The Politics of Developing the Aegis Combat System, Pt. 1

The following republication is adapted from a chapter from The Politics of Naval Innovation, a paper sponsored by the Office of Net Assessment and conducted by the Strategic Research Department of the U.S. Naval War College’s Center for Naval Warfare Studies. Read it in its original form here.

By Thomas C. Hone, Douglas V. Smith, and Roger C. Easton, Jr.

By 1975, the extremely capable TU- 22M Backfire bomber, which could carry the AS-4 as well as more capable AS-6 and AS-9 missiles, had entered service with Soviet Naval Aviation…the impact of the rapidly evolving Soviet aviation threat to naval units was assessed during the 1960s and firmly established in the Center for Naval Analyses “Countering the Anti-Ship Missile” (or CAMS) Study. Much of the analytical work had already been done as early as 1958 by Richard Hunt of the Johns Hopkins Applied Physics Laboratory (APL) who used a series of carefully defined threat models to determine the possible future threat environment that would have to be countered by U.S. naval forces. In this case, the United States found itself responding to offensive, although expected, innovation on the part of its major adversary that had profound implications for the survivability of naval forces at sea.

The Politics Of Aegis Development

Having established the threat-based context within which the Aegis development team was required to operate, let us now turn to the relevant political circumstances which helped or hindered their attempts to adapt technology to meet emerging threats.

In January 1983, the Navy commissioned USS Ticonderoga (CG-47), the first of a new and expensive generation of missile cruisers. The heart of Ticonderoga was its Aegis weapon system, consisting of a phased array radar (SPY-1), a tactical weapon system (to monitor the radar and direct the ship’s antiaircraft missiles) and a battery of surface-to-air missiles. Aegis anti-air warfare (AAW) systems were designed to track, target and engage high numbers of incoming aircraft and cruise missiles. The purpose of the system was to protect Carrier Battle Groups from saturation missile attacks staged by Soviet aircraft and submarines.

However, CG-47 carried more than just an AAW system. Linked to computers which monitored and directed AAW missiles were anti-submarine and surface target sensors and weapons, such as the LAMPS antisubmarine helicopter and the Harpoon cruise missile. With this variety of sensors, weapons and sophisticated tactical displays, CG-47 class ships formed the core of the Navy’s Carrier Battle Group surface defense screen…The essence of the system is its ability to screen and monitor, then track and attack, large numbers of radar contacts simultaneously….

May 2, 1982 – An aerial port bow view of the Aegis guided missile cruiser USS TICONDEROGA (CG-47) underway during sea trials. (Photo via U.S. National Archives)

…The Navy’s Bureau of Ordnance had already developed several varieties of ship-launched air defense missiles, but no one had yet created the kind of radar and missile system that could deal with the threats forecasted by the Applied Physics Laboratory. Work on such a system began in the Bureau of Ordnance in 1959. Dubbed TYPHON…the new system was designed to track as many as 20 radar contacts simultaneously. But the new system’s radars were heavy, bulky, unreliable, and used enormous amounts of electrical power. As a result, the Secretary of Defense cancelled the project in 1963. The Navy was already having trouble successfully operating its deployed anti-aircraft missile and radar systems, and in September 1962 the Chief of Naval Operations (CNO) declared a moratorium on further development in order to “establish an orderly Long Term Plan which takes into account the logistic, maintenance, and training problems of the Fleet as well as the technical opportunities presented by scientific progress.”

Priority was given to a program to make existing anti-aircraft missile systems meet their design goals in operations at sea. The Surface Missile Systems (SMS) Project in the recently created Bureau of Naval Weapons (following the merger of the bureaus of Aeronautics and Ordnance) was assigned this task. After TYPHON was cancelled, the CNO ordered SMS to create a new development office, later given the title Advanced Surface Missile System Project or ASMS. The task of ASMS was to find technological solutions to the problems which had made TYPHON so unwieldy and unreliable.

The basic engineering problem was to develop a radar which did not need a mechanically-aimed antenna. The standard tactic in 1963 was to assign one fire control radar antenna (or “illuminator”) to each target, having already used a separate air search radar to identify contacts. The fire control radars were used to guide anti-aircraft missiles to targets within range. When numerous, high-speed simultaneous targets were approaching, mechanically-aimed radars were easily overwhelmed.

The solution, then being developed, was an electronically-aimed, or “phased array” radar, which could move from one target to another almost instantaneously so as to properly distribute radar beams and defensive missiles among a host of targets. As the orders to ASMS from the CNO put it, the Navy needed “more flexible and standardized fire control systems for SAM ships” built around three-dimensional radars and “multipurpose digital computers and digital data transmission.” The mission of the ASMS office was to work with the Deputy Chief of Naval Operations for Surface Warfare to prepare general and specific “operational requirements” to guide civilian contractors in their efforts to design and build the new equipment…

…In 1969, the Office of the Secretary of Defense made the second change: establishing the Defense Systems Acquisition Review Council (DSARC). DSARC was created to review major development and procurement efforts at three critical stages (project start, engineering development, and production) in their progression from exploratory development to full-scale production. The goal of this administrative innovation was to decentralize authority and responsibility for major acquisition programs to specially chosen project managers while keeping essential control over procurement in the hands of the Secretary of Defense. Both changes worked to the advantage of ASMS. The first gave the project more resources; the second gave the project the periodic opportunity to demonstrate its progress and thus ensure even more resources in the future…

…In 1970, Navy Captain Wayne Meyer, former head of engineering at the Naval Ship Weapon Systems Engineering Station (Port Hueneme, California), was transferred to the Naval Ordnance Systems Command (NAVORD). Appointed manager of the Aegis project, he almost immediately faced problems from outside his office.

The Deputy Chief of Naval Material for Development recommended against further development of RCA’s Aegis radar on the grounds that the cost would not be justified by the potential anti-air warfare benefits. Chief, NAVMAT, did not agree, however, so his Deputy for Development appealed to the OPNAV staff. That there was a need for a new generation of AAW surface escort ships was generally agreed. What was not clear was whether RCA’s solution to radar tracking and targeting problems was cost effective.

The “showdown” in OPNAV set the Deputy Chief for Development (NAVMAT) and his ally, the CNO’s Director of Research, Development, Testing, and Engineering, against the Navy’s Director of Tactical Electromagnetic Programs, the Director of Navy Program Planning, and the Deputy Chief of Naval Operations (DCNO) for Surface Warfare, whose offices sponsored the Aegis project and the offices which would procure the Aegis ships. The DCNO for Surface Warfare argued that the Aegis project office had drastically reduced the phased array radar’s weight, power requirements and cost, and that even greater reductions were likely in the near future as the radar system matured. The Director of Navy Program Planning defended the project office’s management of Aegis development and stressed the need to move the new system into the fleet.

The CNO, ADM Elmo Zumwalt, Jr., was left with the decision. His dilemma was that technical specialists in the Aegis project office (supported by their NAVORD and NAVMAT chiefs) and their warfare sponsors in OPNAV (OP-03, the DCNO for Surface Warfare) believed that Aegis was too important to abandon whereas critics noted the cost of fielding Aegis was consuming much of the Navy’s budget for engineering development. At the same time, ADM Zumwalt was committed to replacing the Navy’s World War II-era surface escorts which were still in service. To make this escort replacement program affordable, ADM Zumwalt planned to asked Congress to fund a “high-low” mix of ships, which featured low capability, less expensive escorts for convoy protection and high capability, higher speed escorts for work with carriers. The projected high cost of Aegis made ADM Zumwalt’s task of obtaining funds for large numbers of both “high” and “low” capability ships just that much more difficult.

His first inclination, therefore, was to try to reduce the cost of Aegis. In December 1971, ADM Zumwalt asked the DCNO for Surface Warfare if the Aegis system could be scaled down and procured at a lower cost. The request was passed to CAPT Meyer, who noted that his office had already considered that option in September and rejected it. The position of the Aegis project office was that the original system had to be developed. The Chief, NAVMAT, also believed a scaled-down Aegis was a waste of money.

At that stage ADM Zumwalt considered cancelling the whole project. He was angry because there was no AAW development plan to integrate the various ongoing AAW projects, and he correctly anticipated that Congress would resist funding sufficient numbers of an expensive, nuclear-powered Aegis ship. But cancelling Aegis would leave the Navy without any medium-range air defense and might threaten the future “high” capability surface escort program, which was then in the concept formulation and design stage.

Moreover, the Aegis project could not be faulted on grounds of inefficiency. At the CNO’s direction, the Naval Audit Service had investigated the management of Aegis development. In its March 1972 report, the Audit Service commended the Project Office’s management methodology. Eventually, powered flights of the Navy’s own anti-ship missile (Harpoon) were conducted in July 1972, demonstrating the growing sophistication and potential of anti-ship cruise missiles. This threat could not be ignored and it pressured the CNO into making a decision in favor of Aegis, the only medium-range system which could knock cruise missiles down.

Thus in November 1972, the CNO finally approved a production schedule for the Aegis radar and control system, giving Meyer’s office secure funding, providing the Navy and Congress could agree on a platform to carry the new system.

Over the next four years, however, debates over the proper ship platform for Aegis almost killed the system altogether. Aegis engineers faced a difficult problem: design a system which would fit a range of platforms (large or small, nuclear- or conventionally-powered, destroyers and cruisers), field test it with the Standard Missile (SM-2), and then have RCA produce it in time to match whatever platform the Navy and Congress finally agreed upon.

The challenge for CAPT Meyer was that the platform issue was to a large degree out of his hands. The Navy had begun work on a new surface escort design in 1966. The approaching block obsolescence of the hundreds of destroyers built during World War II required large numbers of replacement ships; advances in threat technology and tactics required increasingly sophisticated (and hence more expensive) ships. The potential conflict between numbers and individual ship capability was laid out in the Major Fleet Escort Study of 1967, written in OPNAV’s Division of Systems Analysis while (then) RADM Zumwalt was its director. As CNO, Zumwalt attempted to act on the conclusions of the study even though he well understood how hard it would be to persuade Congress to fund the construction of large numbers of expensive (and more capable) fleet escorts.

Zumwalt also lacked complete control of shipbuilding. The real boss of ship construction in 1972 was ADM Isaac Kidd, the Chief of NAVMAT, and Kidd had immediate authority over the surface escort program. After a long exchange of memos in 1973, Zumwalt persuaded Kidd not to accelerate the design and production of the anticipated conventionally-powered missile-firing escort so that ship and Aegis development could progress together. Zumwalt hoped to mount Aegis on a conventionally-powered escort; nuclear surface ships were too costly to get in satisfactory numbers, and Zumwalt wanted to guarantee sufficient production to maintain Aegis development and manufacture. The first engineering development model of the Aegis radar had already been tested ashore, and Zumwalt wanted to pace Aegis development to match that of a conventionally-powered platform.

In 1972, CAPT Meyer was assigned to Chief of the Surface Missile Systems Office in NAVORD. He also retained his position as head of the Aegis Project and this expanded assignment signified the degree to which Aegis development dominated surface-based AAW systems.

In 1974, the Naval Ship Systems Command merged with NAVORD to become the Naval Sea Systems Command (NAVSEA). The Aegis Project Office became the Aegis Weapon System Office (PMS-403), and CAPT Meyer was promoted to Rear Admiral and made head of PMS-403 as well as Director of NAVSEA’s Surface Combat Systems Division.

May 1983 – Rear Admiral Wayne E. Meyer, USN.

This organizational change was important to Meyer. For the first time, he had access to and control over ship design offices and direct, authorized contact with the sponsors in OPNAV. Before the reorganization, Meyer had headed a weapons system office. After 1974, he directed that office plus two others, including one responsible for the design of a destroyer-size Aegis ship, the other for an Aegis cruiser. After the creation of NAVSEA, Meyer had three sponsoring offices instead of one, and the opportunities for him to act as an organizational entrepreneur increased.

Unfortunately, the struggle over the “proper” Aegis platform was just heating up about the same time the Aegis system itself was changing from just an AAW sensor/weapon system to one which could direct all AAW weapons and sensors for an entire Carrier Battle Group. This modification of Aegis system goals was made, not to build a PMS-403 empire, but because it became technically feasible. The Navy had originally developed digital communication links for carriers and their escorts in order to allow one ship to coordinate and control the massed AAW firepower of a whole group believing that capability eventually would be developed.

RADM Meyer believed that Aegis computers and software could revolutionize the conduct of Carrier Battle Group defensive operations. He saw the Aegis ship as mainly a command center, and only secondarily as an AAW escort. Through 1974, he made his point to his superiors in NAVSEA and NAVMAT and to a variety of offices in OPNAV. By December 1974, Meyer had persuaded the Chief of NAVMAT to consider a redefinition of the Aegis combat system, and it seemed that the Aegis program had entered a new (but logical) stage of development.

PMS-403 ran into two problems however. The first was a debate between the Navy and OSD about the proper design of the Aegis platform. The new CNO, ADM James Holloway, favored a nuclear-powered ship. OSD was opposed to the nuclear-powered alternative on the grounds of cost and numbers: too few ships at too high ($600 million, projected) a cost. OSD also criticized the nuclear-powered escorts (California-class) then being completed as “loaded from stem to stern with technically achievable, but not very practical, systems and subsystems.” As Vice Admiral E.T. Reich, then working in the Office of the Deputy Secretary of Defense, noted in February 1975, “the Navy had done an inadequate job of specifying overall ship system integration design…systems engineering and total ship design integration have been seriously lacking in post-World War II surface ship acquisitions.” This concern was shared by Meyer, and he argued that the rational solution was to give the combat systems office (PMS-403) authority over the design of the ship – control, not merely the right to negotiate or coordinate. Meyer’s proposed solution was novel but it was not unreasonable.

Unfortunately, Congress intervened and the issue over the proper Aegis platform rapidly became politically controversial, placing several key decisions beyond Meyer’s effective influence. The conference committee report on the FY 1975 Defense Authorization Bill stated that future authorizations for Aegis would be withheld unless the Aegis AAW system was tested successfully under operational conditions and then maintained at sea by “shipboard personnel only.”

The report also demanded that the Navy and OSD agree on the design of the Aegis platform and that the Navy produce a “cohesive integration plan specifying the interface of Aegis with the platform(s) and other weapon and command/control systems.” In July 1974, Congress approved Section 804 of Title VIII of Public Law 93-365 (“The Nuclear Powered Navy”), which stated:

“All requests for authorization or appropriations from Congress for major combatant vessels for the strike forces of the United States Navy shall be for construction of nuclear powered…vessels…”

…To satisfy Congressional demands that Aegis be tested and maintained at sea, RADM Meyer had the land-based prototype systems (radars and computers) moved from the RCA plant in New Jersey to the test ship USS Norton Sound. In just over three months in the summer of 1974, Norton Sound was converted into an AAW ship complete with radars and missiles. By December, Norton Sound’s AAW tracking and fire control capability had been proven superior to that of any other Navy AAW ship, and actual test firings against a variety of targets in January 1975 were a success.

USS Norton Sound (AVM-1) at sea, circa 1980. Ship shown after the SPY-1A Aegis combat system was installed. (Photo via Wikimedia Commons)

The results were impressive enough to convince the Secretary of the Navy to release money that had been withheld pending the outcome of the sea trials. Even so, Meyer could not resolve the dispute between the Navy and OSD about the Aegis ship design. He favored a mix of both nuclear and conventionally-powered ships, but the procurement costs associated with nuclear propulsion (estimated at 4 to 1 over a conventionally- powered ship) were more than OSD could accept. In January 1975, OSD decided not to ask Congress for any FY 76 funds for Aegis ship construction or conversion. RADM Meyer termed the decision “unacceptable for a stable program in Congress…”‘

…In May 1975, the Chairman of the House Armed Services Committee fired another salvo against OSD: “the committee tied the use of RDT&E funds for Aegis to your provision of a plan for a nuclear platform for Aegis… As a start we expect to have Aegis installed promptly on the USS Long Beach” (the first nuclear-powered cruiser, launched in 1961). That same month, the CNO told the Secretary of Defense that Congress would eliminate all Aegis funding if OSD did not stand firmly behind some Aegis platform. The Chairman of the House Armed Services Committee also wrote to President Gerald Ford arguing that major surface combatants should be nuclear-powered and denouncing the influence of “systems analysts” in OSD….

…Behind the scenes, however, the Navy and OSD had been considering an Aegis destroyer powered by gas turbines as a companion to the nuclear-powered Aegis cruiser.

Aegis was finally saved in a House-Senate Conference Committee meeting in September 1975. President Ford greatly influenced this decision by promising to justify in writing the need for a gas turbine Aegis ship. OPNAV also strongly supported Aegis. VADM James Doyle, the Deputy CNO for Surface Warfare (OP-03), was a strong Aegis supporter and he persuaded ADM Holloway to support the proposal to place Aegis in an existing gas turbine-powered destroyer design (the Spruance-class)…

…Meyer was another reason Aegis survived. Trained as a engineer (at University of Kansas, MIT, and at the Naval Postgraduate School), Meyer gradually and deliberately gained the respect of Congressional staff aides and members of Congress. According to one of his civilian assistants, Meyer established his legitimacy as a systems engineer both in the Navy and in Congress in 1975. His argument that Aegis should not fall victim to a dispute over its platform apparently had some effect.

The most important event in 1976, however, was the establishment of the Aegis Shipbuilding Project (PMS-400) that October, with Meyer as Project Manager. PMS-400 was created by combining PMS-403, PMS-389 and PMS-378 into one NAVSEA office. OPNAV sponsors were also combined into one unit, OP-355. PMS-400 was given responsibility for developing and producing the Aegis combat system. It was the first “hardware” organization given authority over shipbuilding, but that was just what RADM Meyer wanted.

He had criticized recent nuclear cruisers on the grounds that their sensor and weapons systems were poorly integrated, and that they lacked the capability to manage Battle Group anti-air and anti-submarine information and weapons in major engagements. His criticisms were supported by officials in OSD and accepted by Congress. The order creating PMS-400 was the Navy’s solution to the systems integration obstacle.

Read Part Two.

Featured Image: An aerial port bow view of the Aegis guided missile cruiser USS TICONDEROGA (CG-47) underway during sea trials. (Photo via U.S. National Archives)

Sea Control 427 – The Impact of Conflict on Trade with Dr. Nizan Feldman

By Jared Samuelson

Dr. Nizan Feldman discusses his article published in Security Studies and co-authored with Mark Shipton, entitled “Naval Power, Merchant Fleets, and the Impact of Conflict on Trade.” Dr. Nizan Feldman is an assistant professor at the Division of International Relations, School of Political Science, University of Haifa. He is also a senior research fellow at the Maritime Policy & Strategy Research Center, University of Haifa.

Download Sea Control 427 – The Impact of Conflict on Trade with Dr. Nizan Feldman

Links

1. “Naval Power, Merchant Fleets, and the Impact of Conflict on Trade,” Nizan Feldman and Mark Shipton, Security Studies, December 8, 2022.
2. Nizan Feldman’s Twitter Feed.

Jared Samuelson is Co-Host and Executive Producer of the Sea Control podcast. Contact the podcast team at Seacontrol@cimsec.org.

Brendan Costello edited and produced this episode.

Fighting DMO, Pt. 7: The Future of the Aircraft Carrier in Distributed Warfighting

Read Part 1 on defining distributed maritime operations.
Read Part 2 on anti-ship firepower and U.S. shortfalls.
Read Part 3 on assembling massed fires and modern fleet tactics.
Read Part 4 on weapons depletion and last-ditch salvo dynamics.
Read Part 5 on salvo patterns and maximizing volume of fire.
Read Part 6 on platform advantages and combined arms roles.

By Dmitry Filipoff

Introduction

The aircraft carrier has been the main striking arm of the U.S. Navy for decades, but distributed warfighting demands something new. Anti-ship missile firepower is proliferating across the force structure of both friendly and competitor forces, creating larger demands for the tactical information required to leverage these long-range weapons. Massed fires heavily depend on information to work, and air superiority is a powerful enabler of information superiority. By focusing on a set of critical information functions and fleet air defense, the aircraft carrier can serve as a powerful enabler and force multiplier for distributed fleets and massed fires. These roles foreshadow how nations who engage in naval salvo warfare without naval aviation will be at a sore disadvantage.

Scouting and Cueing Fires

The ocean is vast and busy, presenting a complicated battlespace to make sense of. Sweeps across large ocean areas teeming with commercial shipping can precede anti-ship strikes as targets must be found and quality targeting information developed. As Captain Wayne Hughes emphasized in his classic work Fleet Tactics, “At sea better scouting – more than maneuver, as much as weapon range, and oftentimes as much as anything else – has determined who would attack not merely effectively, but who would attack decisively first.”1

The horizon not only constrains the ability of warships to defend themselves, it makes them almost completely dependent on outside sources of information to target their long-range anti-ship fires. Warships must be well-supported by other forces that can provide the awareness that allows those warships to accurately launch anti-ship fires to long ranges.

Aviation’s speed, range, and maneuverability makes it an ideal asset for scouting large swaths of ocean, discriminating targets among maritime traffic, and cueing anti-ship fires. Aviation is also useful for denying this information to an adversary, such as through counter-scouting missions that target aerial scouts well before they could sense and cue fires. By comparison if warships are forced to emit to defeat an aerial scout, then they may have abetted the scout in its mission. By screening a naval force, aviation can serve as both the eyes and the cloak that help naval forces fire effectively first.

One of aviation’s most critical advantages in executing these roles is the realm of three-dimensional aerial maneuver. Through speed and maneuver, aircraft can more effectively manage the risks of emitting compared to surface warships. By being able to dip below the radar horizon of target warships when threatened, aircraft can manage their signatures and detectability more dynamically than warships. By shadowing naval contacts at standoff ranges and using maneuver to change the bearing to the contact multiple times over, aircraft can repeatedly stimulate emissions from contacts and use passive sensing to localize and classify targets.2

Since warship radar emissions can travel much further than the anti-air weapons these emissions can guide, aviation has an added margin of security when scouting with passive detection and shadowing warships.3 If aircraft do find themselves within range of naval air defense weapons, their ability to quickly drop thousands of feet of altitude can spoil semi-active targeting and air defense kill chains by diving below radar horizons. The ability of aircraft to use these kinds of maneuvers to preserve survivability while scouting can allow them to earn valuable proximity to warship contacts. This proximity is valuable for stimulating or observing adversary behavior with an eye toward mitigating deception and discovering decoys. By simply scouting or shadowing a warship, an aircraft could stimulate behavior because an aircraft could be interpreted as a harbinger of incoming mass fires.

These attributes allow naval aviation to be at the forefront of finding and classifying targets, cueing anti-ship fires against these targets, and giving prompt notification to friendly forces if those targets have discharged last-ditch fires. Through its superior ability to gain information and mitigate the risks of emitting, naval aviation is uniquely situated to act as quarterback to the broader distributed force.

Retargeting and Reinforcing Mass Fires

Combining missile firepower over a target is an extraordinarily time sensitive tactic. Salvos must cross over the radar horizon of a target within a narrow timeframe to reap the efficiencies of overwhelming fires, rather than have salvos risk defeat in detail. But there will be challenges in coordinating precisely-timed fires across a variety of launch platforms that are hundreds and even thousands of miles apart. Tactics and operations that heavily depend on exquisitely coordinated timing are fragile by nature. This fragility encourages militaries to build redundancy and resilience into their kill chains so they may confidently combine missile firepower from across distributed forces.

A commander could mass fires by precisely positioning distributed launch platforms and then precisely sequencing their fires. However, this is a platform-centric approach to missile aggregation. It limits the flexibility of the individual platforms to adapt to their local tactical circumstances, especially those that would encourage a platform to launch its contributing fires at a different time than what the original firing sequence planned for. The operational availability and behavior of individual force concentrations will be influenced by much more than simply being on call for contributing fires.

Platforms can be afforded more local operational flexibility when their contributing fires can be maneuvered into place after launch, rather than requiring that ideal conditions be met before launch. Firing sequences will be less susceptible to disruption if individual contributors of fires cannot launch on time yet their fires can still be made to fit into an active firing sequence.

This makes in-flight retargeting a fundamental enabler of mass fires, where retargeting adds critical dimensions of resilience and flexibility. As salvos are fired from across distributed forces, retargeting will give commanders the ability to adjust salvo flight paths and maneuvering during an active firing sequence. Rather than depend heavily on establishing highly specific platform positioning and weapon programming before launch, retargeting can give commanders more flexibility to combine and maneuver fires after launch. Retargeting critically preserves the capability to give weapons waypoints after they have been fired, offering commanders greater opportunity to maneuver weapons into combined salvos and leverage waypointing tactics during a firing sequence. Retargeting helps compensate for irregularities and disruptions in the firing sequence, offering individual launch platforms more local flexibility and the overall firing sequence more resilience. Retargeting prevents firing sequences from being locked into place once initiated, preserving a commander’s options for real-time adaptation.

The scope of retargeting’s ability to combine and maneuver in-flight fires is limited by the same factors that define a weapon’s aggregation potential, such as range, maneuverability, and flight times. The amount of opportunity to retarget and maneuver salvos of 1,000-mile range Maritime Strike Tomahawks is far greater than that of missiles with only a few hundred miles of range or a ballistic missile that can hardly deviate from its trajectory.

A longer flight time will also increase the need for retargeting, given how the longer a missile flies, the further its target may have traveled, the more defensive deception capabilities may have been deployed, and the more the overall operational situation may have changed. A subsonic missile launched at very long range, such as an anti-ship Tomahawk, could require more in-flight retargeting to find its target compared to faster or shorter-ranged missiles. 

Retargeting can be especially valuable for when targets prove to be decoys, false contacts, or more heavily defended than expected. It can also help salvos remain viable even if they have suffered attrition. If a portion of contributing fires is shot down on the way to the target and it seems the remaining fires can no longer reach overwhelming dimensions, they could be redirected toward a new target that is more feasible to attack. Retargeting can help ensure that valuable missile inventory is not wasted against unfavorable targets and that fresh developments can quickly translate into revised priorities for a firing sequence.

Missiles can certainly have their own onboard retargeting capabilities and employ them together within a salvo.4 But these capabilities are heavily limited by the relatively short range of their seekers and local networks, as well as the need to maintain sea-skimming flight to maximize surprise. It is also unlikely different missile salvos can effectively communicate when separated by hundreds of miles and when flying at low altitudes. Intra-salvo retargeting is more feasible for the organic capabilities of missiles compared to inter-salvo retargeting across a wider area. The ability to communicate between separate salvos may improve once contributing fires come closer to one another near their terminal approach, but that offers relatively little opportunity to make updates for most of the firing sequence.

Using outside assets for retargeting support broadens the opportunity to make earlier updates and corrections to contributing fires. Instead of having a salvo burn through plenty of fuel only to discover poor target selection at the very end of the engagement, outside retargeting allows corrections to be made much earlier in the firing sequence, preserving range and options. If missiles do not have outside assets to update their targeting information during the firing sequence, the missiles’ autonomous programming may encourage them to increase altitude and expose themselves to defensive fires in a bid to gain the information. Outside retargeting can minimize the need for attacking missiles to break from sea-skimming flight profiles, improving their survivability and preserving the element of surprise.

A critical question is who or what can best provide outside retargeting support to salvos. By virtue of speed, maneuverability, and range naval aviation will be especially well-positioned to facilitate the combining of individual salvos into aggregated fires through retargeting. Whether through covering vast ocean areas or by focusing on the airspace around a specific target, naval aviation will be able to work datalinks to combine missile firepower into overwhelming effects.

Assessing the Illusive Offensive-Defensive Balance

As soon as high-end naval conflict breaks out, naval commanders need to prioritize their understanding of the offensive-defensive balance of naval missile exchanges. This remains one of the great unknowns of modern naval warfare that would be uncovered by real combat, of how exactly large volumes of offensive and defensive fires interact and overwhelm one another. Commanders need to know whether their salvos struck the target, how well their missiles withstood countermeasures, and how opposing air defenses performed. As missiles rain down upon warships, collecting data on the effectiveness of a variety of defensive capabilities will constitute an especially critical line of effort for wartime adaptation. Developing a more precise understanding of the offensive-defensive balance is fundamental to optimizing volume of fire, managing munitions inventory, and identifying crucial areas of competitive advantage. In this vein, battle damage assessment and investigating air defense performance are fundamental to securing an edge in modern naval warfighting.

In a form of warfare where dozens of missiles could be needed to break through a warship’s defenses, but only a single hit is necessary to earn a kill, the potential for wasteful overkill is tremendous. If the offensive-defensive balance of a naval salvo engagement tilts even slightly toward the offense, it could take the form of numerous missiles wastefully crashing into a warship that was already long gone after the first hit. But commanders that attempt to precisely optimize the volume of fire to minimize overkill are more likely to risk having their salvos be defeated wholesale. Rather, securing information on salvo effectiveness would be more about understanding the margin of overkill and how much overkill can be reasonably afforded and tolerated, rather than attempting to minimize it entirely.

Commanders would clearly want to know if their salvos were shot down. If they are to organize another attack, they would benefit greatly from estimates of what proportion of the attacking missiles were downed by what types of defenses, and how many air defense missiles were expended by the defenders. These factors can help determine how much volume of fire would be needed in follow-on attacks and what types of offensive weapons may perform better. If targets were destroyed, commanders would still benefit greatly from knowing air defense performance for the sake of optimizing future volumes of fire.

But the ability to assess the effectiveness of missile firepower can be severely challenged by the great distances anti-ship missiles must travel and how targets may be fired upon near the limits of scouting capabilities. Commanders may not immediately know whether their targets were destroyed or if their salvos were shot down without landing hits. The uncertainty surrounding the results of long-range missile exchanges can prolong and complicate the decision-cycle and threaten to yield information advantage to the defender, who will often be in a much better position to assess the battle damage, weapons depletion, and defensive performance of their own forces after being attacked.

Naval aviation can earn the valuable proximity to targets to help gather this critical information. By shadowing naval targets, naval aviation can witness hostile air defenses in action and view how missile exchanges play out. Aviation could help commanders understand the offensive and defensive volume of fire being discharged from adversary warships, and the specific composition of that volume of fire. This can enhance a commander’s understanding of the adversary’s weapons expenditures, how they are assembling massed fires, and their own competing perceptions of the offensive-defensive balance.

This information will be critical for manipulating one of the major levers navies have for adapting the force in the midst of conflict, which is the composition of payloads within platform magazines. By taking a “payloads not platforms” approach, navies can maintain an edge in real-time conflict by flexing missile loadouts in reaction to fresh data on salvo effectiveness and adversary air defense performance. If adversary air defenses prove poor, a navy could afford to bolster its own air defenses by increasing the share of magazine space allocated to such capabilities. Or it could capitalize on the adversary’s disadvantage by filling more magazine space with anti-ship weapons, or with the specific types of weapons that are proving to be more effective.

This information will also be vital in knowing what kinds of salvos and volumes of fire do or do not warrant last-ditch salvos. A more precise understanding of the offensive-defensive balance means less inventory will be lost to last-ditch pressures as commanders have a clearer understanding of what warrants a last-ditch salvo. On the flipside, if it does not take much volume of fire to cause the adversary to discharge last-ditch salvos, then that would be critical to know and exploit.

Understanding the offensive-defensive balance is especially critical given the potentially decisive role of defensive systems with limitless magazines. Although they mainly function at close range, capabilities such as electronic warfare, high-power microwaves, laser dazzlers, and other softkill measures could provide an enduring measure of defense. This could prove critical for keeping warships in the fight even if they are running low on hardkill defenses. Softkill capabilities could also substantially change the nature of modern naval combat more generally. As Capt. Tom Shugart (ret.) points out:

“the consequences of the interplay of jammer versus seeker, sensor versus signature, and hacker versus data stream are likely to propagate from the tactical to the operational and perhaps strategic level in ways not seen before. As one specific and obvious example, a conflict where China’s [anti-ship ballistic missiles] could be consistently made to miss through the use of jammers might be a completely different war than one where that was not the case.”5 [Emphasis added]

This has happened before. The first ever wartime naval missile exchanges highlighted the decisive potential of softkill systems. The naval missile combat of the Arab-Israeli 1973 war took the form of Israeli missile boats successful sinking opposing missile boats despite those adversaries fielding longer-ranged missiles. Israeli electronic warfare was completely successful in jamming every anti-ship missile that was fired at their warships, allowing them to close the distance and destroy their opponents. While these engagements occurred in relatively confined waters between small combatants, Israeli success was likely not possible without extraordinarily successful electronic warfare defenses, and the failure of Arab forces to understand why their missiles kept missing.6 If aviation can gather data on enemy softkill performance in missile exchanges, it may offer a useful view into some of the more decisive factors shaping the offensive-defensive balance.

Air Defense and Shooting Archers

Aside from critical information functions, there is a vital kinetic role for naval aviation to play. Naval aviation will be sorely needed to preserve the survivability of the broader surface fleet. This dependency is best illustrated through the severe tactical challenges surface warships face in defending themselves against missile salvos.

The immutable obstacle posed by the curvature of the earth severely constricts the amount of space and time in which warships can defeat sea-skimming missiles, despite their dense defenses. Sea-skimming flight takes advantage of the radar horizon limitations of defending warships, leaving them with little choice but to engage incoming missiles at a very short distance away from the ship (typically around 20 nautical miles) and with only tens of seconds before impact.7

Visualization of the radar horizon limitation. (Source: Aircraft 101 Radar Fundamentals Part 1)

In a fierce bid for survival, warships will engage a variety of defensive weapons and systems simultaneously to wipe out incoming salvos bearing down on the ship. But the defending warship will be suffering a major disadvantage given how the totality of the attacking volume of fire is already in flight and closing in, but the defending volume of fire has to be built from scratch and achieve significant mass in a matter of seconds. Not all defending missiles can be fired simultaneously, while the attacking missiles can organize into a saturation pattern where they can all strike simultaneously. Even with a very high rate of fire, the defending missiles will be naturally bottlenecked into a narrow stream salvo pattern which may not achieve sufficient volume of fire. Even firing one defensive missile per second may not be fast enough when an attacking supersonic salvo is roughly only 50 seconds away from impact after it breaks over the horizon.

A supersonic salvo could already be about halfway across the 20 or so miles it is visible to the ship by the time the first intercept occurs.8 If a warship is employing the U.S. Navy’s shoot-shoot-look-shoot doctrine, it may only have enough time to fire off a single salvo per threat from its primary defensive armament before this capability is negated by the incoming missiles getting inside the minimum engagement range of defenses. As inbound salvos close the distance, vertically hot-launched defensive missiles will struggle to rapidly reorient for steep downward intercepts, narrowing the amount of defensive firepower available from the missiles in dozens of launch cells to the relatively few munitions of close-in systems that are able to fire on flatter angles. This challenge will be even more severe when saturation salvos aim to get all missiles inside the defender’s minimum engagement range at the same time. In the terminal phase the attacking missiles also enjoy the benefit of traveling at their maximum speed, unlike many of the defending missiles launching from a short distance away. The closer the attacking missiles get to the ship, the less time the defending missiles have to accelerate to higher speeds, further reducing the distance at which they can make intercepts. Because of these factors, even if a warship has a large magazine, a ship may not be able to fully leverage its magazine depth for defense before the first missile strikes the warship.

And missiles may not even need to strike the ship to score a mission kill. As defensive missiles clash with incoming weapons at closer and closer ranges, powerful warheads will be detonating against each other near the ship and at closing velocities of thousands of miles per hour. Exploding missile shrapnel will spray out, easily shredding exposed radar arrays, close-in weapon systems, and electronic warfare suites, systems that are all critical to a warship’s last line of defense.

An SM-6 anti-air missile intercepts a relatively small, 600lb AQM-37C test missile. Note the shrapnel. (Source: U.S. Missile Defense Agency Multi-Mission Warfare Flight Test Events)

As automated combat systems and pre-programmed responses come online and take over these complex engagements, Sailors may have little direct control in those final seconds as enormous volumes of automated firepower attack and defend the warship.

Surface warships should be spared the burden of these harrowing missile engagements as much as possible. This will require shooting down archers instead of arrows and being able to destroy missiles that are traveling beneath the radar horizons of their target warships. But shooting down aerial archers will prove especially challenging because the substantial range advantage anti-ship missiles often have over anti-air weapons converts into a greater ability for aerial attackers to fire first. This range advantage also allows attackers to more easily exploit the radar horizon to turn their standoff fires into lethal close-in engagements for defenders.

These factors make airpower indispensable to missile defense because many anti-ship weapons intentionally fly below the radar horizon of warships in spaces only aircraft can see from above. The speed and altitude of aircraft will give them much more opportunity to shoot down sea-skimming missiles compared to warships. Anti-ship missiles also pose no threat to aircraft, allowing for heavily one-sided exchanges. Aircraft can safely and substantially reduce the volume of anti-ship missile firepower bearing down on friendly warships, and potentially even use jamming to attrit incoming salvos with softkill effects. Aircraft can also organize into horizontal formations that launch anti-air weapons in saturation patterns, perhaps making them the only naval platform capable of launching defensive fires in this salvo pattern at scale.

A squadron of F-14 Tomcats arrayed in a horizontal formation launches multiple waves of anti-air missiles in saturation patterns. (Source “Red Storm Rising: Chapter 20 The Dance Of The Vampires (FINAL CUT)” by FIXEDIT via Youtube, generated with Digital Combat Simulator World.)

Aircraft can use speed and maneuver to provide flexible and on-demand air defense support to distributed forces. A commander can dynamically reposition aircraft based on emerging threats and incoming salvos to bolster air defense capability where it may be needed most. While aircraft may be hard-pressed to reposition in time to intercept missiles with a low time-to-target, they can pose a much more serious threat to missile salvos that can take longer to reach their target, especially the Tomahawk.

These anti-air roles are much more favorable to the air wing in a variety of ways, but especially in terms of volume of fire. Because of the limits of hardpoints and airframes, many multirole aircraft can fire a larger number of anti-air missiles than anti-ship missiles. A fully loaded F/A-18 can carry 12 anti-air missiles compared to only four anti-ship missiles, allowing the aircraft to shoot down more anti-ship weapons than it could fire itself.9 24 F-18s would be required to match the number of anti-ship missiles fielded by a single American destroyer if its launch cells are fully loaded with anti-ship Tomahawks, but only eight aircraft are needed to match a destroyer fully loaded with anti-air Standard Missiles.10 A handful of aircraft can therefore be enough to substantially tilt the balance of a naval salvo engagement in favor of the defending warships.

PACIFIC OCEAN (March 6, 2019) An F/A-18 Hornet fully loaded with anti-air weapons prepares for a simulated combat mission off the coast of Southern California. (U.S Marine Corps photo by Sgt. Dominic Romero/Released)
An F/A-18F Super Hornet from U.S. Navy Strike Test VX-23 in flight with four Harpoon anti-ship missiles. (Boeing photo)

By virtue of having an overheard view, the anti-air weapons fielded by aircraft can be much more effective at shooting down cruise missiles than the much larger shipboard anti-air weapons. A shipboard anti-air engagement can be spoiled by simply having targets dive below the radar horizon of the illuminating warship, where the radar horizon constraint substantially diminishes the range advantage of the larger anti-air missiles that can be fielded via a ship’s launch cells. It is debatable how useful that extra range is for the larger ship-based air defense weapons when so many of these weapons’ dependence on semi-active illumination makes their killchains much more easily disrupted by target maneuvering.

Allowing aviation to pick up more of the air defense mission will allow warships to fill more of their launch cells with offensive weapons, where the added missile size and range is much more useful for a warship’s offensive fires than defensive ones, save for perhaps defending against aircraft or especially high-end threats like ballistic missiles. Aircraft can also reload their anti-air weapons in a fraction of the time it would take warships to do the same, contributing to a more sustainable warship presence. Aircraft will also be critical for providing warships with early warning of incoming salvos, and helping them determine whether and when those warships should launch last-ditch fires.

Aviation is also needed to work the Navy’s NIFC-CA capability (Naval Integrated Fire Control-Counter Air). This allows a warship to fire at targets beneath its radar horizon, if an aerial intermediary can facilitate the engagement.11 This capability helps extend the anti-air battlespace and adds depth to a warship’s ability to defend itself. Extending the anti-air battlespace can also help preserve inventory since the pressure to fire more interceptors per incoming missile increases the closer the salvo gets to striking the warship. But these NIFC-CA capabilities and advantages are dependent on aviation to function.

Click to expand. A depiction of how the NIFC-CA capability allows warships to target air and missile threats traveling beyond their line of sight via a combined arms relationship with aircraft. (Graphic via CSIS Missile Defense Project)

A common benefit throughout these various methods of applying airpower to anti-ship missile defense is that they substantially extend and complicate the air defense battlespace. This is critical toward increasing the attacker’s challenge in a type of engagement where defending warships suffer significant disadvantage. Regardless of how powerful and capable a warship is, the burden of attacking a warship is substantially lessened by how the radar horizon forces defensive engagements to begin only mere miles away from the ship. Using aviation to extend the air defense battlespace far beyond a warship’s horizon will greatly lengthen the gauntlet missiles must run to hit their targets. If attackers suspect that flexible airpower can be brought to bear on their salvos long before those missiles get near their targets, then they may have to consider expending much larger volumes of fire or reconsider the engagement entirely. They may also have to consider more complex tactics in sequencing and waypointing their fires to stretch defensive aviation thin or pull it away in directions that create opportunities for salvos to break through to targets.

This type of air defense coverage can go both ways. An adversary may also deploy aircraft to diminish the volume of fire to help protect their warships. This creates a strong incentive to provide air defense coverage to friendly salvos on their way to the target, since warships can hardly provide such coverage to their own attacking salvos. If a warship wanted to provide air defense coverage to its own offensive salvos, then it would have to substantially close the distance so its air defense firepower can overlap the range its anti-ship firepower has to travel to the target. But this is unrealistic in many contexts, and would sacrifice much of the anti-ship weapons’ range. And it would still be of little use against aircraft that can still dip below a ship’s radar horizon and engage the ship’s attacking salvo without fear of shipboard air defenses. Aircraft will therefore be needed to not only attack incoming salvos below the radar horizon, but to engage opposing aircraft that are looking to do the same on behalf of their own warships.

Warships can play a longer-range air defense role in this specific fight, when aircraft are dogfighting near the warship in a bid to protect or attack a salvo that is closing in. Aircraft that look to escort attacking salvos may have to contend with defending aircraft whose tactics can force the escorts to maneuver within view of the target warship’s air defense capability. Those maneuvering aircraft could be more targetable at longer ranges for warships than the salvo that is traveling at a more fixed sea-skimming altitude. This can allow a warship to threaten the salvo’s escorting aircraft, which then frees friendly aircraft to focus more on attriting the salvo on behalf of the warship. If there are a significant number of aircraft escorting a salvo, then defending aircraft could pull behind the air defense screen of the warship to enhance survivability, while still being in a position to attrit the salvo, although with perhaps less opportunity to do so than a more forward disposition. If substantial opposing aircraft are encountered, friendly aircraft can fall back upon the air defense screens of the surface warships, and leverage combined arms tactics to fight back against the attacking salvos and their escorting aircraft.

Naval aviation is also critical for defending against bombers, which are one of the most flexible and lethal platforms for anti-ship attacks. Because of their long range and the size of their magazines, bombers can launch substantial volume of fire against warships at distances that are well beyond the warship’s ability to launch anti-air weapons. These features make it especially difficult to destroy archers before they can fire their arrows when it comes to bombers. Aviation is the main asset that can find and intercept bombers and impose last-ditch firing dilemmas upon them before they are able to fire upon warships.

A key challenge is how to maintain these forms of air defense coverage at a distance from a carrier. These tactics are reminiscent of the “chainsaw” tactics of the Navy’s Cold War-era Outer Air Battle concept of the 1980s. A large number of carrier aircraft would maintain a continuously cycling aerial presence well forward of the carrier battle group so they could shoot down Soviet bombers before they could launch anti-ship missiles, and where these engagements would take place between 400-500 nautical miles from the carrier.12 But this tactic was challenging to sustain in practice and could not cover all approach vectors, even when the baseline capabilities were more favorable to the U.S. Navy than what it has today. Those capabilities included a longer-ranged and specialized interceptor aircraft (the F-14 Tomcat), which fielded a longer-ranged interceptor missile (the AIM-54 Phoenix), to threaten bombers that were using shorter-ranged anti-ship missiles than what competitors field today. Under the aforementioned concept of operations for supporting distributed forces, multiple carriers would be needed to sustain multiple chainsaw-type air defense screens, and for distributed surface forces and salvos operating at a significant distance away from the carrier, while using shorter-ranged carrier aircraft against bombers that have longer-ranged anti-ship missiles compared to the Cold War. In practice, it may be infeasible to sustain multiple chainsaws out to a range where they could attack archers before they fire arrows. Instead, the air wings may have to limit their reach and allow the hostile firepower to be launched, and then attrit it to a more manageable volume for the surface warships to finish off.

A depiction of the Cold War-era Outer Air Battle and “Chainsaw” fleet air defense concept. (Graphic via Maritime Warfare in a Mature Precision-Strike Regime by Andrew F. Krepinevich, CSBA, 2014)

Focusing much of the carrier air wing on providing air defense against bombers and sea-skimming threats will substantially enhance the survivability of both warships and aircraft. Compared to launching distant attacks against warships, defensive anti-air and interdiction roles allow aircraft to remain closer to friendly forces, fly more safely at higher altitudes, and take on anti-air loadouts that are lighter than anti-ship loadouts. Each of these factors contributes to higher endurance, sortie rate, and survivability for aircraft compared to the challenging requirements of massed long-range strikes against heavily defended targets. These missions better play to aviation’s strengths and give warships much better margins of survival against potent missile threats.

These trends also signal a clear warning to surface fleets. Surface warships should be especially cautious about traveling beyond the support of aviation, or otherwise risk being alone in facing sea-skimming salvos in harrowing close-range engagements.

Carrier Coverage Limits and Information Roles

The major information requirements of naval conflict and the risky nature of massing carrier aircraft for anti-ship strikes both point to a critical takeaway – in fleet-on-fleet combat the carrier air wing should focus more on enabling the delivery of cruise missile firepower from the broader distributed force rather than delivering it themselves. This is a more complex arrangement than the traditional Carrier Strike Group construct, where the air wing would shoulder most of the anti-ship mission. Now the carrier can be asked to provide critical enabling functions for many warships and salvos, and at substantial ranges across a distributed fleet. But while these functions are more favorable to the air wing and the broader fleet for a variety of reasons, they still have critical constraints that can limit how a distributed force can arrange itself and assemble massed fires.

When it comes to securing information, aircraft can be playing multiple overlapping roles in the contested space between opposing fleets. An aircraft retargeting a friendly anti-ship salvo could end up defending that salvo and itself from opposing aircraft looking to intercept. That aircraft could also be shooting down last-ditch fires launched by the target warship it is guiding the salvo toward, while also gathering data on the warship’s air defense performance and the composition of its volume of fire.

These air defense and information functions are highly complementary and integrative. Aircraft will be poised to clash with opposing aircraft that are performing similar information functions as both seek to enable salvos and defend against them. These intertwined functions set the stage for a hotly contested aerial battlespace between fleets as they exchange fire. Securing air superiority in this space, even temporarily, will translate into information superiority that yields significant offensive and defensive advantages. 

Many of these critical missions, including scouting, counter-scouting, battle damage assessment, salvo escort, and retargeting support still require proximity to targets and can pull the carrier deeper into the battlespace. This proximity can require that aircraft and aircraft carriers operate from ranges similar to that of launching strikes, except the distances are determined more by sensor and network ranges rather than weapons range. Aircraft that are not E-2s or F-35s may need to get much closer to threats and friendly assets to earn and send this information, and potentially risk themselves against shipboard air defenses. These missions will also require proximity to friendly forces and distributed naval formations to enhance their early warning and air defenses.

The positioning of the carrier and the reach of its air wing will therefore determine the extent of information and air defense coverage it can provide for the broader distributed force and its massed fires. Similar to how weapons range can limit how far forces can distribute from one another and still combine their fires, the limits of air wing coverage can further bind the disposition of a distributed fleet. A fleet will have to limit the extent of its distribution if it is to seize the force-multiplying advantages of these combined arms relationships, while weighing the benefits of those relationships against the risks of greater force concentration.

Consider the need to overlay cruise missile range with aerial retargeting support and air defense coverage to help ensure friendly salvos are well-supported on their way to the target. Combine this with the need to keep surface warships close enough to the carrier that aircraft can interdict opposing bombers before they are within range of firing. Otherwise surface warships could be fired upon and picked off by platforms that are advantaged in firing first against warships. When these multiple combined arms relationships are factored in, the result is a fleet disposition that is considerably more concentrated than simply fielding a variety of widely separated Tomahawk shooters. These relationships and their concentrating effect on fleet disposition are depicted in Figure 1.

Figure 1. Click to expand. Reverse range rings for Tomahawk, LRASM, and SM-6 are centered on a target SAG, showing how far warships can distribute from one another and still combine fires against a shared target. Regular range rings for all other weapons are centered on their launch platforms. The fleet has to limit its distribution to provide critical aerial support functions to surface warships and to missile salvos. (Author graphic)

In particular, the degree of overlap between retargeting coverage and weapons range can limit the area where aggregation can be supported, and how far platforms can distribute from one another. If a carrier wants to support an extreme range Tomahawk salvo, the carrier could have to be hundreds of miles forward of the launch platforms since the missile substantially outranges the unrefueled air wing. If a carrier wants to provide similar support for a shorter-ranged Naval Strike Missile attack, the carrier could be hundreds of miles behind the launch platforms and still be available. The missiles that can widen force distribution through their longer range may have to forego critical aerial support across wide ocean areas and especially in the final phases of combining fires, because their long range can also take them well beyond the support of friendly aviation.

The air wing will be severely taxed to cover all these critical information functions across a broad battlespace. This will make it extremely difficult if not outright impossible to mass the air wing, either for concentrated attack or defense. LCDR Sandy Winnefeld noted this challenging dynamic in the Cold War:

“So many fighters are required to support scouting requirements that very few are left on deck to counter the threat once it is discovered…in a superb example of Sun Tzu’s maxim, ‘He who prepares everywhere will be weak everywhere,’ airborne fighters are so spread out that they cannot defend against a concentrated attack…Instead, airborne scouting fighters must be rapidly remarshalled to provide firepower when a [bomber] raid is detected… At realistic power projection ranges, the amount of firepower needed to counter [a mass Soviet naval bomber] raid is currently more than even a multi-carrier battle group force can realistically keep airborne continually during a campaign-length operation…the lion’s share of the killing will have to be done by deck-launched interceptors.”13

Extensive scouting and information functions will need to be performed regardless of whether the air wing is heavily concentrated for offense or defense. Those concentrated aerial formations are themselves heavily dependent on effective scouting, cueing, and in-flight updating to effectively perform at long ranges. The scouting demands of wide-area naval defense are considerable enough, especially when attempting to counter opposing scouts and bomber raids at distances that aim to preempt their firings. Adding the scouting demands of mass air wing attacks on top of baseline defensive requirements will stretch the carrier air wing even more thinly, making this combination of multiple steep requirements likely unworkable.

Even though these roles may not do much to increase the standoff distance of the carrier, an information-centric air wing is more survivable because it allows the air wing to be more distributed. Even one scouting aircraft can be enough to conduct the aforementioned information functions, from scouting a target warship at standoff ranges, cueing fires against it, retargeting those fires into an aggregated salvo, and assessing defensive performance and the result of the attack. This is far more preferable than sending masses of concentrated air wings to the limits of their range to launch risky attacks against only several warships at a time. The amount of aviation needed to sense a target and network fires against it could likely be met by far fewer aircraft compared to the numbers needed to mass the volume of fire organically through the air wing itself.

BAY OF BENGAL (Oct. 17, 2021) An F-35C Lightning II assigned to the “Argonauts” of Strike Fighter Squadron (VFA) 147 flies over the Bay of Bengal as part of Maritime Partnership Exercise (MPX) 2021 (U.S. Navy photo by Mass Communication Specialist 2nd Class Haydn N. Smith)

Removing much of the demand for carrier-centric strike operations will improve the survivability of the carrier. Adversaries may not choose to fire weapons near the limits of their range to engage carriers, especially long-range assets such as bombers and ballistic missiles. Instead, they may wait until the carrier is within range of its own offensive capability, knowing that the air wing may then be split between offensive and defensive missions, which lowers the volume of fire required to achieve overwhelming effect. If an anti-carrier strike was launched at ranges that exceed the offensive capability of the target carrier, then the strike is more likely to have to contend with a purely defensive air wing composition. As LCDR Winnefeld noted:

“If the Soviets cooperate by attacking at extremely long ranges, U.S. battle forces will be able to fight the [bomber raids] on their own terms. Carriers will be able to enhance their survivability by orienting their flight deck configurations exclusively to [defense]… Unfortunately, the Soviets may wait…tacticians counting on defeating the [bomber forces] at long ranges may be disappointed by an adversary who is unwilling to come out and fight on the [carrier group’s] terms. Carrier battle forces will probably be required to defend themselves and project power simultaneously.”14

These information-centric missions improve carrier survivability by allowing for more aircraft and hardpoints to be devoted to early warning and defensive capability. But even with their advantages, these information-centric missions may improve the carrier’s survivability only marginally because of the enduring need to earn proximity to targets and friendly forces.

The carrier air wing does not have to be alone in executing these roles. The Maritime Patrol Aircraft community can make major contributions to battlespace awareness and communications, especially through new high-endurance drones like Triton. The land-based aircraft of the MPA community can substantially alleviate the burdens these information missions place on the air wing. However, these aircraft do not equip much in the way of anti-air weapons and are not as maneuverable as carrier multirole aircraft. Their ability to kill scouts and missiles will be extremely limited.

Naval Station Mayport, Fla. (December 16, 2021) – An MQ-4C Triton Unmanned Aircraft System (UAS), assigned to Unmanned Patrol Squadron 19 (VUP-19), sits on the flight line. (U.S. Navy photo by Mass Communication Specialist 2nd Class Nathan T. Beard/ Released)

Information can of course come from other assets. The Air Force can play a major role in developing awareness of the maritime battlespace, as well as space-based assets and allied forces. What is less clear is whether the degree of network interoperability and integration is enough to supplant many of naval aviation’s information functions, rather than only supplement them.

The suggested information-centric missions are limited by what resides within the modern carrier air wing. It is unclear whether the mainstay aircraft of the Navy’s carrier air wings – the F/A-18 – has powerful enough sensors and networking ability to conduct these information operations to a highly capable degree. These aircraft often depend on information from the E-2 airborne early warning aircraft, which features long-range sensing, considerable networking capability, and extensive battle management systems. But only a handful of these aircraft are fielded in an air wing, and only recently have they begun fielding variants that are capable of in-flight refueling.15 These limitations greatly constrict the availability of the aircraft and therefore the scope of ocean space that can benefit from their information functions. The F-35, with its modern sensing and networking capabilities, may prove especially useful in executing these information-centric air wing operations. But until the F-35 is widely fielded, the Navy’s ability to reap the benefits of these information functions and harness the broader firepower of the distributed fleet will be constrained.

Conclusion

General platform attributes or mission areas are not a sufficient basis to determine the continued relevance of a platform. Ultimately in combat, a platform lives or dies by the viability of its tactics, of how its specific concepts of employment interact with a contested battlespace, and of the precise details of how it would actually be applied in warfighting. For distributed warfighting at sea, there is a clear argument to be made for the vital role of naval aviation, whether it must come from aircraft carriers or somewhere else. Some of these arguments are couched in the fact that many of the premier weapons of modern naval warfare are themselves fast airborne payloads, that warships are mostly blind to spaces of enormous tactical consequence, and that air superiority is a powerful enabler of information superiority. Navies should carefully consider these factors as they debate the future of their force structure and naval warfare.

Part 8 will focus on China’s ability to mass fires.

Dmitry Filipoff is CIMSEC’s Director of Online Content and Community Manager of its naval professional society, the Flotilla. He is the author of the How the Fleet Forgot to Fight” series and coauthor of Learning to Win: Using Operational Innovation to Regain the Advantage at Sea against China.” Contact him at Content@Cimsec.org.

References

1. Wayne P. Hughes, Jr., Fleet Tactics: Theory and Practice, pg. 173, Naval Institute Press, 1986.

2. Tyler Rogoway, “Navy’s Super Hornet Boss On The Jet’s Game-Changing Infrared Search And Track Sensor,” The War Zone, July 27, 2020, https://www.thedrive.com/the-war-zone/34966/navys-super-hornet-boss-on-the-jets-game-changing-infrared-search-and-track-sensor

3. Wayne P. Hughes and Robert Girrier, Fleet Tactics And Naval Operations, Third Edition, pg. 188, U.S. Naval Institute Press, 2018.

4. John Keller, “Lockheed Martin to build six more LRASM anti-ship missiles with GPS/INS, infrared, and radar-homing sensors,” Military and Aerospace, March 23, 2022, https://www.militaryaerospace.com/sensors/article/14248345/multimode-sensors-antiship-missiles.

5. Thomas H. Shugart III, “Trends, Timelines, and Uncertainty: An Assessment of the Military Balance in the Indo-Pacific,” Testimony Before the Senate Foreign Relations Committee, Hearing on Advancing Effective U.S. Policy for Strategic Competition with China in the Twenty-First Century, March 17, 2021, https://s3.us-east-1.amazonaws.com/files.cnas.org/backgrounds/documents/Shugart-SFRC-Testimony-17-Mar-2021-FINAL-compressed.pdf?mtime=20210316153840&focal=none

6. Abraham Rabinovic, The Boats of Cherbourg: The Navy That Stole Its Own Boats and Revolutionized Naval Warfare, revised edition, independently published, 2019.

7. Lee O. Upton and Lewis A. Thurman, “Radars for the Detection and Tracking of Cruise Missiles,” Lincoln Laboratory Journal, Volume 12, Number 2, pg. 365, 2000, https://archive.ll.mit.edu/publications/journal/pdf/vol12_no2/12_2detectcruisemissile.pdf.

8. This estimate is based on the attacking anti-ship missiles traveling at a speed of Mach 2.5, or roughly 32 miles per minute, and the missile taking up to around 10 seconds to accelerate from subsonic speed to its terminal sprint after breaking over a target warship’s horizon. China’s YJ-12 and YJ-18 anti-ship missiles have terminal sprint capability up to Mach 2.5. The Mach 3 speed of the U.S. Navy’s SM-2 anti-air missile amounts to about 38 miles per minute. These two speeds taken in combination amount to the missiles meeting at roughly the halfway point of a 20-mile-long engagement space going from the horizon to the target warship.

9. Dr. Carlo Kopp, “Flying the F/A-18F Super Hornet,” Air Power Australia, originally published May/June 2001 in Australian Aviation, https://www.ausairpower.net/SuperBug.html

10. A U.S. Arleigh Burke-class destroyer has 96 vertical launch cells. The estimates of matching of missile capability focuses on number of missiles, not their specific dimensions, and excludes deck-mounted missiles and weapons fielded within the magazines of turreted point defense launchers.

11. Wes Rumbaugh and Tom Karako, “Extending the Horizon: Elevated Sensors for Targeting and Missile Defense,” Center for Strategic and International Studies, September 2021, https://csis-website-prod.s3.amazonaws.com/s3fs-public/publication/210927_Rumbaugh_Extending_Horizon.pdf?VersionId=4A_Sv5v1HuR5cghHC1proU6iJ1m2gjx1

12. For Outer Air Battle and Chainsaw concept, see:

Andrew F. Krepinevich, Maritime Warfare in a Mature Precision-Strike Regime, Center for Strategic Budgetary Assessments, pg. 50-52, 2014, https://www.files.ethz.ch/isn/190270/MMPSR-Web.pdf

Thomas P. Ehrhard, PhD and Robert O. Work, Range, Persistence, Stealth, and Networking: The Case for a Carrier-Based Unmanned Combat Air System, Center for Strategic and Budgetary Assessments, pg. 86-89, 2008, https://csbaonline.org/uploads/documents/The-Case-for-A-Carrier-Based-Unmanned-Combat-Air-System.pdf

13. Lieutenant Commander James A. Winnefeld, Jr., “Winning the Outer Air Battle,” U.S. Naval Institute Proceedings, August 1989, https://www.usni.org/magazines/proceedings/1989/august/winning-outer-air-battle

14. Ibid.

15. For fielding of in-flight refueling capability for E-2 aircraft, see:

Valerie Insinna, “Northrop to Begin Cutting in Aerial Refueling Capability in E-2D Advanced Hawkeye Production this year,” Defense News, April 11, 2018. https://www.defensenews.com/digital-show-dailies/navy-league/2018/04/11/northrop-to-begin-cutting-in-aerial-refueling-capability-in-e-2d-advanced-hawkeye-production-this-year/.

“E-2D Conducts Successful Aerial Refueling Tests,” Naval Aviation News, March 21, 2018. http://navalaviationnews.navylive.dodlive.mil/2018/03/21/fuel-factor/.

Featured Image: May 2020 – The Navy’s forward-deployed aircraft carrier USS Ronald Reagan (CVN 76) transits the Philippine Sea. (U.S. Navy photo)

Why the US is Losing The Race for the Arctic and What to Do About It

By Josh Caldon

Almost weekly there is another story insinuating that the US is losing the “race for the Arctic.” Those who support the claim that the US is losing this race often highlight that the Arctic ice is melting and that this environmental change is opening up potential trade routes and making natural resources more ripe for exploitation. Others then point out that Russia has increasingly re-militarized the Arctic and that China has also made inroads to establish itself in the region. 

One key point these articles often make is the United States’ relative lack of icebreakers compared to its competitors. What is missing from this conversation, however, is an explanation of why the US has fallen behind its competitors in the Arctic. This article fills in that gap by attempting to explain why the US is behaving as it does. It then argues that paradoxically falling behind in this regional competition may actually improve America’s overall security and international influence when compared to Russia and China.

Geography

The US is relatively fortunate in its geography. It has large coastlines with natural harbors on both the Pacific and Atlantic Oceans. Its rivers largely flow southward to southern ports. It also shares borders with Mexico and Canada, two countries that do not threaten the US in a conventional sense. This geography serves to protect the US from foreign invasion and allows it to readily deploy military forces to foreign locales, without use of the Arctic.

With the advent of intercontinental missiles and strategic bombers, the Arctic became more important to the US militarily during the Cold War. This pushed the US to erect now largely defunct early warning stations across northern Alaska, Greenland, and Canada. More recently, it established incipient missile defense systems in the Arctic to deal with increased threats emanating from Russia, China, and North Korea and improved its ability to monitor the region. However, these systems have never been designed to control the Arctic, but instead to protect America, and its NATO allies, from foreign military threats coming from, or through, the Arctic. This is an important distinction.

Russia does not share America’s fortunate geographic position. Instead, its geographic positioning and acrimonious international relationships have pushed it to “conquer the Arctic.” It has few “warm-water” ports and shares large land borders with many adversarial states. Russia’s only ports that are free from year-round ice are located in Sevastopol (Crimea), Tartus (Syria), and in the Baltic and Barents Seas. Significantly, Russia has recently fought to maintain control over Sevastopol and Tartus, but still faces possible blockades by adversarial forces in the Black Sea, Mediterranean Sea, and Baltic Sea. Ukraine’s attempt to join NATO, Finland’s recent accession to the alliance and Sweden’s standing bid to join, along with the West’s attempts to overthrow Russia’s surrogate in Syria, Bashar Assad, have heightened Russia’s longstanding fear in this regard.

As a result, since the disastrous Russo-Japanese War of 1905, and especially during WW I and WW II,* and the Cold War, Russia has militarized the Arctic. This is something that it has taken up with renewed vigor under Vladimir Putin’s regime. Russia’s militarization of the Arctic has especially occurred in two spots. The first one is the ice-free Barents Sea, which Russia has relied on to access the world’s oceans so that it can better protect its territory and international interests from foreign threats, and the second one is under the Arctic ice cap where its nuclear submarines have an icy bastion that protects them from NATO forces.

Economics

The US largely has a free-market economy with strong interest groups that challenge its willingness to expand its commercial footprint in the Arctic. This has overwhelmingly kept it from attempting to control the Arctic like Russia has done and China is increasingly attempting to do. It is important to look at the times when American commercial interests have focused on the Arctic to understand America’s overall lack of interest in this region. The three times the US has been economically drawn to the Arctic were to exploit temporarily scarce resources. This occurred with whale oil and seal skins during the 18th and 19th century, gold at the end of the 19th century, and oil during the mid-twentieth century. These intense periods of economic interest in the Arctic resulted in America’s purchase of Alaska from Russia in 1867 and the development of Alaska in the decades afterwards. Notably, however, it is expensive and difficult to operate in the Arctic. As Canadian Arctic expert, Michael Byers highlights, even as the Arctic ice slowly melts, the region remains in complete darkness for half of the year and melting ice is dangerously unpredictable. The Arctic is also austere and quite far from the largest population centers of the world. As such, the intermittent economic demands for the region’s natural resources have relatively quickly resulted in substitutes being found for these goods in less austere places.

Subsequently, the only portions of Alaska that are significantly developed are in the sub-Arctic portion of the state, with the exception of the oil fields of Prudhoe Bay – which also appear to be winding down with the advent of fracking and renewable energy. Increasing environmental concerns (most of Alaska is situated in nationally owned wilderness preserves) and native groups’ claims prohibitively increase the price of resource extraction from most of Arctic Alaska even further. Many Americans believe the region should be left to nature and to indigenous groups. The US also does not have a great need to develop the sea routes in the Arctic to improve its international trade. It has a transnational road and railway system and easy access to maritime trade routes which are connected through the recently enlarged Suez Canal. These circumstances mean that the US has very little motivation to establish sea routes through the largely uninhabited, relatively shallow, and dangerously unpredictable Arctic Ocean. Finally, Russia’s aggression over the last two decades, and increasing pressure from environmentally-based NGOs, have pushed American-based companies even further away from Russia’s Arctic.

All told, since the US has only marginal economic incentives to pursue the Arctic, it has not felt the need to develop harbors, settlements, transport infrastructure, or icebreakers to increase its footprint in the region. As such, it has relatively little capability to “conquer the region,” but also relatively little to defend in the region.

This is not the case for Russia or China. Russia suffers from what Hill and Gaddy call the Siberian Curse. Its geography is not as economically favorable as America’s, which has forced it to turn towards the Arctic to improve its economic circumstances. However, it has also traditionally operated a state-controlled economy that uses slave labor and nationally owned corporations to mask the economic, environmental and demographic costs of operating in the Arctic. Beginning with the czars, and accelerating under Russia’s Soviet dictators, Russia forcibly sent millions of people to develop and “conquer the Arctic.”

This legacy continues today as Putin pushes and subsidizes Russia’s economic ministries and state-controlled corporations to extract more resources from the Arctic and to expand the infrastructure of the Northern Sea Route (with the numerous powerful icebreakers needed to navigate this waterway) to transport these resources to distant markets. Unlike American corporations, Russia’s economic pursuits in the Arctic are not concerned with environmental or indigenous considerations either. Furthermore, Russia’s extreme sacrifices in the Arctic have made developing and controlling it symbolic for its people and leadership. As such, Russia has much more to defend materially and ideationally in the Arctic than the US does. Even with these factors pushing Russia to conquer the Arctic, Russia’s regional ambitions have been challenged by fiscal, demographic, and environmental hurdles. Most recently, the war in Ukraine has forced it to curtail its ambitious Arctic railway and icebreaker projects and to mobilize and sacrifice a significant proportion of its Arctic troops for combat in Ukraine. Additionally, many of its Arctic cities have rapidly de-populated, and the Arctic melt has paradoxically threatened its existing Arctic infrastructure.

Like Russia, China’s companies are largely nationalized and it also does not have the environmental or indigenous concerns in the Arctic that the US does. It has spent the last two decades increasing its manufacturing sector and its international trade ties. This has increased its needs for natural resources and trade routes, resulting in its plans to establish a “Polar Silk Road,” under its greater Belt and Road Initiative, in order to link the Arctic to China’s greater network of international trading posts and manufacturing centers. As Russia has lost access to Western markets and technology over the last two decades, it has increasingly turned towards an eager China to help it build out its Arctic economic footprint. As such, China also has more economic interests to defend in the Arctic than the US does.

What Does This Mean for the US?

The United States is not truly interested in competing for the Arctic. It has relatively less military, economic, or ideational interest in the region when compared to Russia or China. Its strategic plans for the region have become increasingly assertive in reaction to Russia’s and China’s efforts, but lack funding or prioritization. However, this lack of genuine interest carries some benefits for the US when considering the larger geopolitical context of the international system.

America’s lack of interest in the region has paradoxically pushed the other Arctic states to increase their security ties with the US and to take on more security responsibilities for the region. Similar to World War II, when Iceland and Denmark invited the US to help protect their territory from foreign adversaries, Russia’s aggression pushed Sweden and Finland to formally petition to join the US-dominated NATO. The inclusion of these states into the organization means that half of the Arctic will soon be administered by NATO member states.

Specifically, the Nordic states of Norway, Sweden and Finland have significant capabilities and economic stakes in the region that will make up for America’s relative lack of willingness and ability to contain Russia’s and China’s ambitions in the region. These countries’ capabilities will be further complemented by Denmark and Canada, and the other non-Arctic NATO states that have recently increased their defense spending to deal with Russian aggression. This collective defense in the Arctic will allow the US to better focus on domains like space, cyberspace, the Americas, and the Indo-Pacific, which are more important than the Arctic to America’s most critical national interests.

Economically speaking, the Arctic will likely remain a backwater for market-driven economies for the foreseeable future. The relatively high costs of extracting resources and transporting goods from the Arctic means the region is unlikely to become much more attractive for Western companies, even if the ice continues to retreat (which has slowed in recent years) and icebreakers improve, except in times when specific resources are in sharp demand or when there are long-term bottlenecks in other trade routes. 

The resources that Russia and China extract from the Arctic will contribute to the overall global supply of these resources and decrease their overall price for American consumers. As such, Americans will gain many of the benefits of Russia’s and China’s efforts in the Arctic while Russia and China absorb the costs. In the case of scarce rare-earth minerals that have spiked in demand and are monopolized by China, it appears Sweden may fill this void for the US with its own Arctic resources, even as companies search for substitutes for these critical resources.

Overall, the US should not ignore the Arctic, and it should put to rest the notion that this region is a unique zone of peace in an otherwise quite turbulent world. That being said, Americans should also not deem that losing the “race for the Arctic” will critically threaten America’s larger national interests. By not attempting to compete head-to-head with Russia or China to “conquer” the region, the US has incurred some advantages against these competitors.

As the US has been reminded again in Iraq and Afghanistan, and through its observation of Russia’s disastrous invasion of Ukraine, conquering territory comes with significant costs that can weaken the material strength and ideational attractiveness of a country. This, in turn, weakens a country’s ability to secure its most significant national interests. The US should continue to diplomatically, militarily, and economically challenge Russia’s and China’s actions in the Arctic on humanitarian and environmental grounds, but it also should identify that China’s and Russia’s actions in the Arctic come with high economic and soft power costs that may relatively benefit the US. Doing so will allow the US to increase its ability to collectively defend its interests in the Arctic with its allies and to prioritize its attention and resources on domains that are more important to it than the Arctic.

Josh Caldon is an adjunct professor at the Air University where he instructs courses in national security. He received his PhD in Political Science from the University of Albany and is a veteran of the USAF. The views in this article are his alone and do not necessarily reflect the views of the US Government, or its subsidiary agencies.

* Interestingly, the US was responsible for a significant portion of Russia’s militarization of the Arctic during World War II and went from supplying friendly Russian forces through the Arctic during WW I to fighting them in the Russian Arctic after the Bolshevik Revolution.

Featured Image: A U.S. Coast Guard ship breaks ice near Nome, Alaska. (Credit: Charly Hengen/USCG)

Fostering the Discussion on Securing the Seas.