Distributed Lethality’s C2 Sea Change

The concept of Distributed Lethality implies a simple command and control (C2) challenge: the surface fleet will field more ships with offensive weaponry, so more Commanding Officers will hold the ability to use deadly force.  Yet, today’s Navy does not grant individual ship CO’s enough autonomy to rapidly conduct offensive strike, nor can it rely on its world class tactical networks to always be available for a group commander to execute C2 remotely.  Even with the right C2, the Navy does not produce enough CO’s to fulfill the vision of Distributed Lethality.  To bring the exciting concept to life, the Navy will have to adjust the way it approaches maritime C2, and even its venerated notion of Command at Sea.

Maritime C2 is not “one-size-fits-all” and the roles, responsibilities, and authorities the Navy routinely assigns to its forces, particularly Carrier Strike Groups (CSGs), will have to be adjusted to capitalize on the real benefits of Distributed Lethality.  The Navy’s default approach to C2 – Composite Warfare Command (CWC) – would dictate that an Officer in Tactical Command (OTC) be designated, who would then assign specific warfare areas to individual Warfare Commanders.  The Surface Warfare Commander  (SuWC) is responsible for surface warfare, the Air and Missile Defense Commander (AMDC) responsible for air and missile defense, etc.  In a CSG, Composite Warfare Command works well.  The Strike Group Commander, onboard the aircraft carrier with all its staff and bandwidth benefits, is the OTC.   Normally, the Destroyer Squadron Commodore is the SuWC and Anti Submarine Warfare Commander (ASWC), and the CO of the Aegis Cruiser is the AMDC.  The OTC is ideally positioned to execute C2 of his or her forces and each Warfare Commander is ideally suited to defend the aircraft carrier.  There’s a reason CWC works so well in CSG operations…it was designed for CSG operations.  Over time, the Navy has come to apply CWC to almost every group of ships at sea (with varying degrees of success).  A simple scenario will show that, as the Navy begins to employ groups that look less and less like traditional CSGs, it will have to get back to its autonomous roots for Distributed Lethality C2.

Take, for example, a squadron of four next-generation Frigates with a primarily Offensive Anti-Surface Warfare (OASuW) mission.  Applying CWC, the first step would be to designate an OTC.  Perhaps there is a Commodore located on one of the Frigates, making the decision easy (although the Commodore has no technical or equipment advantage in C2 over any of the other Frigates).  It’s also possible that the Commodore is located on some other platform outside the squadron.  This would require a highly networked force, but in today’s maritime operations such a force is not uncommon.  Lacking a Commodore, one of the Frigate CO’s could be designated OTC, in which case the decision is essentially a wash.  Let’s assume for argument’s sake that OTC is a Commodore is located onboard a nearby aircraft carrier.  He or she would have more than enough C2 capability and capacity, as long as the tactical network remained robust.

Next, specific warfare areas need to be assigned to Warfare Commanders.  Let’s start with Air and Missile Defense.  None of the Frigates have a particularly remarkable air defense capability, especially when it comes to defending a group of ships.  OTC could just designate one of the Frigate CO’s as AMDC to facilitate command and reporting, but it is doubtful the CO and his or her crew would have any kind of specialized training in AMD C2.  The assignment would be largely nominal with minimal value added to overall C2 (each ship would likely end up just defending itself from airborne threats based on each CO’s individual direction).  To get any real value, an Aegis DDG or CG would need to be assigned to provide an AMD umbrella over the squadron…a challenge but not impossible! After all, any deployed CG or DDG is charged with area air defense at one time or another.

Now, let’s consider the assignment of SuWC.  The squadron’s entire mission is to locate, track, and possibly destroy enemy surface assets.  Each ship CO has the ideal weaponry, adequate C2 capability, and probably specialized training to make him or her a fine candidate for SuWC.  Choosing one CO over another would essentially be an arbitrary decision, which could have detrimental impacts in the heat of operations.  For example, if a CO (not designated as SuWC) gains contact and a firing solution on an enemy surface combatant, that CO then has to reach out to a peer for permission to engage (naval tactical enthusiasts will cry foul here, citing “command by negation” as a central tenet of CWC.  Command by negation may be the intent of CWC, but it is most certainly not the execution…especially in offensive operations).  Assuming SuWC doesn’t have to reach back to OTC for further permission, this C2 construct still introduces a costly time delay which effective offensive maritime operations can rarely afford.  Worse, the targeting CO may simply disregard the CWC contruct altogether because it doesn’t make any sense in this context.  After all, the Navy has always prided itself in developing CO’s capable of making tough decisions on their own.

So, you can see how the “cookie cutter” application of CWC falls apart pretty quickly in Distributed Lethality.  Certain elements, such as the assignment of an AMDC, can definitely be borrowed from CWC wherever they make sense; however, ship CO’s need to be empowered to perform their mission without excessive interference from higher headquarters.  If the squadron has robust tactical network connectivity – of which we already have the best in the world and we’re improving everyday – with the Commodore, then there’s no reason to deny him or her close control of the mission.  The Commodore has the experience, training, and staff support advantage over the individual CO’s.  When everything is clicking, Distributed Lethality with networked C2 can be achieved with lightning speed and violent effectiveness.  But what happens when the network breaks down?

As good as our tactical networks are, they can always fail, especially when our potential enemies are investing millions to make that happen.  To make Distributed Lethality work reliably, we need to shift from Network Centric Warfare to Network Optional Warfare.  The default C2 construct should be networked.  We have the capability and we’ve proven it can work.  But when a ship gets cut off from the network, the CO needs the training and authority to act autonomously and make the call.  This is more than just a call to return to Mission Command (hyperlink).  More appropriately, we need to practice Adaptive Mission Command.  Ship CO’s need to be well versed in playing as part of a team and taking tactical orders from a remote commander, but they need to rely on their own judgment when the time comes and higher headquarters is “unavailable for comment.”

Adaptive Mission Command implies a subtle, but monumental shift in the way the Navy views Command at Sea.  In Distributed Lethality, the basic unit of force application is actually not the individual ship, but the group of ships, whether that is a flotilla, a squadron, an ARG, etc.  Today, the pinnacle of a Naval Officer’s career is their first Command at Sea tour, typically “Commander Command.”  In the future, if we keep moving in the direction of Distributed Lethality, the pinnacle might be the command of a group of ships, which is treated as Major Command today.  Major Command tours as they are today, such as Commodore of a squadron, will be become more common within the vision of Distributed Lethality.  Consequently, the opportunity for command of ships with lethal capability will also grow.  Today’s manning and career development models don’t support producing enough “Commander Command” Officers to fuel Distributed Lethality.  Instead, we need to push the typical rank of first Command at Sea down, probably to senior Lieutenant Commanders, and view this as a predecessor to command of a group of ships (this does imply a need to field more inexpensive “low end” surface combatants such as Frigates or Patrol Craft, but I’ll stay away from the force structure aspect of Distributed Lethality for now).

The Distributed Lethality concept has the potential to revolutionize the American Naval way of war, but the Navy will have to radically change the way it approaches command of ships at sea.  Certain aspects of CWC, such as the AMDC, will work but CWC cannot be applied wholesale the way the Navy does so often today.  Instead, CO’s will need to be empowered to pull the trigger when they cannot reach back to the group commander, while being skillful in the art of networked group operations.  When the Navy begins to employ this sort of Adaptive Mission Command, it will find that it needs to re-examine one of its most fundamental pillars.  The flotilla or squadron will become the basic unit of force application, and the pinnacle of a naval career will become group command, not command of an individual ship.  CO’s may begin to view their first command tour as a stepping stone to group (or major) command…a chance to fine tune their warfighting and communication skills, and at times exercise their independent tactical judgment.  The venerated concept of Command at Sea may have to evolve with the advent of Distributed Lethality, but when we win the next war at sea, we will all ask the same question…what took so long?

LCDR Jimmy Drennan is a Surface Warfare Officer.  He is currently assigned as the Operations Officer in USS GETTYSBURG (CG 64).

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.
Select a Donation Option (USD)

Enter Donation Amount (USD)

One thought on “Distributed Lethality’s C2 Sea Change”

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.