the $3.6 billion committed in 2017 equates to less than 1 percent of the annual $582.7 billion defense budget.27 As a first step, this funds initial analytical efforts in wargaming and modeling and begins modest investments in promising new technologies.

Conclusion fireshot-capture-1-fast-followers-learning-machines-and_-http___ndupress-ndu-edu_jfq_joint-f

Because continued U.S. advantage in conventional deterrence is at stake, resources and senior leader involvement must grow to ensure the success of a Third Offset Strategy. It will be critical to develop operational learning machines, associated concepts of operations for their teaming with people, adjustments in the industrial base to allow for more secure and rapid procurement of advanced autonomous systems, and lastly, investment in the trinity of advanced base capabilities—sensors, processors, and energy.

For the Navy and Marine Corps, the foundation for such an endeavor resides in the future design section of A Cooperative Strategy for 21st Century Seapower supported by the four lines of effort in the current Chief of Naval Operations’ Design for Maintaining Maritime Superiority. A promising development has been the establishment of OpNav N99, the unmanned warfare systems directorate recently established by the Office of the Chief of Naval Operations on the Navy staff and the naming of a Deputy Assistant Secretary of Navy for Unmanned Systems, both dedicated to developing capabilities key to a Third Offset Strategy. This should be broadened to include similar efforts in all the Services.

However, pursuit of game-changing technologies is only sustainable by breaking out of the increasingly exponential pace of technological competition with Fast Followers. A Third Offset Strategy could do this and could provide the first to adopt outsized advantages. Realistically, to achieve this requires integrating increasing layers of autonomy into legacy force structure as budgets align to new requirements and personnel adapt to increasing degrees of learning machine teaming. The additive effect of increasing autonomy could fundamentally change warfare and provide significant advantage to whoever successfully teams learning machines with manned systems. This is not a race we are necessarily predestined to win, but it is a race that has already begun with strategic implications for the United States. JFQ

Captain Brent D. Sadler, USN, is a Special Assistant to the Navy Asia-Pacific Advisory Group.

Notes

1 CBS News, 60 Minutes, “The F-35,” February 16, 2014.

2 Deputy Secretary of Defense Bob Work, speech delivered to a Center for a New American Security Defense Forum, Washington, DC, December 14, 2015, available at <www.defense.gov/News/Speeches/Speech-View/Article/634214/cnas-defense-forum>.

3 Ibid.

4 John J. Mearsheimer, The Tragedy of Great Power Politics (New York: Norton, 2014).

5 Lateral thinking, a term coined by Edward de Bono in 1967, means indirect and creative approaches using reasoning not immediately obvious and involving ideas not obtainable by traditional step-by-step logic.

6 Shane Snow, Smartcuts: How Hackers, Innovators, and Icons Accelerate Success (New York: HarperCollins, 2014), 6, 116.

7 Russia’s Chief of the General Staff, General Valery Gerasimov, stated in a February 27, 2013, article: “Another factor influencing the essence of modern means of armed conflict is the use of modern automated complexes of military equipment and research in the area of artificial intelligence. While today we have flying drones, tomorrow’s battlefields will be filled with walking, crawling, jumping, and flying robots. In the near future it is possible a fully robotized unit will be created, capable of independently conducting military operations.” See Mark Galeotti, “The ‘Gerasimov Doctrine’ and Russian Non-Linear War,” In Moscow’s Shadows blog, available at <https://inmoscowsshadows.wordpress.com/2014/07/06/the-gerasimov-doctrine-and-russian-non-linear-war/>. For Gerasimov’s original article (in Russian), see Military-Industrial Kurier 8, no. 476 (February 27–March 5, 2013), available at <http://vpk-news.ru/sites/default/files/pdf/VPK_08_476.pdf>.

8 “Deep Learning Machine Teaches Itself Chess in 72 Hours, Plays at International Master Level,” MIT Technology Review, September 14, 2015, available at <www.technologyreview.com/view/541276/deep-learning-machine-teaches-itself-chess-in-72-hours-plays-at-international-master/>.

9 “IBM Watson Group Unveils Cloud-Delivered Watson Services to Transform Industrial R&D, Visualize Big Data Insights and Fuel Analytics Exploration,” IBM News, January 9, 2014, available at <http://ibm.mediaroom.com/index.php?s=43&item=1887>.

10 Ray Kurzweil, How to Create a Mind: The Secret of Human Thought Revealed (New York: Penguin Books, 2012), 4, 8, 125, 255, 280–281.

11 A learning machine, according to Arthur Samuel’s 1959 definition of machine learning, is the ability of computers to learn without being explicitly programmed.

12 Erik Brynjolfsson and Andrew McAfee, The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies (New York: W.W. Norton, 2014), 188.

13 Michael Hartnett et al., Creative Disruption (New York: Bank of America and Merrill Lynch, April 2015), available at <www.bofaml.com/content/dam/boamlimages/documents/articles/D3_006/11511357.pdf>.

14 Klaus Schwab, The Fourth Industrial Revolution (Geneva: World Economic Forum, 2016).

15 Michael N. Schmitt, “War, Technology and the Law of Armed Conflict,” International Law Studies, vol. 82 (2006), 137–182.

16 Growth in DOD’s Budget from 2000 to 2014 (Washington, DC: Congressional Budget Office, November 2014).

17 Richard Clarke, Cyber War: The Next Threat to National Security and What to Do About It (New York: HarperCollins, 2010), 163–166.

18 Ibid., 81–83.

19 Katherine D. Mullens et al., An Automated UAV Mission System (San Diego, CA: SPAWAR Systems Center, September 2003), available at <www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA422026>.

20 Armin Krishnan, Killer Robots: Legality and Ethicality of Autonomous Weapons (Farnham, United Kingdom: Ashgate, 2009).

21 James E. Baker, In the Common Defense: National Security Law for Perilous Times (Cambridge: Cambridge University Press, 2007), 215–216.

22 “Protocol Additional to the Geneva Conventions of 12 August 1949, and relating to the Protection of Victims of International Armed Conflicts (Protocol I), 8 June 1977,” Article 48, 57.4 and 51.4; Yoram Dinstein, The Conduct of Hostilities under the Law of International Armed Conflict, 2nd ed. (New York: Cambridge University Press, 2010), 62–63.

23 Schmitt.

24 House Armed Services Committee, Acquisition Reform: Experimentation and Agility, Hon. Sean J. Stackley, Assistant Secretary of the Navy for Research, Development, and Acquisition, 114th Cong., January 7, 2016, available at <http://docs.house.gov/meetings/AS/AS00/20160107/104314/HHRG-114-AS00-Wstate-StackleyS-20160107.pdf>.

25 Sam LaGrone, “Little Known Pentagon Office Key to U.S. Military Competition with China, Russia,” U.S. Naval Institute News, February 2, 2016.

26 Christopher P. Cavas, “U.S. Navy’s Unmanned Jet Could Be a Tanker,” Defense News, February 1, 2016, available at <www.defensenews.com/story/defense/naval/naval-aviation/2016/01/31/uclass-ucasd-navy-carrier-unmanned-jet-x47-northrop-boeing/79624226/>.

27 Aaron Mehta, “Defense Department Budget: $18B Over FYDP for Third Offset,” Defense News, February 9, 2016, available at <www.defensenews.com/story/defense/policy-budget/budget/2016/02/09/third-offset-fy17-budget-pentagon-budget/80072048/>.

Featured Image: Boston Dynamics’ Atlas  robot. (Boston Dynamics)

Autonomous War

The following is an entry for the CIMSEC & Atlantic Council Fiction Contest on Autonomy and Future War. Winners will be announced 7 November.

By Matthew Hipple

               As the knife slides out, Foxtrot 2-1-1 doesn’t notice the blood. The enemy officer’s hand slumps away from the leg holster. Firearms are powerful, and a powerful comfort… but they’re useless when you’re sitting down and a blade is closer than the length of the barrel. Screens flash as untended command prompts stack up from systems patrolling several surrounding blocks. 2-1-1 feels an impulse transmitted from outside. He plants the charge as he leaps out of the torn metal hatch. Prone on the pavement outside, 2-1-1 is sprayed with rocks as an unmanned bipedal weapon vehicle (UBWV) smashes a short-cut through a corner storefront.

               With a “thump”, smoke pours out of the armored vehicle. The UBWV’s Gatling cannons whirr softly – one aimed at 2-1-1, the other aimed at his fireteam in the second-story window above. Rounds remain disengaged as it awaits target approval from the smoking corpse. Fireteam Foxtrot-2-1 has 5 seconds until the UBWV shifts its engagement prompt to another station, or engages automatically if RoE has changed. 2-1-1 leaps up, knife still in hand. He pulls the knife across a protective joint seam as his second hand comes up with his sidearm. Bypassing layers of armor plating and protective industrial coating, a full magazine of 9mm is enough to fry the UBWV’s ability to move, detect, and engage.

               Unmanned systems are powerful, and a powerful comfort.

               But like the bloody mess slumped over his darkened consoles, some commanders couldn’t learn to let go. Their confidence increased apace with technology’s subtler cognitive abilities, but they could never resist the urge to reach back. Even when the blade was at their throat, they couldn’t resist the urge to reach out for the comfort and cleanliness of human control.

               2-1-1 holds up his hand, the fireteam stacking up behind him before the next street. Like finding that word you haven’t been able to put your finger on, each member of 2-1 suddenly receives a series of mental images, intentions, and concepts outlining their next direction and target from Foxtrot Actual. They disappear through a doorway as a humming echoes from over one of the rooftops.

               Fireteam 2-1 hides from aerial surveillance, picking its way through jagged passageways and unnatural, twisting stairs. It is a dusty labyrinth created when alleyways and building interiors are re-arranged by explosives. Burrows are dug throughout the ruin, gaunt figures hiding from a war between man and machine. Each piece of data is collected, assessed, and stored temporarily away in the subconscious for later use or transmission.

               Claws scrape across the concrete. Rubble and blood explode from the rear of the team. Foxtrot 2-1-4 is in a heap, a metallic, dog-sized quadruped pinning him down. 2-1-4 screams as the sharp claws dig in and an articulating maw of blades remove the rasping throat. Against every instinct, everyone drops their weapons as they fall to the ground. Detecting no armed, moving objects of roughly human temperature – the “thing” stands by for one of the limited foot patrols to check the targets.

               One of the warm shapes move, drawing a pistol from a hidden chest holster. As the “thing” leaps down upon him, the two shapes on either side rise up, pull the “thing” up and onto its back from either side – smashing it down onto a piece of rebar sticking through a cratered wall.

               The “thing” represented the reality commanders didn’t want to face – they couldn’t control everything from over the horizon. The abandoned command vehicle, so close to the battlefield, was a bastion against electronic warfare and the limitations of physics. The “thing”, however, was invested with the autonomy eventually demanded by the enemy’s ingenuity.
               Unfortunately, a certain fear, combined with an institutional lack of creativity, always left autonomous systems with exploitable weaknesses. Commanders combined the worst of their self-confidence with their hesitancy to commit. Whole suites of artificially limited systems were deployed into the field with the assurance of a cure-all.

               With a foot patrol inbound, and the fireteam within the security perimeter, Foxtrot-Actual sends its final collection of images and directives. 2-1-1 turns to 2-1-2, saluting in one of the few remaining traditions. The sentiment represents a larger series of command processes and adaptations that have transferred the designation of 2-1-1, fireteam leader, to 2-1-2. Former 2-1-1 continues through the rubble, now designated by Foxtrot Actual as Foxtrot 2-X. 2-1-1 leads the remaining fireteam members – and the incoming foot patrols – away from the area.

               The warfighter on the ground had always been a dangerous and adaptable machine.  Even the greatest autonomous system would, in some aspects, be a cheap attempt to imitate millions of years of evolution. In the air, at sea – the speed and range of combat, the type of platforms involved, had changed to the point that the human was almost secondary to the equation. On the ground – from the easily fueled musculature to advanced cognitive functions – a human may always be best. An augmented human – cognition enhanced chemically with electrically driven muscles pulling joints wrought with new alloys and plastics – but still a human.

               But where was automation’s competitive advantage? Computers had become progressively better at understanding vast logistical and operational problems: streamlining global transport networks, beating humans at “Go”, automating a large portion of global market trading. Smaller issues of context were mastered as well, from the ability to recognize animals to human emotions. Computers could read data from minds – and had just started to show glimmers that data could be contextualized.

               After leadership’s repeated failures to understand or properly exploit autonomy in the field, someone aimed the question in a different direction. “How much Operational Availability do I sacrifice when everything from procurement to maintenance is derailed by egos or self-deceit? What is the human cost of the collected seconds, minutes, hours, and days of human friction as the front awaits orders? Do I need warfighters constrained by the indecision of dozens of human beings attempting to interpret their intelligence & advice before directing action?” Was an autonomous system’s competitive advantage… in the field?

               With a sentry’s severed hand pressed up against the door access panel, Foxtrot 2-X enters the enemy’s field command. Several dozen figures hunch over flickering screens in the dark – directing assets based on the verbal and written reports from units across the battlefield. Amid hushed voices, fingers patter across touch-screens in response to a constant stream of command prompts from unmanned systems.

               Of the several dozen or so figures in the room, only a handful realize what is about to happen. Unlike the isolated command vehicle, this space is large, and at least three weapons are drawn to kinetic effect on Foxtrot 2-X.  Two white phosphorous grenades roll onto the watch floor as a bleeding 2-X aims his collapsing body against the door – closing the heat and screaming watch standers inside.

               With his final breath, a mix of conscious and subconscious observations, passively collected signals intelligence, observations on base defenses and sentry procedures, and a series of final stress levels, queues, and correlated emotive reactions is transmitted to Foxtrot Actual.

               In orbit around the battlefield, Foxtrot Actual’s systems receive, analyze, and integrate this data for further operational planning and live assessments of troop stress levels. 2-X’s personnel file, last noted tactical adaptations, and final mission report are archived for analysis and dissemination. His fireteam’s method of destroying bladed quadrupeds has already been uploaded from 2-1, and was transmitted to Foxtrot’s human fighters. Finally, designation 2-X is made available for re-application.

               Through the collective cloud of its forces’ thoughts, Foxtrot Actual perceives a smattering of enemy soldiers retreating through a wasteland of stalled robotics. Foxtrot Actual directs Foxtrot units into the new vacuum. It catalyzes the decision making of its forces as they plot their movements, a machine in the subconscious ghost. Somewhere, an extra cooling fan kicks on as Foxtrot Actual determines how best to exploit these latest opportunities.

               Rather than replacing the warfighter, someone asked, “maybe it’s time to replace the commander?”

Matthew Hipple is a Surface Warfare Officer in the US Navy, and President Emeritus of CIMSEC. He used to write frequently for USNI and War on the Rocks, but spends most of his time now amusing a precocious 10 month old.*

*Due to CIMSEC affiliation this piece was not under consideration during the judging process and is published along with all other pieces submitted in response to the Fiction Contest call for articles.

Featured Image: B-7 Beagle unmanned surface vehicle from Al Makareb. (Al Makareb)