The Influence of Naval Strategy on the Future of Spacepower

By Dylan “Joose” Phillips-Levine and Trevor Phillips-Levine

Turmoil has engulfed the Galactic Republic. The taxation of trade routes to outlying star systems is in dispute. Hoping to resolve the matter with a blockade of deadly battleships, the greedy Trade Federation has stopped all shipping to the small planet of Naboo, rich in raw materials vital to the economic health of the Republic.1

A long time ago in a galaxy far, far away… Trade Federation officers must have read Alfred Thayer Mahan’s naval classic, The Influence of Sea Power Upon History. In true Mahanian fashion, the Trade Federation massed their capital battleships to blockade Naboo.2 The Trade Federation pays homage to the East India Company that once controlled the trade routes and paved the way for Britain to become a world power.3,4 In The Influence of Sea Power Upon History, Mahan believed that sea control could be gained in part by blockades – an observation borne out by Great Britain’s ascent as an economic and military powerhouse.5 Renowned navalist Milan Vego offers further guidance of how to ensure sea control in his canonical book, Maritime Strategy and Sea Control: Theory and Practice.6 In it, Vego demonstrates through historical examples that sea control can be achieved by strategically positioning forces in straits and chokepoints. Mahan’s focus on blockades combined with Vego’s theory for sea control in straits and chokepoints can guide United States interplanetary grand strategy as the United States, China, India, Russia, the European Union, and countless others shift their sights towards the final frontier.

Straits and Chokepoints

Vego asserts that sea control, in its simplest form, is the ability for a nation to use a given part of the sea and associated air (and space) across the spectrum of conflict to deny the same to the enemy.7 Applying Vego’s definition of sea control and its application to specific geographic regions, the importance of straits becomes evident. Straits or “chokepoints” are a textbook case of sea control limited to a specific region and have remained of great importance throughout history. Nations that control these chokepoints can asphyxiate the enemy by halting commerce causing major economic impacts or denying freedom of maneuver in wartime. During the Napoleonic War, the British had a vested interested in ensuring a neutral Denmark and thus neutral Danish Straits. The plains to the north provided timber for the British and French Navy and were also critical for transporting grain amongst other vital commerce. A century later, Germany’s de facto control of the Danish Straits prevented Britain from reinforcing its Russian ally during the First World War. During the Second World War, the occupation of Denmark allowed Germany to leverage the full economic resources of Scandinavian countries while denying the Royal Navy access to the Baltics.8 Even in a galaxy far, far away the Trade Federation realized the importance of blockading Naboo by placing their battleships in key locations with the goal to leverage the full economic resources of the planet.

Admiral John Fisher, the First Sea Lord of the Royal Navy and founding father of the Dreadnought battleship, identified the strategic importance of Straits when positing this rhetorical question, “Do you know that there are five keys to the world? The Strait of Dover, the Straits of Gibraltar, the Suez Canal, the Straits of Malacca, the Cape of Good Hope. And every one of these keys we hold.”9,10 Although oversimplified, his aphorism still rings true today. In March of 2021, the M/V Ever Given became lodged in the Suez Canal disrupting commerce and causing an estimated 9.6 billion dollars of economic damage per day.11 Ships once waiting in line to transit the Suez Canal extended their voyage and incurred additional fuel and crew costs by sailing around the Cape of Good Hope to their destinations.12,13

Fig. 1. Ships sailing around the Cape of Good while the Suez Canal was blocked in March incurring extra fuel, time, and crew costs. (BBC graphic)

Lagrange Points and Halo Orbits

The same analogy holds true for space travel. Despite the incomprehensible distance, times, and vastness required for interplanetary travel, the chokepoints of sea control can also be distilled down to Lagrange points for space control.14 Lagrange points are specific points (orbits) between any two orbiting celestial bodies where gravitational and centrifugal force negate each other, resulting in orbits that can be maintained with little to no propulsion.15 In simpler terms, only five Lagrange points (labeled L1 through L5) exist between planets and their respective moons or the Sun and its planets.16 Due to the gravity-stable properties and low fuel requirements of Lagrange points, they are ideal for satellites and are understandably well known by space agencies. In 2017, the Director of NASA’s Planetary Science Division, Dr. Jim Green, proposed the radical idea of placing a magnetic dipole shield at Lagrange point L1 in the Sun-Mars system to create an artificial magnetosphere, shielding Mars from solar winds and radiation. This shield would allow the volcanic activity on Mars to continually build up the atmosphere until a point of self-sustainment.17 If a state or non-state actor saturates or even blockades critical Lagrange chokepoints, the ramifications could range from economic depression and collapse of critical space infrastructure to the loss of interplanetary colonies that may eventually inhabit the cosmos.18

Closer to home, satellites from both NASA and the European Space Agency have already made home in earth-system Lagrange points. Lagrange points, specifically L1, L2, and L3, can also host an ecosystem of satellites through halo orbits.19 Although halo orbits are dynamically unstable and require more fuel than the stable Lagrange points at L4 and L5, satellites in halo orbits at L2 can serve as communication relays from the dark side of the moon, Mars, and other celestial bodies. In May of 2018, China placed the first-ever lunar relay satellite, Queqiao, into a halo orbit at the Earth-Moon L2. The following year, China landed their Chang’e 4 rover on the far side of the moon using Queqiao as a communication relay.20 In addition to China, NASA and the European Space Agency have already placed satellites in Lagrange point L2 while countries such as Russia, India, and Japan have their own Lagrangian aspirations.21 Because Lagrange points and associated halo orbits can only host a limited number of spacecraft, the contest for this limited real estate by spacefaring nations can have terrestrial consequences.22,23 These important areas in space are not treatise to international norms and measures yet will be essential for lunar and interplanetary space lines of communication.24

Fig. 2. The Five Lagrange points, L1 through L5. M1 represents the larger celestial body and M2 represents any celestial body whose orbit is anchored to it. If M1 represents the sun, M2 represents the planets. If M1 represents the planets, M2 represents its moons. Source: http://hyperphysics.phy-astr.gsu.edu/hbase/Mechanics/lagpt.html

Access to Resources

The Trade Federation blockaded Naboo in an attempt to leverage the rare economic resources found in the planet. Similar to here on Earth, access to resources is necessary to lift countries and their populations’ standard of living. It is unlikely that much of the world will sacrifice their consumerism to live in harmony with each other and Mother Nature, leaving the limited resources on Earth to support an ever-growing consumer economy. Governments in the future are likely to look to space to solve their growth problems, much as European colonization looked to supplement sapped domestic resources in the 17th and 18th centuries. Beyond Lagrange chokepoints serving as potential flashpoints for real-estate between countries launching satellites, Martian trojan asteroids make home in the gravity-stable environment at Lagrange points L4 and L5 in the Mars-Sun system.25 The imperative of space lines of communication is not necessarily scientific exploration or protection of desirable orbits, but the ability to leverage the vast resources that abound in space. One asteroid floating between Mars and Jupiter is assessed to contain over 10 quintillion dollars of precious metals, more than 10,000 times larger than the 2019 global economy, far more wealth than Han Solo could have ever imagined.26,27

Interplanetary Transport Network and Space lines of Communication

Alfred Thayer Mahan’s unmistakable first lines in the Influence of History Upon Sea Power state:

“The first and most obvious light in which the sea presents itself from the political and social point of view is that of a great highway; or better, perhaps, of a wide common, over which men may pass in all directions, but on which some well-worn paths show that controlling reasons have led them to choose certain lines of travel rather than others. These lines of travel are called trade routes; and the reasons which have determined them are to be sought in the history of the world.”28

While the great highway, wide common, and well-worn paths refer to the sea, his quote can be analogous to Star Wars as well. The hyperspace routes in Star Wars, or trade routes, link the major worlds in the galaxy like an intergalactic superhighway. The routes are safe and account for traveling without colliding into celestial bodies including their gravitational pull. Han Solo couldn’t just punch it when blockade running from Imperial Cruisers. As the Imperial Cruisers closed on him, he quipped to a young Luke Skywalker that, “Traveling through hyperspace ain’t like dusting crops, boy! Without precise calculations we could fly right through a star or bounce too close to a supernova and that’d end your trip real quick, wouldn’t it?”29

Fig. 3. Punch it! Still from “Star Wars: Episode V”. Copyright Lucasfilm Limited. Used under the terms of Fair Use per 17 U.S. Code § 107.

Although hyperspace only remains a reality in the Star Wars Universe, a great highway through our solar system already exists. Lagrange points serve as interplanetary straits, connecting celestial bodies in our solar system through the Interplanetary Transport Network (ITN).30 The halo orbits around Lagrange points can be used to alter spacecraft and satellite trajectories to arrive at any point in the solar system with minimal energy, although reaching Mars could take a millennium using the ITN – far longer than the record breaking 12 parsec Kessel Run flown by Han Solo in the Millennium Falcon.31,32 However, the slowness of ITN trajectories can be modified with external speed injections. In 2003, Cal-Teach professors introduced a Multi-Moon Orbiter concept.33 The concept proposed that a spacecraft could use Lagrange points to modify its trajectory to survey the moons of Jupiter with a final touch down on Europa where NASA speculates both water and life could exist.34 Lagrange points will serve as the keys to unlock the universe that could transform mankind into a multi-planetary species.

Fig. 4. Artist’s depiction of the ITN that connects our solar system. Abrupt changes in trajectory are due to Lagrange points. Image credit: NASA/JPL

The Line between Prescient and Far-fetched

While critics may point to the astronomical costs and technological gaps that make interplanetary travel an impossibility, the critique is confined to now. In 1945, some mainstream scientists felt that satellites and intercontinental ballistic missiles were fool hardy errands that would be too technologically complex and cost prohibitive to develop.35 Less than twelve years later, Sputnik orbited the planet and within fifteen years, intercontinental missiles rested in silos. The once lone small metal ball named Sputnik launched by the Russians in 1957 has given way to a world that depends on complex networks of satellites. While GPS has become a household name in a few short decades, Russia’s GLONASS, China’s Beidou, and Europe’s Galileo systems offer competing location services with global navigation satellite systems (GNSS) receivers. The recent out-of-control Chinese rocket shows that China’s Communist Party is serious about becoming a space-based power and willing to pursue this capability at all costs without due regard for safety.36 Even more recently, the Chinese landed their Zhurong rover on Mars where President Xi Jinping proudly praised all involved by saying, “You were brave enough for the challenge, pursued excellence and placed our country in the advanced ranks of planetary exploration.”37 On July 11th, 2021, Richard Branson along with five other crewmates flew to space aboard the VSS Unity proving the viability of space tourism.38,39 The following week, Jeff Bezos and Blue Origin followed suit in achieving spaceflight in the New Shephard.40

The rapid pace of artificial intelligence (AI) advancement and Space X’s Falcon 9 rockets, Starhopper, and now Starship all show that a manned mission to Mars is a matter of when, not if, and might occur as soon as 2024. SpaceX has plans to colonize Mars with one million people by 2050.41,42

To sustain and develop a Martian colony and more, established and secure space lines of communication will be of critical importance. Interplanetary pursuits are being pursued at a break-neck pace by both allies and adversaries, including China, Russia, India, United Arab Emirates, the United Kingdom, and European Union.43 As each country pursues its own interests among the solar system, the United States must develop a grand strategy in the solar system to protect US interests against both state and non-state actors. The reflection of this reality came to fruition on June 7th, 2021, when Congressman Ted Lieu introduced the Space Infrastructure Act which will “issue guidance with respect to designating space systems, services, and technology as critical infrastructure.”44

Fig. 5. The success of Martian colonies will require an intelligent space strategy. Artist’s illustration of SpaceX Starships on Mars. Image credit: SpaceX.

Conclusion

The blockade of Naboo never happened, but it does have historical precedents and very real implications for space exploration and exploitation. As countries vie to expand their resources, they not only gaze across the vast oceans but upwards towards the final frontier. The increased focus on Mars and beyond demands a robust US interplanetary strategy to protect the United States’ interests in the cosmos. While the United States is rightly focused on earth-based priorities, Milan Vego’s canonical book Maritime Strategy and Sea Control: Theory and Practice, can provide guidance for interplanetary strategy in ensuring a “a free and open [solar system] in which all nations, large and small, are secure in their sovereignty and able to pursue economic growth consistent with accepted international rules, norms, and principles of fair competition.”45 If the United States neglects interplanetary strategy, the United States will be left behind as other countries not only develop but execute their interplanetary strategies.46 If Admiral Fisher was alive today, he would ask, “Do you know that there are five keys to the solar system?” We need to ask ourselves, who will control these keys?

Lieutenant Commander Dylan “Joose” Phillips-Levine is a naval aviator and serves with TACRON-12.  His Twitter handle is @JooseBoludo.

Lieutenant Commander Trevor Phillips-Levine is a naval aviator and serves as a department head in Strike Fighter Squadron Two. His Twitter handle is @TPLevine85.

Endnotes

1. George Lucas, 1999, ¨Star Wars: Episode I The Phantom Menace”, Lucasfilm Limited.

2. “Databank Naboo,” Star Wars, https://www.starwars.com/databank/naboo.

3. Tim Veekhoven, “The Trade Federation And Neimoidians: A History,” Star Wars (14 October 2014), https://www.starwars.com/news/the-trade-federation-and-neimoidians-a-history.

4. Erin Blakemore, “How the East India Company became the world’s most powerful business,” National Geographic, (6 September 2019) https://www.nationalgeographic.com/culture/article/british-east-india-trading-company-most-powerful-business.

5. Dr. Milan Vego, “Naval Classical Thinkers And Operational Art” Naval War College (2009) 3 Naval War College https://web.archive.org/web/20170131144505/https:/www.usnwc.edu/getattachment/85c80b3a-5665-42cd-9b1e-72c40d6d3153/NWC-1005-NAVAL-CLASSICAL-THINKERS-AND-OPERATIONAL-.aspx.

6. Dr. Milan Vego, Maritime Strategy and Sea Control: Theory and Practice, Routledge; 1st edition, (14 April 2016), 189 https://www.amazon.com/Maritime-Strategy-Sea-Control-Practice-ebook/dp/B019H40ST2

7. Ibid, 24

8. Ibid 188

9. The Editors of Encyclopaedia Britannica, “John Arbuthnot Fisher, 1st Baron Fisher,” Encyclopaedia Britannica https://www.britannica.com/biography/John-Arbuthnot-Fisher-1st-Baron-Fisher.

10. Dr. Milan Vego, Maritime Strategy and Sea Control: Theory and Practice, Routledge; 1st edition, (14 April 2016), 188 https://www.amazon.com/Maritime-Strategy-Sea-Control-Practice-ebook/dp/B019H40ST2

11. Kshitij Bhargava, “Single ship stuck causing Suez Canal ‘traffic jam’ may cost $9.6 billion per day,” Financial Express (26 March 2021) https://www.financialexpress.com/economy/single-ship-stuck-causing-suez-canal-traffic-jam-may-cost-9-6-billion-per-day/2220575/.

12. Daniel Stone, “The Suez Canal blockage detoured ships through an area notorious for shipwrecks,” National Geographic (29 March 2021) https://www.nationalgeographic.com/history/article/suez-blockage-detoured-ships-through-cape-good-hope-notorious-shipwrecks.

13. Peter S. Goodman and Stanley Reed, “With Suez Canal Blocked, Shippers Begin End Run Around a Trade Artery,” New York Times (26 March 2021, Update 29 March 2021) https://www.nytimes.com/2021/03/26/business/suez-canal-blocked-ship.html.

14. Lead Authors: Clementine G. Starling, Mark J. Massa, Lt Col Christopher P. Mulder, and Julia T. Siegel With a Foreword by Co-Chairs General James E. Cartwright, USMC (ret.) and Secretary Deborah Lee James in collaboration with: Raphael Piliero, Brett M. Williamson, Dor W. Brown IV, Ross Lott, Christopher J. MacArthur, Alexander Powell Hays, Christian Trotti, Olivia Popp, “The Future of Security in Space: A Thirty-Year US Strategy” Atlantic Council (April 2021) 35 https://www.atlanticcouncil.org/wp-content/uploads/2021/04/TheFutureofSecurityinSpace.pdf.

15. NASA/WMAP Science Team, “What is a Lagrange Point?,” NASA (27 March 2018) https://solarsystem.nasa.gov/resources/754/what-is-a-lagrange-point/.

16. Shane D. Ross, “The Interplanetary Transport Network,” American Scientist, Volume 94 (April 2006) 234 http://www.dept.aoe.vt.edu/~sdross/papers/AmericanScientist2006.pdf.

17.Matt Williams, “NASA proposes a magnetic shield to protect Mars’ atmosphere,” Universe Today (3 March 2017) https://phys.org/news/2017-03-nasa-magnetic-shield-mars-atmosphere.html.

18. Lead Authors: Clementine G. Starling, Mark J. Massa, Lt Col Christopher P. Mulder, and Julia T. Siegel with a Foreword by Co-Chairs General James E. Cartwright, USMC (ret.) and Secretary Deborah Lee James in collaboration with: Raphael Piliero, Brett M. Williamson, Dor W. Brown IV, Ross Lott, Christopher J. MacArthur, Alexander Powell Hays, Christian Trotti, Olivia Popp, “The Future of Security in Space: A Thirty-Year US Strategy” Atlantic Council (April 2021) 35 https://www.atlanticcouncil.org/wp-content/uploads/2021/04/TheFutureofSecurityinSpace.pdf.

19. Ibid 70.

20. Luyuan Xu, “How China’s lunar relay satellite arrived in its final orbit,” Planetary (15 June 2018) https://www.planetary.org/articles/20180615-queqiao-orbit-explainer

21. Lead Authors: Clementine G. Starling, Mark J. Massa, Lt Col Christopher P. Mulder, and Julia T. Siegel with a Foreword by Co-Chairs General James E. Cartwright, USMC (ret.) and Secretary Deborah Lee James in collaboration with: Raphael Piliero, Brett M. Williamson, Dor W. Brown IV, Ross Lott, Christopher J. MacArthur, Alexander Powell Hays, Christian Trotti, Olivia Popp, “The Future of Security in Space: A Thirty-Year US Strategy” Atlantic Council (April 2021) 35 https://www.atlanticcouncil.org/wp-content/uploads/2021/04/TheFutureofSecurityinSpace.pdf.

22. Ibid 70.

23. Ibid 10.

24. Ibid 72.

25. Jesse Emspak, Are Mars’ Trojan Asteroids Pieces of the Red Planet?,” Space (July 24, 2017) https://www.space.com/37565-mars-trojan-asteroids-pieces-of-the-planet.html.

26. Adam Smith, “Asteroid Worth $10 Quintillion Could Be Only One of Its Kind,” Independent (29 October 2020) https://www.independent.co.uk/life-style/gadgets-and-tech/asteroid-10-quintillion-psyche-19-iron-nickel-b1419635.html.

27. “Star Wars IV: A New Hope Quotes,” Movie Quote Database, https://www.moviequotedb.com/movies/star-wars-episode-iv-a-new-hope/quote_29904.html.

28. Alfred Thayer Mahan, “The Influence of Sea Power Upon History, 1660-1783,” Dover Publications; Revised ed. edition (November 1, 1987) https://www.amazon.com/Influence-History-1660-1783-Military-Weapons/dp/0486255093.

29. “Star Wars IV: A New Hope Quotes,” Movie Quote Database, https://www.moviequotedb.com/movies/star-wars-episode-iv-a-new-hope/quote_29894.html.

30. Shane D. Ross, “The Interplanetary Transport Network,” American Scientist, Volume 94 (April 2006) 230 http://www.dept.aoe.vt.edu/~sdross/papers/AmericanScientist2006.pdf.

31. Ibid 236.

32. Kyle Hill, “How the Star Wars Kessel Run Turns Han Solo into a Time-Traveler,” Wired (12 February 2013) https://www.wired.com/2013/02/kessel-run-12-parsecs/.

33. Ross, S. D. and Koon, W. S. and Lo, M. W. and Marsden, J. E. “Design of a Multi-Moon Orbiter,” Spaceflight Mechanics 2003. Advances in the Astronautical Sciences. No. 114. American Astronautical Society, 1. https://resolver.caltech.edu/CaltechAUTHORS:20101007-131136558

34.“ Ingredients for Life?,” NASA https://europa.nasa.gov/why-europa/ingredients-for-life/

35. John. A. Olsen, “A History of Air Warfare,” Potomac Books Incorporated (2010), audiobook. Part 5 Chapter 16, time: 16:42.

36. Alison Rourke, “‘Out-of-control’ Chinese rocket falling to Earth could partially survive re-entry,” The Guardian (4 May 2021) https://www.theguardian.com/science/2021/may/04/out-of-control-chinese-rocket-tumbling-to-earth.

37. Jonathan Amos, “China lands its Zhurong rover on Mars,” BBC (15 May 2021) https://www.bbc.com/news/science-environment-57122914.

38. Chelsea Gohd, “Virgin Galactic launches Richard Branson to space in 1st fully crewed flight of VSS Unity,” 12 July 2021) SPACE.COM https://www.space.com/virgin-galactic-unity-22-branson-flight-success

39. Mike Wall, “ Virgin Galactic Unveils New SpaceShipTwo Unity for Space Tourists,” Scientific American (23 February 2016) SPACE.COM https://www.scientificamerican.com/article/virgin-galactic-unveils-new-spaceshiptwo-unity-for-space-tourists/.

40. Paul Rincon, “Jeff Bezos launches to space aboard New Shepard rocket ship,” BBC (20 July 2021), BBC https://www.bbc.com/news/science-environment-57849364

41. Hanneke Weitering, “Elon Musk says SpaceX’s 1st Starship trip to Mars could fly in 4 years,” Space (16 October 2020) https://www.space.com/spacex-starship-first-mars-trip-2024.

42. Morgan McFall-Johnsen and Dave Mosher “Elon Musk says he plans to send 1 million people to Mars by 2050 by launching 3 Starship rockets every day and creating ‘a lot of jobs’ on the red planet,” Business Insider (17 January 2020) https://www.businessinsider.com/elon-musk-plans-1-million-people-to-mars-by-2050-2020-1.

43. “Once a two-country race, Mars missions now on radar of multiple nations,” Times of India (18 February 2021) https://timesofindia.indiatimes.com/home/science/once-a-two-country-race-mars-missions-now-on-radar-of-multiple-nations/articleshow/81096583.cms.

44. Mr. Lieu, “Space Infrastructure Act,” House of Representatives (17 May 2021) https://lieu.house.gov/sites/lieu.house.gov/files/LIEU_172_xml.pdf.

45. The Deparment Of Defense, “Indo-Pacific Strategy Report” Department of Defense (1 June 2019) https://media.defense.gov/2019/Jul/01/2002152311/-1/-1/1/DEPARTMENT-OF-DEFENSE-INDO-PACIFIC-STRATEGY-REPORT-2019.PDF.

46. Brien Flewelling, “Securing cislunar space: A vision for U.S. leadership,” Space News (9 November 2020) https://spacenews.com/op-ed-securing-cislunar-space-a-vision-for-u-s-leadership/.

Feature Image: Still from “Star Wars: Episode I” depicting the blockade of Naboo. Copyright Lucasfilm Limited. Used under the terms of Fair Use per 17 U.S. Code § 107.

Drones and Starlink: Combining Satellite Constellations With Unmanned Navy Ships

Emerging Technologies Topic Week

By Brandon Wall and Nicholas Ayrton

As times change, they demand that military doctrine and strategy change with it. Key to this is ensuring that the American military is ready to act anywhere and with short notice, requiring that it embrace the latest technologies to overcome the latest operational problems. From the reaper drones of the American wars in the Middle East to the Azeri drones that came to define the war in Nagorno-Karabakh, land-based drones are rapidly shaping the battlefields of the modern world. But the maritime domain has yet to fully embrace the use of drone technology.

The area of maritime drones seems to be a field where the civilian sector is more rapidly embracing new technology compared to the military. Norwegian company Kongsberg Maritime has recently concluded initial tests of an unmanned cargo container ship, making its first delivery to a fertilizer company, while South Korean technology giant Samsung is also investigating crewless vessels as a means to cut down on labor and maintenance costs to better stand against its Chinese competitors. It is in this second area of potential for advancements in cost-cutting and smaller crew requirements that the United States Navy (USN) could benefit most due to the increasing problem of an aging fleet of transport ships in need of replacement, as well as a personnel shortage that has only gotten more dire with time. 

Unmanned Solutions to Logistics Problems 

The dire state of naval logistics is hardly anything new, with General Stephen Lyons, current head of USTRANSCOM having said that in the event of a major conflict, there would not presently be sufficient naval sealift capacity to supply the United States military. Indeed, the capacity of the Navy is presently stretched so thin that, by its own admission, it would be unable to defend the military’s maritime supply lines in the event of a large-scale conflict. This is compounded by the nearly obsolete ships that are still in service and declining in numbers. In addition to this, the USN has been facing an ongoing shortage of sailors, falling several thousand below its targeted number year after year. This has led only to more problems, as currently serving sailors are then forced to pull extra weight, leading to overworking, lack of rest, and a generally less effective fighting force. In this area, one then finds a maritime logistics force in need of a modernization effort, coupled with a Navy that needs to either find more recruits or cut down on the number of jobs it needs sailors to fill.

Here unmanned maritime vessels offer a solution, allowing for the logistics ships of tomorrow to be built more cheaply and not requiring bulky spaces for crew compartments, food, water, and other aspects. More efficient designs could better fulfill their mission of carrying supplies where they need to go. Further, if naval logistics could be rendered more autonomous, this would theoretically allow for a much smaller number of sailors to command a much larger fleet of supply vessels, perhaps permitting a single sailor to monitor several largely autonomous ships, with direct control being needed only in particularly critical moments.

While the USN does appear to be looking into autonomous vessels, the focus seems to be on relatively small vessels, only around the size of a corvette, not on the large logistics vessels that would seem to be the most well-suited for automation and heavily demanded in sustained conflicts. While tests with these vessels have been promising, being able to operate without human intervention for all but the most delicate phases of their missions, the Navy’s program still lacks the ambition needed to truly capitalize on the potential for an unmanned naval logistics force. It is currently focusing more on small, rapid-response supply vessels, while continuing to neglect the larger vessels that would be needed for a large-scale conflict. 

Starlink and Commanding Drone Fleets

Extending beyond logistics, there also exists the potential for maritime drones and unmanned ships to be more involved in the observational and informational sides of warfare. Indeed, if admittedly biased sources out of the People’s Republic of China (PRC) are to be believed, then the U.S. is already making limited use of maritime intelligence drones, with one having supposedly been captured while operating off the coast of Jiangsu province to the north of Shanghai. If this is to be believed, then it offers the possibility of further using small, risk-worthy maritime drones to conduct surveillance, such as for general intelligence gathering or targeting for fires. A small fleet of semi-autonomous drones could also act as a screening force for operations, acting to provide an extended sensor net and provide greater tactical awareness, be they for combat operations or as an early warning system for unescorted logistics fleets.

However, with these hypothetical drone systems, whether in the form of logistics vessels, intelligence gatherers, or as a sensor net, there still exists the crucial question of establishing a reliable method of controlling them, since even an otherwise autonomous vessel may encounter a situation where a human operator must provide input. Current military communication satellites, while advanced, are also chronically overburdened and fighting for bandwidth with what little is available having to be rationed out to only the most crucial of systems and operations.

Enter Starlink. SpaceX’s new Starlink satellite constellation provides many options for military communications, provided the network could be rendered secure enough. The Starlink constellation currently consists of over 1,600 satellites, with plans to have thousands more of the mass-produced small satellites in low Earth orbit in the coming years. If successful, such a program would be theoretically able to provide easy and reliable connectivity for a globally-operated network of maritime drones that could be set up with only minimal infrastructure, allowing for large numbers of these units to be commanded.

A batch of 60 Starlink satellites awaiting deployment. (Photo via SpaceX)

The main issues are testing if the basic premise could function and if the system could be rendered secure. The first issue is whether a commercial system currently designed to provide connectivity to a variety of static locations could work as a command-and-control network for a fleet of autonomous vessels traversing the world’s oceans. Similarly, the United States Air Force has already begun the process of testing if Starlink technologies could function onboard a moving aircraft, likely a far more difficult task than connecting a relatively slow-moving ship onto which one could fit a larger array of communications equipment.

Secondly, concerns have been raised about the security of Starlink for military applications, as the network relies on communication with several ground-based hubs to function, while the military tends to prefer direct satellite-to-satellite optical communications. However, this too seems to be a solvable problem, with ten Starlink satellites with intra-network communications capability having been launched into a polar orbit this past January. Indeed, SpaceX has recently confirmed that all future Starlink satellites will be launched with the capability to use laser communication systems between satellites. If SpaceX could successfully work with the Defense Department, it could be feasible to bring the network’s security up to the standards needed to coordinate a fleet of maritime drones.

Conclusion

It is these two emerging technologies, maritime drone vessels and large satellite communication constellations, that could allow for the Navy to solve some of its ongoing issues and permit the creation of a more nimble, lean, and modern force able to better confront the rising security threats facing the United States in the years and decades to come.

Brandon Walls is an undergraduate student at the University of California, Davis. 

Nicholas Ayrton is a U.S. Navy veteran and current undergraduate student at the University of Arkansas.

Featured Image: A stack of Starlink internet satellites just before a launch. (Photo via SpaceX)

Human Factors Meets New Technology in 2025

Emerging Technologies Topic Week

By John Cordle and Robert Sweetman

A glimpse of what the future could hold in Human Performance Monitoring – and Improvement

This article is an exercise in “visualization,” looking at the art of the possible in combining science and technology— and changing Navy culture—to improve shipboard human performance. 

The year is 2025. Onboard USS Halberg (DDG 217), my fictitious grandson, who we will call LTJG “J.T.,” is about to take the watch as Officer of the Deck. In accordance with the Navy’s Force Crew Endurance and Fatigue Management instruction, signed by the CNO in 2023, he is standing a circadian watch rotation (three hours on watch, nine hours off) which is based on decades of research demonstrating the advantages of a repeatable, stable schedule to the body’s internal clock, a policy supported (as we shall see) by modern technology that creates a holistic assessment of his performance over time. 

After the deadly DDG collisions in 2017 and the Government Accountability Office (GAO) report on Fatigue Management and Crewing in 2021, the Navy re-examined its response to the 2017 Comprehensive Review and (finally) realized that the human is the most important part of any weapon system. This led to a fundamental shift in priorities as manpower requirements—which had long been underfunded and under-executed by as much as 15%— were made the number one priority, as GAO had recommended that “The Secretary of the Navy should ensure that the Office of Chief of Naval Operations uses crew requirements to project future personnel needs)” and the Department of the Navy (DON) concurred.1

Even as new technology allowed for fewer people to man the DDG Flight IIIA warships in their multi-mission role, the 2022 National Defense Authorization Act mandated 100% funding to the sea duty manpower account and ordered the Navy to measure against the full Ship’s Manning Document (SMD) requirement, instead of the funded portion. With its ability to coordinate manned and unmanned surface and airborne vehicles, which use artificial intelligence (AI) to learn about the environment and adjust tactics to an ever-changing threat, the ship is an awesome example of the implementation of the newest technology. But the heart of its warfighting capability—what makes this now fully-manned crew so formidable—is a well-honed team that is attuned to its own strengths and weaknesses thanks to human factors science and technology.

The first evidence of this is in the crew makeup. The Agile Manpower Model (AMM)2 uses AI to track and continually recalculate requirements. Gone are the days of manual calculations on a 3-year rotation by ship class; this has been replaced by an increasingly agile system that uses artificial intelligence and ever-adapting, comprehensive workload calculations, as well as a four-section Condition III watch rotation instead of the three-section model that had been used (with no real scientific basis) for decades. 

AMM does not exist, but given advances in AI and the complexity of the manpower management system, it is probably just a matter of time until it does.

This approach was formally adopted in 2022 as OPNAV policy, via change to OPNAVINST 1000.16, as a necessary foundation for the unique combination of work and watch that a Navy crew needs to maintain the ship, adding a formal requirement for eight hours of protected sleep time; this despite the fact that it resulted in a slight increase in the cost (less than ten percent) of manpower. Human factors research (including a 2008 study that showed a positive correlation between manning levels and lower mishap rates)3 tipped the scales in favor of the idea that it was in fact “worth it” to man ships to the calculated requirement. In addition, improvements in technology and a focused manpower analysis showed that the idea of underfunding manpower (previously funded at only 95% and manned to 95% of that) was not conducive to optimal performance and, in fact, not cost effective when balanced across the lifecycle maintenance cost of the ship; so in 2024 the Navy decided to leverage savings in other programs to fully fund the manpower account. 

It was only through an intense collaboration of Navy research centers, including the Naval Health Research Laboratory, the Naval Postgraduate School, the Center for Naval Analysis, and others that science eventually carried the day. The Expanded SURFMEX model was a big help, matching sailor experience to fleet needs and enhancing the detailing process.4 Lots of barriers had to come down to make that happen, including making human physiology research a funded program of record instead of an ad-hoc set of independent programs, but the resulting manpower modeling software, combined with AI protocols that inject real time data from the Fleet, made this process possible. 

While there have been great strides in planning, executing, and funding an improved manpower and manning process, much has been done to improve the command’s awareness of the well-being and performance of the individual crew members and teams as well. Warrior Toughness training, implemented along with the Expanded Operational Stress Control program way back in 2020, uses science to teach skills such as mindfulness, mediation, nutritional science, and exercise that have all combined to make the sailors of 2025 tougher and more resilient upon arrival, and build on that toughness throughout their career. The initiative to add Deployed Resiliency Counselors and a Chaplain to each deployed ship has paid off, as has the Behavioral Health Technician program that gives Independent Duty Corpsmen the ability to assess crew readiness and stress levels and get them assistance—before they become unplanned losses. 

Other psychology and physiology-based programs such as the Command Resilience Team, the Human Factors Council, and the availability of remote psychological counseling via unclassified video teleconference have expanded the level of mental health and resilience support to those on the front lines. All of these are examples of what is special about the human factors field, where technology and knowledge combine to provide increased awareness of the human condition – and how to improve it. 

There are new shipboard technologies as well. As J.T. heads to watch, he takes off the colored and lighted glasses that he put on when he awoke, designed to complement the body’s natural endocrine response that occurs during the transition from sleep to wakefulness in a process called “circadian entrainment”. He has another pair of glasses that he wears before going to bed to minimize the negative effects of blue light.5 The rack he slept in was not that of his father and grandfather— it has been replaced by the Advanced Rest and Recovery Integrated System (ARRIS). This was his safe place to retreat and recover from the stresses of the workday.6 In 2023, after the GAO report, and a series of research efforts by the Naval Postgraduate School,7 ARRIS were mandated to curb the fatigue epidemic in the Navy.

ARRIS does not exist, but it could. This would represent a new “human-factors centered” approach to a complete makeover of the Navy rack, turning it into a temperature and noise controlled environment. It includes a mattress tailored to individual preference, a full spectrum LED light to facilitate sleep and wakefulness using the optimal light wavelengths, and a set of noise reducing headphones that are also tuned to provide the sailor with a choice of white noise, natural sounds, or music as he falls asleep, bring him back to wakefulness with a gradual noise increase, and sound any ship alarm or emergency announcement that may occur during his protected sleep period. It also includes a passive heart and temperature monitor that (much like his computerized watch does at home) records his sleep quality and any disturbances that might impede his performance during his next work/watch period.

Having consumed a cup of coffee (energy drinks are generally frowned upon unless recommended by the Personal Performance Profile, PPP), another notional program that could provide a comprehensive look at each sailor’s daily alertness and fatigue levels. He checks in at the Physical Readiness Kiosk and gets a readout on his fatigue and performance level. J.T. completes a short self-assessment, where he rates his alertness level as a 6 out of 7, knowing that he fell short of the required eight hours of sleep due to an equipment casualty in his division that required overtime and supervision. 

The Navy has monitored the temperatures and pressures of its fluid systems, and the voltage and current of its electrical ones, for literally centuries; the idea of doing the same for its people was a long time coming. To assess his alertness, J.T. then looks into the eyepiece of a Psychomotor Vigilance Self-Test (PVT) machine, pressing the mouse with each flash of light, speaking into the voice machine, and after three minutes is cleared, by a series of proven technologies leveraged together, to take the watch. 

The PVT is used in various forms throughout industry; for example, on the International Space Station a Reaction Self-Test provides crewmembers with feedback on neurobehavioral changes in vigilant attention, state stability, and impulsivity. It helps crewmembers objectively identify when their performance capability is degraded by various fatigue-related conditions that can occur as a result of ISS operations and time in space (e.g., acute and chronic sleep restriction, slam shifts, extravehicular activity, and residual sedation from sleep medications).

 Lessons learned (and applied) from past incidents (e.g., the bombing of the USS Cole, and collisions involving USS Fitzgerald, USS John S. McCain, and other near misses) have shown the need not just for toughness—the ability to recognize, analyze, and mitigate stress though mental and physical readiness—but also for resilience, since when a missile or a mine puts a hole in the ship, the first minutes—and the next 48 to 72 hours—will test the mettle of the entire crew. During these crises the crew (including the Captain) start at whatever level of personal readiness—or fatigue—that they had when the water started coming in. 

J.T. remembers reading the GAO Report from 2021 where one of his (then) peers was quoted as seeing “fellow officers taking the watch in a state of senselessness driven by fatigue, unnoticed by shipboard leaders who looked the other way and ignored crew endurance principles.” My, how times (and culture) have changed! 

At the end of his three-hour watch, J.T. downloads his actigraph from the motion detecting “wearable” that he wears at all times in the form of either a ring or a watch, so that his information can enter the continuous monitoring data feedback stream under the Crew Readiness, Endurance, and Watch standing (CREW).8

CREW is a pilot program to “create a decision support tool so that you can understand how fatigued people are and how much sleep they are or are not getting,” explained Dr. Rachel Markwald, a sleep physiologist from NHRC. “We can then determine how those fatigue levels correspond with the health of the individual so that we can provide a way or course of action to offset some of the risks that come with fatigue and poor health.”  The long-term goal of CREW is to aid command leadership in making educated decisions about a sailor’s sleep pattern and/or their level of fatigue, capturing this data and combining it with the rest of the crew to place a real-time picture of the crew’s readiness at the CO’s fingertips. Each sailor’s data is secure, restricted from being used for any punitive measure, and and is not tied to him personally, but is available as a means of monitoring his own watch standing and work performance. 

A huge part of the culture of readiness is the idea that one’s own psychological and physiological readiness relies heavily on the concept of personal responsibility. 

Going over his past 24 hours and noting any deviations or issues, J.T. remembers that, in addition to the next watch cycle, he has to man the boat deck for an underway replenishment, one of the evolutions that is tagged for an Individual Risk Assessment. Looking ahead at a Fatigue Avoidance Scheduling Tool (FAST)9 printout of the next 24 hours, J.T. sees that in order to be at peak performance for the evolution that follows his next watch, he needs to take a 45-90 minute nap during the next nine hours. He programs that into his rack display, a monitor that shows his schedule for the next 24 hours so that anyone entering his stateroom will know that he is in a “protected sleep” period (if they did not see the red light outside the door, indicating such). J.T. calls it the “NORP” light, short for “Naval Officer Rest Period”. He learned that from his dad. 

In the end, J.T. rests easy, knowing that he has done his part to leverage the science and technology of Human Factors to maximize his own readiness, and by extension , the performance of his team and the safety of the crew that was able to sleep soundly while he had the watch. During his Protected Sleep Period (PSP) J.T. retires to his ARRIS. The Navy had acknowledged fatigue as a major contributor to errors in judgement, mental health and operational lethargy. J.T. enters his ARRIS to begin his breathing exercises and relaxation techniques. He knows from his training that the stressors of managing the ship are carried with him in the form of nor-adrenaline as he transitions to sleep. If he wants to have restful sleep, he needs to trigger a physiological change in his brain first. Much of this knowledge was provided during pipeline training and periodic updates and under the Crew Endurance and Fatigue Management program, a Navy- wide initiative that was expanded in response to the 2021 GAO report. 

In this version of the future, the implementation of human factors technology and fatigue management/crew endurance expertise, along with the combination of science, education, and technology—and finally, culture change—has been a game changer. Since the program’s inception, satisfaction at work has shot up dramatically, along with retention and operational performance scores. Reductions in mishaps and unplanned losses, combined with the savings from maintenance by fully-manned and less fatigued crews, has more than paid for the cost of research and development as well as the extra manpower that it justified. The Navy has (finally) made the decision to put sailors first and the results have been astounding. Granddad would be proud.

Dr. John Cordle is a retired Navy Captain who commanded two warships, USS Oscar Austin and USS San Jacinto, and was recognized with the 2010 Navy League Award for Inspirational Leadership, the Navy Bureau of Medicine Epictetus Award for Innovative Leadership, and the 2019 American Society of Engineers Solberg Award for his contribution to Navy Crew Endurance. This article is a figment of his active imagination built upon scientific research as it exists today – and as it could be.

Robert Sweetman is a former US Navy SEAL who served for eight years before being medically retired. He completed two tours at SEAL Team Seven, and one as an instructor at Naval Special Warfare Advanced Training Command. After retiring and following the suicide of a SEAL teammate, Mr. Sweetman continued his education at the University of California where he focused on sleep science, the link between sleep health and mental health, and designing technology to help with that problem.

Endnotes

[1] GAO 21-366, Actions Required to Address Crew Fatigue and Manning, May 2021.

[2] AMM is a capability that does not yet exist, but it could, using existing technology.

[3] Lazaretti, Patrick and Shattuck, Nita, HSI IN THE USN FRIGATE COMMUNITY: OPERATIONAL READINESS AND SAFETY AS A FUNCTION OF MANNING LEVELS, NPS Thesis, December 2008.

[4] Eckstein, Megan, “SWO Boss: Pilot Programs for Training, Manning Will Lead to More Experienced Fleet,” USNI News, 13 January 2021.

[5] Roza, David, Navy submariners are testing out their own version of ‘birth control glasses’ Make the Silent Service well-rested again. Task and Purpose, May 17, 2021.

[6] ARRIS is another capability that does not exist, but it could, using existing technology.

[7] Matsangas, Panagiotis Lewis Shattuck, Nita, Habitability in Berthing Compartments and Well-Being of Sailors Working on U.S. Navy Surface Ships, NPS Calhoun, May 2021.

 [8] Harkins, Gina, “Why 300 Sailors and Marines Deployed on an Amphibious Ship with Smart Rings,” Military.com, 14 Apr 2021.

[9]  FAST is one of many fatigue modeling tools used by industry to predict levels of performance degradation based on fatigue.

Featured Image: PACIFIC OCEAN (Aug. 10, 2021) Aviation Machinist’s Mate 2nd Class Armando Herrera, a native of Albuquerque, New Mexico, assigned to the “Argonauts” of Strike Fighter Squadron (VFA) 147, inspects an F-35C Lightning II on the flight deck of Nimitz-class aircraft carrier USS Carl Vinson (CVN 70). (U.S. Navy photo by Mass Communication Specialist 3rd Class Tyler Wheaton)

Sea Control 271 – Navigation in Particularly Sensitive Sea Areas with So Yeon Kim

By Jared Samuelson

So Yeon Kim joins the program to discuss “Particularly Sensitive Sea Areas,” their increasing politicization, and how states use them to protect sensitive ecosystems.

Download Sea Control 271 – Navigation in Particularly Sensitive Sea Areas with So Yeon Kim

Links

1. “Problems and Processes of Restricting Navigation in Particularly Sensitive Sea Areas,” by So Yeon Kim, The International Journal of Marine and Coastal Law, June 3, 2021. 

Reflecting on Colonial Approaches to the China-Vietnam Dispute in the South China Sea and the Tribute System,”  by So Yeon Kim, Journal of the History of International Law, January 31, 2021.

Jared Samuelson is Executive Producer and Co-Host of the Sea Control podcast. Contact him at Seacontrol@cimsec.org.

This episode was edited and produced by Keagan Ingersoll.

Fostering the Discussion on Securing the Seas.