Category Archives: Capability Analysis

Analyzing Specific Naval and Maritime Platforms

Kamikazes: The Legacy of Soviet Naval Aviation, Pt. 2

The following selections are derived from an article originally published in the Naval War College Review under the title, “Kamikazes: The Soviet Legacy.” Read it in its original form here.

Read Part One here.

By Maksim Y. Tokarev

As it was, the crews of the field-parked Backfires, in the best aviation tradition, had to accept the primary flight data during briefings in the regiments’ ready rooms. Of course, they had the preliminary plans and knew roughly the location of the incoming air-sea battle and the abilities of the enemy—the task force’s air defenses. In fact, the sorties were carefully planned, going in. But planning was very general for the way out. The following conversation in the ready room of the MRA ’s 183rd Air Regiment, Pacific Fleet NAF, which occurred in the mid-1980s, shows this very honestly. A young second lieutenant, a Backfire WSO fresh from the air college, asked the senior navigator of the regiment, an old major: “Sir, tell me why we have a detailed flight plan to the target over the vast ocean, but only a rough dot-and-dash line across Hokkaido Island on way back?” “Son,” answered the major calmly, “if your crew manages to get the plane back out of the sky over the carrier by any means, on half a wing broken by a Phoenix and a screaming prayer, no matter whether it’s somewhere over Hokkaido or directly through the moon, it’ll be the greatest possible thing in your entire life!” There may have been silent laughter from the shade of a kamikaze in the corner of the room at that moment.

The home fields of MRA units were usually no more than 300 kilometers from the nearest shoreline (usually much less). Each air regiment had at least two airstrips, each no less than 2,000 meters long, preferably concrete ones, and the Engineering Airfield Service could support three fully loaded sorties of the entire regiment in 36 hours. The efforts of shore maintenance were important, as all the missiles, routinely stored in ordnance installations, had to be quickly fueled and prepared for attachment to the planes before takeoff.

The takeoff of the regiment usually took about half an hour. While in the air, the planes established the cruise formation, maintaining strict radio silence. Each crew had the targeting data that had been available at the moment of takeoff and kept the receivers of the targeting apparatus ready to get detailed targeting, either from the air reconnaissance by voice radio or from surface ships or submarines. The latter targeting came by high-frequency (HF) radio, a channel known as KTS Chayka (the Seagull short-message targeting communication system) that was usually filled with targeting data from the MRSC Uspekh (the Success maritime reconnaissance targeting system), built around the efforts of Tu-95RC reconnaissance planes. The Legenda (Legend) satellite targeting system receiver was turned on also, though not all planes had this device. The Backfire’s own ECM equipment and radar-warning receivers had to be in service too. With two to four targeting channels on each plane, none of them radiating on electromagnetic wave bands, the crowd of the Backfires ran through the dark skies to the carrier task force.

Where Are Those Mad Russians?

Generally, detailed data concerning the U.S. air defense organization were not available to Soviet naval planners. What they knew was that F-4, and later F-14 planes could be directed from three kinds of control points: the Carrier Air Traffic Control Center on the carrier itself, an E-2 aloft, or the Air Defense Combat Center of one of the Aegis cruisers in formation. Eavesdropping on the fighter-direction VHF and ultra high-frequency radio circuits by reconnaissance vessels and planes gave Soviet analysts in 1973–74 roughly the same results as were subsequently noted by late Vice Admiral Arthur Cebrowski: “Exercise data indicated that sometimes a squadron of F-14s operating without a central air controller was more effective in intercepting and destroying attackers than what the algorithms said centralized control could provide.”

SNAF planners found that interceptor crews were quite dependent on the opinions of air controllers or FDOs, even in essence psychologically subordinate to them. So the task of the attackers could be boiled down to finding a way to fool those officers—either to overload their sensors or, to some degree, relax their sense of danger by posing what were to their minds easily recognizable decoys, which were in reality full, combat-ready strikes. By doing so the planners expected to slow the reactions of the whole air defense system, directly producing the “golden time” needed to launch the missiles. Contrary to widespread opinion, no considerable belief was placed in the ability of launched missiles to resist ECM efforts, but the solid and partially armored airframe of the Kh-22 could sustain a significant number of the 20mm shells of Close-In Weapon System (CIWS) guns. (Given the even more rigid airframe of the submarine-launched missiles of the Granit family —what NATO called the SS-N-19 Shipwreck—it would have been much better for the U.S. Navy to use a CIWS of at least 30mm caliber.)

1984 – A U.S. Navy Grumman F-14A Tomcat of Fighter Squadron VF-1 “Wolfpack” escorting two Soviet Tupolev Tu-16 aircraft (NATO reporting “Badger”). (Photo via Wikimedia Commons)

Things could become even worse for the carriers. In some plans, a whole VVS fighter air regiment of Su-15TM long-range interceptors would have escorted the MRA division, so that the F-14s over the task force might have been overwhelmed and crowded out by similar Soviet birds. Though the main targets for the Sukhois, which as pure interceptors were barely capable of dogfighting, were the E-2 Hawkeyes, it is possible that some F-14s could have become targets for their long-range air-to-air missiles with active radar seeker (such as R-33, similar to the AIM-54). Sure enough, no Sukhoi crews had been expected to return, mainly because of their relatively limited range and the fact that they, mostly unfamiliar with long flights over the high seas, depended on the bomber crews’ navigation skills.

Long before reaching the target, at a “split” position approximately 500 kilometers from the carrier task force, and if the target’s current position had been somehow roughly confirmed, the air division’s two regimental formations would divide into two or three parts each. The WSO of each plane adopted his own battle course and altitude and a flight plan for each of his missiles. As we have seen, the early versions of Kh-22 had to acquire the target while on the plane’s hardpoints, making this a terrible job very close to that of a World War II kamikaze, because between initial targeting of the carrier by the plane’s radar and missile launch the Backfire itself was no more than a supersonic target for AIM-54s.

The more Phoenixes that could be carried by a single interceptor, the more Backfires that could be smashed from the sky prior to the launch of their Kh-22s. So if the Backfires were the only real danger to U.S. carriers up to the fall of the USSR , it would have been much better for the U.S. Navy to use the F-111B [carrier-based interceptor], a realization of the TFX (Tactical Fighter Experimental) concept, than the F-14. A Tomcat could evidently carry the same six Phoenixes as an F-111B, but there were the data that the “Turkey” could not bring all six back to the carrier, owing to landing-weight limitations. Imagine a fully loaded Tomcat with six AIM-54s reaching its “bingo point” (limit of fuel endurance) while on barrier CAP station, with air refueling unavailable. The plane has to land on the carrier, and two of its six missiles have to be jettisoned. Given the alternating sorts of approaches by Backfire waves, reducing the overall number of long-range missiles by dropping them into the sea to land F-14s safely seems silly. Admiral Thomas Connolly’s claims in the 1960s that killed the F-111B in favor of the F-14 (“There isn’t enough power in all Christendom to make that airplane what we want!”) could quite possibly have cost the U.S. Navy a pair of carriers sunk.

A General Dynamics F-111B (BuNo 151970) in flight over Long Island, New York (USA), in 1965. (Photo via Wikimedia Commons)

The transition of the U.S. Navy from the F-14 to the F/A-18 made the anti-Backfire matter worse. Yes, the Hornet, at least the “legacy” (early) Hornet, is very pleasant to fly and easy to maintain, but from the point of view of range and payload it is a far cry from the F-111B. How could it be otherwise for a jet fighter that grew directly from the lightweight F-5? Flying and maintaining naval airplanes are not always just for fun; sometimes it takes long hours of hard work to achieve good results, and it had always been at least to some degree harder for naval flyers than for their shore-based air force brethren doing the same thing. Enjoying the Hornet’s flying qualities at the expense of the Phoenix’s long-range kill abilities is not a good tradeoff. Also, the Hornet (strike fighter) community evidently has generally replaced its old fighter ethos with something similar to the “light attack,” “earthmover” philosophy of the Vietnam-era A-4 (and later A-7) “day attack” squadrons; all the wars and battle operations since 1990 seem to prove it. It is really good for the present situation that the ethos of F/A-18 strike fighter pilots is not the self-confident bravado of the F-14 crews but comes out of more realistic views. Yet for the defense of carrier task forces, it was not clever to abandon the fast, heavy interceptor, able to launch long-range air-to-air missiles—at least to abandon it completely.

To fool the FDOs, the incoming Backfires had to be able to saturate the air with chaff. Moreover, knowing the position of the carrier task force is not the same as knowing the position of the carrier itself. There were at least two cases when in the center of the formation there was, instead of the carrier, a large fleet oiler or replenishment vessel with an enhanced radar signature (making it look as large on the Backfires’ radar screens as a carrier) and a radiating tactical air navigation system. The carrier itself, contrary to routine procedures, was steaming completely alone, not even trailing the formation.

To know for sure the carrier’s position, it was desirable to observe it visually. To do that, a special recce-attack group (razvedyvatel’no-udarnaya gruppa, RUG) could be detached from the MRA division formation. The RUG consisted of a pair of the Tu-16R reconnaissance Badgers and a squadron of Tu-22M Backfires. The former flew ahead of the latter and extremely low (not higher than 200 meters, for as long as 300–350 kilometers) to penetrate the radar screen field of the carrier task force, while the latter were as high as possible, launching several missiles from maximum range, even without proper targeting, just to catch the attention of AEW crews and barrier CAP fighters. Meanwhile, those two reconnaissance Badgers, presumably undetected, made the dash into the center of the task force formation and found the carrier visually, their only task to send its exact position to the entire division by radio. Of course, nobody in those Badgers’ crews (six or seven officers and men per plane) counted on returning; it was 100 percent a suicide job.

After the RUG sent the position of the carrier and was shattered to debris, the main attack group (UG, udarnaya gruppa) launched the main missile salvo. The UG consisted of a demonstration group, an ECM group armed with anti-radar missiles of the K-11 model, two to three strike groups, and a post-strike reconnaissance group. Different groups approached from different directions and at different altitudes, but the main salvo had to be made simultaneously by all of the strike groups’ planes. The prescribed time slot for the entire salvo was just one minute for best results, no more than two minutes for satisfactory ones. If the timing became wider in an exercise, the entire main attack was considered unsuccessful.

 An aerial view of the U.S. Navy Battle Group Echo underway in formation in the northern Arabian Sea on 1 November 1987. (Photo via U.S. National Archives)

Moreover, in plans, three to five planes in each regimental strike had to carry missiles with nuclear warheads. It was calculated that up to twelve hits by missiles with regular warheads would be needed to sink a carrier; by contrast, a single nuclear-armed missile hit could produce the same result. In any case, almost all Soviet anti-carrier submarine assets had nuclear-armed anti-carrier missiles and torpedoes on board for routine patrols.

Having launched their missiles, it was up to the crews, as has been noted above, to find their way back. Because of the possibility of heavy battle damage, it was reasonable to consider the use of intermediate airfields and strips for emergency or crash landings, mainly on the distant islands, even inhabited ones, in the Soviet or Warsaw Pact exclusive economic zones. The concept of using the Arctic ice fields for this purpose was adopted, by not only the MRA but the VVS (interceptors of the Su-15, Tu-128, and MiG-25/31 varieties) too. Though the concept of maintaining such temporary icing strips had been accepted, with the thought that planes could be refueled, rearmed, and even moderately repaired in such a setting, it was not a big feature of war plans. The VVS as a whole was eager to use captured airfields, particularly ones in northern Norway, but the MRA paid little attention to this possibility, because the complexity of aerodrome maintenance of its large planes, with their intricate weapons and systems, was considered unrealistic at hostile bases, which would quite possibly be severely damaged before or during their capture.

All in all, the expected loss rate was 50 percent of a full strike—meaning that the equivalent of an entire MRA air regiment could be lost in action to a carrier task force’s air defenses, independent of the strike’s outcome.

An Umi Yukaba for the Surface and Submarine Communities

Although the first massive missile strikes on carrier task forces had to be performed by SNAF/DA forces, there were at least two other kinds of missile carriers in the Soviet Navy. The first were guided-missile ships, mostly in the form of cruisers (CGs), those of Project 58 (the NATO Kynda class), Project 1144 (Kirov class), and Project 1164 (Slava class). Moreover, all the “aircraft-carrying cruisers” of Project 1143 (the Kiev class, generally thought of as aircraft carriers in the West) had the same anti-ship cruise missiles as the CGs of Project 1164. Also, the destroyers of Project 956 (Sovremenny class) could be used in this role, as well as all the ships (the NATO Kresta and Kara classes) armed with ASW missiles of the Type 85R/RU/RUS (Rastrub/Metel, or Socket/Snowstorm) family, which could be used in an anti-ship mode. The main form of employment of guided missile ships was the task force (operativnoye soedinenie, in Russian), as well as the above-noted direct-tracking ship or small tactical groups of ships with the same job (KNS or GKNS, respectively, in Russian).

The other anti-carrier missile carriers were nuclear-powered guided-missile submarines (SSGNs), in a vast number of projects and types, using either surface or submerged launch. The most deadly of these were the Project 949A boats (NATO Oscar IIs), with P-700 Granit missiles. (The SSGN Kursk, recently lost to uncertain causes, was one of them.) The operational organization for the submarine forces performing the anti-carrier mission was the PAD (protivo-avianosnaya divisiya, anticarrier division), which included the SSGNs, two for each target carrier, and nuclear-powered attack submarines for support. In sum, up to fifteen nuclear submarines would deploy into the deep oceans to attack carrier task forces. One PAD was ready to be formed from the submarine units of the Northern Fleet, and one, similarly, was ready to assemble in the Pacific Fleet.

1986 – An elevated port side view of the forward section of a Soviet Oscar-class nuclear-powered attack submarine. (Photo via U.S. National Archives)

A detailed description of the tactics and technologies of all those various assets is beyond the aim of this article, but one needs an idea of how it worked as a whole. The core of national anti-carrier doctrine was cooperative usage of all those reconnaissance and launch platforms. While they understood this fact, the staffs of the Soviet Navy had no definite order, manual, or handbook for planning anti-carrier actions except the “Tactical Guidance for Task Forces” (known as TR OS-79), issued in 1979 and devoted mainly to operational questions of surface actions, until 1993, when “Tactical Guidance for Joint Multitype Forces” entered staff service. The latter document was the first and ultimate guidance for the combined efforts of the MRA , surface task forces, and submerged PADs, stating as the overall goal the sinking of the designated target carriers at sea with a probability of 85 percent.

It is no secret that the officers of the surface community who served on the guided-missile ships counted on surviving a battle against a U.S. Navy carrier air wing for twenty or thirty minutes and no more. In reality, the abilities of the surface-to-air missiles (SAMs) installed on the ships were far less impressive than the fear they drew from U.S. experts. For example, the bow launcher of the Storm SAM on the Kresta– and Kara-class ASW destroyers shared a fire-control system with the Metel ASW missile. It would be quite possible for U.S. aircraft to drop a false sound target (imitating a submarine) ahead of the Soviet formation to be sure that the bow fire-control radars would be busy with the guidance of ASW missiles for a while. The bow SAM launchers of the destroyers of these classes would be useless all this time, allowing air attacks from ahead. Even “iron” bombs could mark the targets.

SSGNs were evidently considered in the West to be the safest asset of the Soviet Navy during an attack, but it was not the case. The problem was hiding in the radio communications required: two hours prior to the launch, all the submarines of the PAD were forced to hold periscope depth and lift their high frequency-radio and satellite communication antennas up into the air, just to get the detailed targeting data from reconnaissance assets directly (not via the staffs ashore or afloat); targeting via low- or very-low-frequency cable antennas took too much time and necessarily involved shore transmitting installations, which could be destroyed at any moment. There was little attention paid to buoy communication systems (because of the considerable time under Arctic ice usual for Soviet submarines). Thus the telescoping antennas in a row with the periscopes at the top of the conning tower were the submarine’s only communication means with the proper radio bandwidth. Having all ten or fifteen boats in a PAD at shallow depth long before the salvo was not the best way to keep them secure. Also, the salvo itself had to be carried out in close coordination with the surface fleet and MRA divisions.

However, the main problem was not the intricacy of coordination but targeting —that is, how to find the carrier task forces at sea and to maintain a solid, constant track of their current positions. Despite the existence of air reconnaissance systems such as Uspekh, satellite systems like Legenda, and other forms of intelligence and observation, the most reliable source of targeting of carriers at sea was the direct-tracking ship. Indeed, if you see a carrier in plain sight, the only problem to solve is how to radio reliably the reports and targeting data against the U.S. electronic countermeasures. Ironically, since the time lag of Soviet military communication systems compared to the NATO ones is quite clear, the old Morse wireless telegraph used by the Soviet ships was the long-established way to solve that problem. With properly trained operators, Morse keying is the only method able to resist active jamming in the HF band. For example, the Soviet diesel-electric, Whiskey-class submarine S-363, aground in the vicinity of the Swedish naval base at Karlskrona in 1981, managed to communicate with its staff solely by Morse, despite a Swedish ECM station in the line of sight. All the other radio channels were effectively jammed and suppressed. While obsolete, strictly speaking, and very limited in information flow, Morse wireless communication was long the most serviceable for the Soviet Navy, owing to its simplicity and reliability.

But the direct tracker was definitely no more than another kind of kamikaze. It was extremely clear that if a war started, these ships would be sent to the bottom immediately. Given that, the commanding officer of each had orders to behave like a rat caught in a corner: at the moment of war declaration or when specifically ordered, after sending the carrier’s position by radio, he would shell the carrier’s flight deck with gunfire, just to break up the takeoff of prepared strikes, fresh CAP patrols, or anything else. Being usually within the arming zone of his own anti-ship missiles and having no time to prepare a proper torpedo salvo, the “D-tracker’s” captain had to consider his ship’s guns and rocket-propelled depth charges to be the best possible ways to interfere with flight deck activity. He could even ram the carrier, and some trained their ship’s companies to do so; the image of a “near miss,” of the bow of a Soviet destroyer passing just clear of their own ship’s quarter is deeply impressed in the memory of some people who served on board U.S. aircraft carriers in those years.

Lieutenant Commander Tokarev joined the Soviet Navy in 1988, graduating from the Kaliningrad Naval College as a communications officer. In 1994 he transferred to the Russian Coast Guard. His last active-duty service was on the staff of the 4th Coast Guard Division, in the Baltic Sea. He was qualified as (in U.S. equivalents) a Surface Warfare Officer/Cutterman and a Naval Information Warfare/Cryptologic Security Officer. After retirement in 1998 he established several logistics companies, working in the transport and logistics areas in both Europe and the Commonwealth of Independent States.

Featured Image: March 3, 1986 – A left underside view of a Soviet Tu-22 Backfire aircraft in flight. (Photo via U.S. National Archives)

Kamikazes: The Legacy of Soviet Naval Aviation, Pt. 1

The following selections are derived from an article originally published in the Naval War College Review under the title, “Kamikazes: The Soviet Legacy.” Read it in its original form here.

By Maksim Y. Tokarev

The Naval Air Force of the Soviet Navy: The Admirals’ Stepchild

Despite the fact that Russian military aviation was born within the navy, since 1922—when the Union of Soviet Socialist Republics, the USSR, was created— until today the Naval Air Force has been essentially the representative office of the Soviet/Russian Air Force (Voyenno-Vozdushnie Sily, or VVS ) in the navy realm. Russian naval aviation has not possessed two features that distinguish naval air forces from those of the army or “big” national air force counterparts:

  • A system of development, design, and purchase of aircraft and weapons
  • A system of education and training of flying personnel (from 1956 onward).

All such systems were and are still mostly in the hands of the air force (during World War II, an army air force, known as the VVS -RKKA).

Technically, the Soviet Naval Air Force (SNAF) was part of the navy. But in fact, SNAF fixed-wing planes, with a handful of exceptions—such as the vertical/ short-takeoff-and-landing (VSTOL ) light-attack Yak-38 and a small family of seaplanes of the Beriev Aircraft Company (the Be-6, Be-12, Be-200)—were, as they still are, ordered by and developed for the air force. All the huge long-range, heavy bombers, such as the Tu-16 (NATO Badger family), the Tu-95 (Bear), and the Tu-22 (Backfire), were developed under the orders and specifications of the Soviet Air Force’s bomber command, the DA (Dal’naya Aviatsiya, or Long-Range Aviation). Moreover, the DA’s heavy bomber units constituted an integral part of the anti-carrier doctrine, representing nearly a third of the forces that would be involved in strikes. Those units could temporarily fall under operational control of the SNAF. Two-thirds of the rest were organized as the MRA (Morskaya Raketonosnaya Aviatsiya, or Naval Guided-Missile Aviation), permanently under the operational and administrative control of the navy.

But this administrative interconnection did not remove the curtain between the navy’s philosophy and ethos and those of the VVS. Soviet naval aviators, all commissioned officers, held field rank instead of deck (naval) rank and were completely out of the chain of command of naval surface ships, units, and staffs, let alone submarines. Their areas of responsibility and service were almost exclusively aviation matters. Each of the four fleet staffs, typically headed by a full admiral (three stars) or a vice admiral (two stars), had a subordinate Staff of Naval Aviation of the X Fleet (where X would be Baltic, Northern, Black Sea, or Pacific), which commanded all the fleet’s air units. For each fleet’s commanding general of aviation, typically a major general or lieutenant general, to whom this staff reported, there was only one possible next career step within the navy: to become commanding general of Naval Aviation of the Soviet Navy in the Naval Main Staff in Moscow, as a colonel general.

Needless to say then, almost all naval aviators and naval air navigators (roughly similar to American naval flight officers) from the beginning of their careers kept their eyes the other way—toward an interservice transfer to the VVS, where they could reach much higher command assignments, as air marshals. Moreover, all of them had friends in the VVS, because the navy did not have its own system of pilot and navigator training courses, schools, or academies. All naval aviators, navigators, and aviation engineers were (and still are) graduates of VVS air military colleges or air military engineering colleges. So not only were they aware that they represented a marginal part of the annual alumni pool, having chosen the restricted SNAF path instead of the wide-open VVS, but their early military and flying experience, the four or five years spent in an air college, had filled them with VVS ethos and traditions instead of the navy’s. It is worth noting that, contrary to U.S. military aviation training practice, Soviet/Russian VVS air colleges inserted cadets into the flying pipeline roughly in the middle of the course, two years before graduation and commissioning. All Soviet military pilots could fly the modern military aircraft in almost all circumstances months before the little stars of a second lieutenant were on their shoulders. There are close parallels to British Royal Air Force (RAF ) practice and ethos, and to those of the World War II Luftwaffe as well…

…This semi-separation of the SNAF from the navy created, without doubt, neglect on the part of the “true” naval officer communities, surface and submarine. Given the rule that no naval aviator or navigator could attain flag rank in any of the fleet staffs and that the admirals and deck-grade officers of the Soviet Navy only occasionally flew on board naval aircraft, and then as passengers only, there was no serious trust in the SNAF in general or its anti-carrier role in particular. The SNAF, though its actions were coordinated with surface and submarine units in war plans and staff training, would attack on its own, whereas missile-firing surface units and submarines had to complement each other, depending on overall results.

The actual training of SNAF units had no significant connection with surface or submarine units below the level of “type” staffs of the fleet. Communications between SNAF aircraft aloft and guided-missile cruisers at sea or even with shore radio stations maintaining submarine circuits often failed because of mistakes in frequencies or call signs. So the “real” admirals’ common attitude toward the MRA was essentially the same as that toward shore-based missiles: order them to take off, heading for the current target position, and forget them. No wonder that the kamikaze spirit was often remembered in the ready rooms of MRA units ashore.

The Soviet Navy had itself experienced the real thing once, in 1945, in the last month of the war. While supporting an amphibious landing on the Kurile Islands, a small group of Soviet ships was attacked by several B5N2 Kate torpedo bombers from the Kurile-based Hokuto Kokutai, an outfit normally devoted to patrol and ASW over the surrounding sea. According to Japanese records, at the time of the attacks only five Kates from that unit were flyable, and four of them participated in kamikaze attacks against the Soviet amphibious assaults, armed with 200-kilogram depth charges or 60-kilogram general-purpose bombs. On 12 August two of these planes were shot down by AA fire from the minesweeper T-525 (a U.S.-built AM type), and one crashed directly into the small motor minesweeper KT-152 (a mobilized fishing boat), which immediately sank with all hands. This was the only successful kamikaze encounter in Soviet naval history.

Why Should We Attack the U.S. Carriers— and for God’s Sake, How?

Unable to create a symmetrical aircraft carrier fleet, for both economic and political reasons, the Soviet Navy had to create some system that could at least deter the U.S. Navy carrier task forces from conducting strikes against the naval, military, and civilian infrastructure and installations on the Kola and Kamchatka Peninsulas, Sakhalin Island, and the shoreline around the city of Vladivostok. The only reasonable way to do so was as old as carrier aviation doctrine itself: conduct the earliest possible strike to inflict such damage that the carrier will be unable to launch its air group, or at least the nuclear-armed bombers. There was also an important inclination to keep the SLOCs in Mediterranean under the threat of massive missile strikes. These plans, given the absence of a Soviet carrier fleet, definitely rode on the wings of land-based aviation. Riding also on the shoulders of air-minded military leaders, they reached out farther than the typical 500-mile combat radius of regular medium bombers, by means of something much more clever than the iron, unguided bombs that had been the main weapon of Soviet bombers for a long time.

The origins of guided anti-ship missiles in military aviation are German. Hs293 missiles and FX1400 guided bombs were successfully employed in 1943–44 by Luftwaffe bomber units; one of only five battleships sunk at sea solely by aviation, the Italian battleship Roma, was sunk by FX1400s dropped and guided by Do-217 crews of Kampfgeschwader (Bomber Squadron) 100. But those weapons, being radio controlled, could have been easily disabled by relatively simple ECM measures, such as jamming, had the ECM operator known the guidance frequency. A more promising method of guidance was active radar seekers, which made such weapons independent of the carrying platform after launch. The first air-to-surface missile with such guidance and targeting was created in Sweden in the early 1950s and entered service with the Swedish air force as the Rb04 family.

Regardless of whether it had the help of intelligence information, the Soviet weapons industry managed to develop its own device at roughly the same time, but using semiactive targeting. The first such missile, the KS-1 Kometa (Comet), started development in 1951 and entered service two years later. From the beginning, and in contrast to all other such systems, Soviet anti-ship missiles were designed to kill carriers and other big ships by hitting pairs. The warhead of the KS-1 contained more than 800 kilograms of explosive, and the missile generally resembled a little unmanned MiG-15 fighter plane. The old Japanese Okha concept had clearly been adopted entirely, with the exception of a sacrificial pilot.

KS-1 Kometa (Kennel) anti-ship missile mounted on a Tu-16KS (BADGER B) formerly of the Indonesian Air Force, on display at the Air Force Museum, Yogyakarta. (Photo via Wikimedia Commons)

It is worth noting that the nuclear strike/deterrent role was exclusive to U.S. aircraft carriers for less than a single year, from the first assembly of a nuclear bomb on board a carrier in December 1951 to the successful trial launch of a Regulus nuclear cruise missile from a submarine in 1952. The carriers’ shared (i.e., with submarines) nuclear role lasted up to 1964, when George Washington– class ballistic-missile submarines went on patrol on a regular basis.

From that time onward, as Adm. James Stockdale recalls, the primary role of the carrier air groups, even fighter squadrons, became the close support of land combat, as well as land interdiction. The beginning of the Vietnam War featured this mode of employment. SNAF staffs found that the main skills of the carriers’ attack squadrons (medium and light) changed twice. From 1964 to 1974, during the Vietnam War, it was mostly land targets that attack squadrons were intended to strike; from 1975 to the Desert Storm operation in 1990 the carrier attack community shifted its focus to readiness to engage Soviet surface fleets at sea, developing the Harpoon guided-missile family. During the first Iraq war the main effort switched again, to close air support and battlefield interdiction ashore. While it was not going to deal with the carrier attack planes directly, the SNAF was watching with interest the fluctuation in the U.S. Navy’s fleet air-defense inventory and tactics, driven by changes in the targets between the open sea and continental landscapes. It was important to find the difference between the typical CAP tactics at sea and barrier CAP duty offshore, calculating the average times that F-4 and F-14 interceptors remained on station between aerial refueling and rotation of patrols….

…The U.S. carrier task force had first been considered a real threat to Soviet shore targets in 1954, when intelligence confirmed the presence of nuclear weapons (both bombs and Regulus missiles) on board the carriers, as well as planes that could deliver them (AJ-1s and A3Ds). The first anti-carrier asset tested in the air at sea was of American origin—the Tu-4 heavy bomber, a detailed replica of the Boeing B-29 Superfortress. The missile-carrying model, the Tu-4KS, was introduced with the Black Sea Fleet Air Force in 1953. The plane was able to carry two KS missiles and was equipped with a K-1M targeting radar. Because of the need to guide the missile almost manually from the bomber, the aircraft had to penetrate the anti-air warfare killing zone of the task force to as close as 40 kilometers from the carrier or even less. The kamikaze-like fate was abruptly switched from the single pilot of an Okha to the entire crew of a Tu-4KS. Subsequent efforts to develop autonomous active-radar missiles (the K-10, K-16, KSR-2, and finally KSR -5) were more or less unsuccessful. Though the semiactive KS placed the carrying plane under serious threat, it was considerably more reliable than the active-radar missiles.

March 1, 1983 – A left underside view of a Soviet Badger G aircraft in-flight with an KSR-5 (AS-6 Kingfisher) missile attached to the left wing. (Photo via U.S. National Archives)

The next generation of planes was represented by the series known to NATO as the Badger (the Tu-16KS, Tu-16K-10/16, Tu-16KSR, with reconnaissance performed by the Tu-16R, or Badger E). This plane was not the best choice for the job, but it was the only model available at the beginning of the 1960s. The service story of the Badger family is beyond the scope of this article, but it is noteworthy that the overall development of anti-carrier strike doctrine grew on its wings. The first and foremost issue that had to be considered by SNAF staffs was the approach to the target, which involved not only the best possible tactics but the weapon’s abilities too. For a long time, prior to the adoption of antiradiation missiles, and given the torpedo-attack background of MRA units, there was a strong inclination toward low-level attack. Such a tactic comported with the characteristics of the missiles’ jet engines and the poor high-altitude (and low temperature) capabilities of their electronic equipment. The typical altitude for launch was as low as 2,000 meters; that altitude needed to accommodate the missile’s 400-600-meter drop after launch, which in turn was needed to achieve a proper start for its engine and systems. Although the SNAF experimented with high-altitude (up to 10,000 meters) and moderate altitude approaches—and until it had been confirmed that the carrier’s airborne early-warning (AEW) aircraft, the Grumman E-2 Hawkeye, could detect the sea-skimming bombers at twice the missile’s range—the low-level approach was considered the main tactic, at least for half the strike strength.

Flying the Backfire in Distant-Ocean Combat: A One-Way Ticket

The MRA ’s aircraft, such as the Tu-16 missile-launching aircraft and the Tu-95 reconnaissance and targeting aircraft, were relatively slow, and they were evidently not difficult targets for U.S. fighters. They were large targets for the AIM-7 Sparrows shot from F-4 Phantoms. The problem for the aircraft was detection by AEW assets. If E-2 (or U.S. Air Force E-3) crews did their job well, even surface ships, such as the numerous Oliver Hazard Perry–class guided-missile frigates, could contribute to shattering a Soviet air raid. Despite the supersonic speed of the KSR -5 missiles, it was not a big problem to catch the bombers before they reached the launch point….

….The picture changed with the Tu-22M, Tu-22M-2, and Tu-22M-3—the Backfire family—which could reach almost Mach 2…The bird has a crew of just four: pilot, copilot, and two navigators—the first shturman (the destination navigator) and second shturman (the weapons-system operator, or WSO). All of them are commissioned officers, males only, the crew commander (a pilot in the left seat, age twenty-six to thirty) being not less in rank than captain. All the seats eject upward, and the overall survivability of the plane in combat is increased, thanks not only to greater speed but also to chaff launchers, warning receivers, active ECM equipment, and a paired tail gun that is remotely controlled by the second navigator with the help of optical and radar targeting systems. This plane significantly improved the combat effectiveness of the MRA.

March 25, 1983 – A rear view of a Soviet Tu-22 Backfire aircraft in flight. (Photo via U.S. National Archives)

In theory and in occasional training, the plane could carry up to three Kh22MA (or the MA-1 and MA-2 versions) anti-ship missiles, one under the belly and two more under the wings. But in anticipated real battle conditions, seasoned crews always insisted on just one missile per plane (at belly position), as the wing mounts caused an enormous increase in drag and significantly reduced speed and range.

The Kh-22 missile is not a sea skimmer. Moreover, it was designed from the outset as a dual-targeted missile, able to strike radar-significant shore targets, and the latest version can also be employed as an antiradar missile. The first and most numerous model of this missile, the Kh-22MA, had to see the target with its own active radar seeker while still positioned under the bomber’s belly. But the speed, reliability, and power of its warhead are quite similar to those of the Soviet submarine-launched sea skimmers. The price for those capabilities is the usual one for a Soviet weapon—huge weight and dimensions. The Kh-22 is more than 11 meters long and weighs almost six tons, combat ready. The missile can travel at Mach 3 for 400 kilometers. Usually it contains more than a ton of an explosive, but it could carry a 20-200-kiloton nuclear warhead instead.

May 23 1984 – A Kh-22 (AS-4 Kitchen) anti-ship missile under a Tupolev Tu-22M Backfire bomber. (Photo via U.S. National Archives)

There is a pool of jokes within the Backfire community about the matter of who is more important in the Tu-22M’s cockpit, pilots or navigators. The backseaters (both the navigators’ compartments are behind the pilots’) often claim that in a real flight the “front men” are usually doing nothing between takeoff and landing, while the shturmans are working hard, maintaining communications, navigating, and targeting the weapon. In reality, the most important jobs are in the hands of the WSO, who runs the communication equipment and ECM sets as well.

The doctrine for direct attacks on the carrier task force (carrier battle group or carrier strike group) originally included one or two air regiments for each aircraft carrier—up to 70 Tu-16s. However, in the early 1980s a new, improved doctrine was developed to concentrate an entire MRA air division (two or three regiments) to attack the task force centered around one carrier. This time there would be a 100 Backfires and Badgers per carrier, between 70 and 80 of them carrying missiles. As the Northern Wedding and Team Spirit exercises usually involved up to three carrier battle groups, it was definitely necessary to have three combat-ready divisions both in northern Russia and on the Pacific coast of Siberia. But at the time, the MRA could provide only two-thirds of that strength—the 5th and 57th MR Air Divisions of the Northern Fleet and the 25th and 143rd MR Air Divisions of the Pacific Fleet. The rest of the divisions needed—that is, one for each region—were to be provided by the VVS DA. The two air force divisions had the same planes and roughly the same training, though according to memoirs of an experienced MRA flyer, Lieutenant General Victor Sokerin, during joint training DA crews were quite reluctant to fly as far out over the open ocean as the MRA crews did, not trusting enough in their own navigators’ skills, and tried to stay in the relative vicinity of the shore. Given the complexity of a coordinated strike at up to 2,000 miles from the home airfield, navigation and communication had become the most important problems to solve.

Being latent admirers of the VVS ethos, MRA officers and generals always tried to use reconnaissance and targeting data provided by air assets, which was also most desired by their own command structure. Targeting data on the current position of the carrier sent by surface ships performing “direct tracking” (a ship, typically a destroyer or frigate, sailing within sight of the carrier formation to send targeting data to attack assets—what the Americans called a “tattletale”), were a secondary and less preferable source. No great trust was placed in reports from other sources (naval radio reconnaissance, satellites, etc.). Lieutenant General Sokerin, once an operational officer on the Northern Fleet NAF staff, always asked the fleet staff ’s admirals just to assign him a target, not to define the time of the attack force’s departure; that could depend on many factors, such as the reliability of targeting data or the weather, that generate little attention in nonaviation naval staff work. The NAF staff had its own sources for improving the reconnaissance and targeting to help plan the sorties properly. Sokerin claims that “no Admirals grown as surface or submarine warriors can understand how military aviation works, either as whole or, needless to say, in details.”

Read Part Two.

Lieutenant Commander Tokarev joined the Soviet Navy in 1988, graduating from the Kaliningrad Naval College as a communications officer. In 1994 he transferred to the Russian Coast Guard. His last active-duty service was on the staff of the 4th Coast Guard Division, in the Baltic Sea. He was qualified as (in U.S. equivalents) a Surface Warfare Officer/Cutterman and a Naval Information Warfare/Cryptologic Security Officer. After retirement in 1998 he established several logistics companies, working in the transport and logistics areas in both Europe and the Commonwealth of Independent States.

Featured Image: A United Soviet Socialists Republic (Russian) TU-95 Bear bomber aircraft in flight over the Arctic Ocean, during a flight to Keflavik, Iceland in 1983. (U.S. Air Force Photo) (Released)

Tankers For The Pacific Fight: A Crisis in Capability

By Stephen M. Carmel

The Department of Defense is projected to need on the order of one hundred tankers of various sizes in the event of a serious conflict in the Pacific.1 The DoD currently has access it can count on – assured access – to less than ten. Not only does the U.S. lack the tonnage required to support a major conflict in the Pacific, it has no identifiable roadmap to obtain it. Without enough fuel, the most advanced capabilities and ships – even nuclear-powered aircraft carriers – will hardly be available for use. This is a crisis in capability that requires urgent and effective action. There is little time to get a solution in place if speculation that conflict with China could happen this decade proves true. Thankfully, this is a problem that can have a timely and affordable solution. However, the U.S. needs to move past conventional thinking and long-established policies that brought us to this current state.

To Win the Fight Requires Fuel

In the event of a broad conflict with China in the Pacific theater, the U.S. will likely lose reliable access to the currently relied-upon sources of oil within the region. The U.S. will then need to manage exceedingly long lines of supply to ensure oil flows to the forces in the greatly increased quantities demanded by a wartime operational tempo. But it must be remembered that there will be many other consumers of oil competing for those same barrels in a highly disrupted oil market. The cascading effects on the totality of the oil system, from production to distribution across all users, must be hedged against. The Defense Production Act does not apply to foreign refineries and the U.S. government cannot compel where these foreign-produced barrels go. Refiners must not only have the oil to sell, but be willing to sell it to the U.S. military in the midst of what may be a politically controversial war. This access should not be taken for granted, especially given China’s deep reach and increasing influence over the international oil market, the developing world, and the associated energy infrastructure.

The long supply chains for delivering wartime energy from North American sources to the Pacific theater of operations would require a large number of tanker ships. In thinking through the tanker requirement, one must also factor in some level of attrition in lost ships and crews due to combat action, especially when a prudent adversary would prioritize attacking these critical enablers of U.S. power projection. Attrition and escort requirements must be accounted for in planning. Balancing operational logistical demands in the face of attrition and the evolving availability of tankers is a dynamic planning challenge. It requires steady effort throughout the duration of a conflict that features rapidly changing oil supply points and platform availability.

Militarily useful tankers for U.S. operations and TRANSCOM requirements. Click to expand. (Graphic via 2019 CSBA study “Sustaining the Fight: Resilient Maritime Logistics for a New Era.“)

The U.S. would need several different types of tankers to address these challenging scenarios. Larger tankers are needed to do the long-haul parts of the distribution process. These would be principally MR, or “Medium Range” tankers which are the ideal size for the Defense Department and would be needed in large numbers. These are ships that carry roughly 330,000 bbls of multiple types of refined product. They can be fitted with consolidated cargo replenishment (CONSOL) gear to conduct at-sea refueling of oilers which will then refuel the fleet. This capability is currently available on a few MR tankers on charter with the Military Sealift Command. But current CONSOL operations are short-duration exercises and have not been done under contingency conditions in many years. The other type of tanker needed would be smaller, shallow-draft ships in the 40,000 bbl range for intra-theater lift. These smaller tankers would be used to provide fuel to distributed forces across the Pacific.

The current crisis in tanker capability, combined with a high optempo conflict, could result in the distinct possibility that U.S. forces run out of fuel. Sufficient tanker capacity is indispensable to wartime success and must form a central consideration in planning. Current Defense Department planning embodies inherent assumptions about assured access versus assumed access of supply. As the National Defense Transportation Association describes it:

“If the U.S. adopted an assured access approach, it would be comprised of U.S. Flagged ships owned by U.S. companies and crewed by U.S. citizen mariners—somewhat similar to the Chinese strategy (which applies to the entire nation of China, not just their military).The assumed access approach relies on the outsourcing delivery of fuel to the military in times of conflict—with limited description regarding the private parties involved and the extent which access to product would be guaranteed. Working out these details will come at the start of conflict, when demand signals surface for fuel requirements. The assumed access approach relies on the concept that the international tanker market is large compared to the U.S. military demand in a peer to peer full scale conflict.”

Military logistics planners lean toward assumed access, that tankers will be available from foreign-flagged tonnage. This assumption betrays a lack of understanding of the international tanker market and the significant influence China now has over it, including the often-overlooked issue of actual ownership, which is not the same as flag or company. In fact, a substantial portion of European tanker fleets, flying flags normally considered non-hostile to U.S. interests, are actually owned by Chinese financial houses through sale lease back-arrangements.

Assumed access also does not address the very dynamic aspects of the tanker market and the dramatic effects current events can have on availability. The current situation affecting the global tanker markets – tight supply accompanied by high charter rates – is driven by the conflict between Russia and Ukraine. But this is but one example. A conflict with China may have even more dramatic consequences for the markets. There will be significant but unpredictable impacts on oil markets, tanker markets, and trade flows upon which to base assumptions on tanker availability. Assumed access also means assuming tanker companies and their stockholders will value the U.S. military, with whom they may have no relationship, over their commercial interests with whom they have longstanding relationships.

July 11-14 2020 – Off the coast of Southern California Military Sealift Command’s long-term chartered motor tanker ship Empire State (T-AOT 5193) conducted connected at-sea refueling operations (CONSOL) with three MSC Combat Logistics Fleet ships. (Photo by Sara Burford/Military Sealift Command Pacific)

Tanker companies, not countries, ultimately own the ships and it is commercial companies that must choose a side. Part of that decision will be based on their assessment on who will “win” in the conflict. Picking the U.S. is currently far from a safe bet, at least in the eyes of international companies that will still want to preserve their commercial relationships, largely oriented toward Asia, when the conflict is over.

Assured Access Solutions

Assured assess means the U.S. Navy or U.S. flag shipping companies own and control the ships outright. Availability is not premised on assumptions or expectations about external actors and their assets.

Assured access still comes with challenges to tanker availability. The tanker problem must be solved as a system that considers labor requirements and the demands for sustaining economies amidst a systemically disruptive conflict. Tankers require different credentials from dry cargo vessels and a container-ship officer is only qualified to sail tankers if they have the requisite endorsements which can only come from sailing on tankers. In addition, the domestic oil markets which fuel the U.S. economy must remain functional. There will also be heavy demand for tonnage to service allied economies impacted by the distortions in energy flows.

A current legislative effort to address this problem is the proposed Tanker Security Program (TSP), which provides a stipend to firms that flag tankers into U.S. flag for international trade. The program is limited to ten ships due to the amount of annual funding authorized and appropriated for stipends. This program is flawed however, in that the stipend is too small for enrolled vessels to remain commercially viable for trading in normal markets. (The current tanker market, with historically high charter rates, is not considered “normal.”) Instead, the program allows double dipping so ships can be on short-term charter to the U.S. government carrying preference cargo while still collecting a stipend. Because there are already ships under U.S. flag on short-term charter to the government, the TSP vessels will simply replace these existing vessels, collecting a windfall but adding no new capacity. The program is also not scalable, and even if all other elements work as intended, it could not produce anywhere near the needed number of ships for a major wartime contingency. The program has also yet to address other issues, such as ensuring the vessels have the necessary capability and compatibility with their intended use by the U.S. military in time of conflict. As an example, the program has not determined whether CONSOL equipment and CONSOL-trained crews will be required on these ships, creating uncertainty on funding for this capability, which then creates uncertainty within industry on the financial aspects of the decision to bid for TSP slots.

It is clear that the TSP will not solve the overall tanker shortage. A comprehensive tanker solution that is affordable and can grow the fleet at scale would necessarily consist of a combination of several different programs. First, the TSP must be revised to provide a stipend large enough to allow for commercial trading of U.S. flag tankers in the international market with no reliance on U.S. flag military (preference) cargo. In fact, carriage of preference cargo for TSP ships should only be allowed during times of national emergency. Otherwise, participating ships should be restricted to commercial work. This will produce a fleet of incremental U.S. flag tankers the Navy does not already have access to, with the scale of the program determined by the total amount of funding.

Legislation should be enacted requiring cargo preference on refined oil products being exported from the U.S. For reference, the U.S. currently exports 1.4 million bbls of refined product, principally to South America, every day, all on foreign flag tankers. The U.S. also exports a considerable amount of crude oil. While crude tankers are hardly militarily useful, their crews are useful by virtue of possessing the required documents and skills to sail tankers of any type. Therefore crude oil should also be a consideration. If cargo preference – the requirement that U.S.-flagged tankers carry a significant portion of this cargo – were in place, a substantial fleet of commercially viable but militarily useful tankers would be available as “assured access.” A significant benefit of this program would be that the cost of having that capacity available for wartime use is not borne by the U.S. taxpayer until it is actually needed. It is borne by the oil companies and the foreign buyers of the oil.

U.S. domestic sourcing of DoD fuel should also be put in place. The requirements of “Buy American” do not apply to fuel, and the Defense Logistics Agency Energy (DLA Energy) currently buys fuel wherever it is cheapest, normally meaning the closest source to the point of use. This is of course vastly different from the sourcing for so much else the DoD uses or procures, where “Buy American” applies. But those “point of use” sources of fuel for ships in the Pacific may be at risk in the event of conflict with China, assuming they are not owned or controlled by Chinese companies, which should not be overlooked.

As mentioned, the U.S. currently exports a large amount of refined product. Some of these exports could easily be diverted to DoD as a customer without heavily distorting the domestic oil market. It is highly likely some level of domestic sourcing would need to be done in a time of conflict. As a result, this program would put in place an oil supply chain that will be needed regardless, but in a phased approach that does not distort markets as opposed to an emergency program implemented in a time of crisis that is highly disruptive. Sourcing DoD oil domestically now will result in increased ton-mile demand, hence immediately increasing the need for tankers to carry it.

Lastly, the program run by the Military Sealift Command (MSC) for prepositioning refined product on tankers fitted for CONSOL should be put back in place. At one time, MSC had a large number of tankers under charter loaded with the types of fuel that would be needed in a conflict. These tankers were outfitted with all the required equipment for their military mission, were fully-crewed, and ready to respond immediately. This program, if revived, could be done quickly and supply immediate capability of the required type. 

There are several points to consider when reviewing this menu of potential solutions. First, while some, such as adjusting the TSP, require congressional action which will take time, others can be done by DoD quickly. Prepositioning programs or DLA-E sourcing do not require congressional action and could be accomplished in shorter timeframes. Cargo preference for exports could potentially be done by executive order in the short term, but would certainly require congressional action in the longer term. But a central theme is that cargo must be at the center of any viable solution, not government stipends.

The above solutions must also be implemented in a phased approach to give labor and tanker markets time to adjust. The fact that we are presented with a mix of solutions, with some that can be implemented right away and others that require more time, is not necessarily a bad thing. The key point is that this must be implemented as a phased solution to a systemic problem. Stovepiped programs that do not mesh will not work. Given the very short overall timeframe available to implement a solution due to acute national security concerns with China, action must start now.

While the proper mix of the above will produce the required capability at an affordable price, it will not produce capability for free. All capability, from aircraft carriers to missiles, comes at a cost, as does the fuel that enables these capabilities. Fuel, and the capacity to deliver it when and where needed, must be placed on the same level of priority as other essential warfighting capabilities. These must be viewed as interim steps to ensure the tanker capability crisis is solved in a timeframe relevant to the near-term threat of a potential conflict with China.

Conclusion

The very fact that these types of programs need to be considered is indicative of decades of neglect in U.S. maritime strategy. The long-term solution must flow from a coherent national maritime strategy that addresses all elements of maritime power, not just naval power, and treats the maritime domain as an ecosystem that must be addressed holistically. The Chinese clearly have such a comprehensive maritime strategy, which is why China dominates the maritime domain when it is properly understood as encompassing all elements of maritime power. While the U.S. has what it terms a maritime strategy, it is in fact only a naval strategy that does not address the broader dimensions of maritime power. This needs to change, otherwise the U.S. may run the severe risk of neglecting critical elements of maritime power that China has been carefully cultivating.

Steve Carmel is Senior VP at Maersk Line Limited. He is a past member of the Naval Studies Board, the CNO Executive Panel, and Marine Board. 

References 

1. Timothy Walton, Ryan Boone, Harrison Schramm, “Sustaining the Fight: Resilient Maritime Logistics for a New Era,” Center for Strategic and Budgetary Assessments, pg. 78, 2019, https://csbaonline.org/research/publications/sustaining-the-fight-resilient-maritime-logistics-for-a-new-era/publication/1.  

Featured Image: ARABIAN GULF (May 5, 2016) – Fleet replenishment oiler USNS John Lenthall (T-AO-189) refuels the tanker Maersk Peary during a replenishment-at-sea. (U.S. Navy Combat Camera photo by Mass Communication Specialist 1st Class Joshua Scott/Released)

Evolving Marines and Aerial ASW for the Undersea Fight

By Jason Lancaster

Introduction

The Marine Corps is an expeditionary crisis response force designed to project power globally from the sea. For the first time in a generation the shape of the Corps is changing and returning to its maritime roots. Closer integration with the Navy means that as in the Second World War, the Marine Corps will be a force provider for the maritime fight, potentially extending to the undersea domain. General Berger stated, “the undersea fight will be so critical in the High North and in the western Pacific that the Marine Corps must be part of it.”1 During World War II, Marine aviation units flew anti-submarine patrols from escort carriers and island bases in the Pacific defending the sea lanes from Japanese submarines.2 Today, the Marine Corps needs to invest in ASW-capable aircraft to support the ASW fight from the sea and ashore.

Today, the Navy has a major capability gap in anti-submarine warfare. In the 1980s, the Navy relied on land-based long-range maritime patrol planes, an ASW screen consisting of surface combatants, carrier-based medium-range ASW aircraft like the S-3B Viking, and short-range helicopters for localization and engagement. The Navy eliminated the S-3B Viking in 2009 with no replacement. This elimination removed medium-range ASW aircraft from the carrier strike group, and in a modern conflict with Russia or China, this gap could have catastrophic results. Both nations are increasing the number and capabilities of their submarines. Many of those submarines can engage surface ships with missiles from beyond 200 nautical miles, beyond the capability of organic carrier strike group ASW assets. The Navy has not taken enough steps to address the vulnerability of its major formations to submarines. The lack of organic ASW capabilities in amphibious ready groups (ARGs) makes them even more vulnerable than a CSG. ASW is a role the Marines have not conducted since World War II, but it is a vital role they must fill in the future.

Anti-Submarine Warfare 

In its most simple form, ASW is placing sensors in positions to find submarines and kill them. The Navy uses surface ships, submarines, and aircraft to place sensors in positions to detect, classify, and engage submarines. The U.S. Navy uses two main frameworks for ASW: Theater ASW (TASW) and Strike Group ASW (SGASW). The role of TASW is to detect, track, classify, and engage submarines throughout an entire theater. In conflict the primary objective is to sink as many submarines as possible. SGASW is concerned with protecting the high value unit (HVU) from submarines. Success for SGASW is never being shot at. With good intelligence and communications with the TASW Commander, speed and maneuver may enable a strike group to avoid slow-moving diesel submarines.

The current concept to defend an ARG from submarines relies completely on non-organic aircraft and surface escorts assigned to the ARG as required. Unfortunately, the Navy’s ability to provide sufficient escorts for aircraft carriers and ARGs is decreasing. Despite NDAA 2017 requirements for a fleet of 350 ships, the number of surface ships in the Navy is decreasing. The 2023 proposed Navy budget included the decommissioning of 22 cruisers, 9 littoral combat ships, and the elimination of the LCS ASW mission package. The P-8 Poseidon maritime patrol planes are excellent ASW platforms, but are limited in quantity, and primarily work for the TASW Commander. Although an important mission, protecting the ARG is only one of many tasks for the TASW Commander. During a period with multiple submarine prosecutions occurring across a theater, the P-8 inventory may not enable 24-hour coverage of the ARG.

The Navy and Marine Corps should combine assets to create an organic air ASW squadron. The Navy can contribute existing MH-60Rs and the Marine Corps should contribute a new medium endurance Marine ASW aircraft. These platforms will fill the gaps in ASW coverage and protect the ARG’s main battery, its Marine Expeditionary Unit.

These assets can also operate from expeditionary advanced bases, which can be well-positioned to interdict submarines in chokepoints. In the Pacific, expeditionary bases positioned along the first island chain can cover the key chokepoints Chinese submarines must navigate to break out into larger oceans and seas. These chokepoints greatly simplify the challenge of locating and interdicting submarines, and Marine aerial ASW assets could be poised to pounce on contacts and maintain layers of sensors.

Marine ASW assets positioned in the High North, especially along the Norwegian coast, could make significant contributions to undersea capability and awareness by virtue of proximity to the Russian Northern Fleet’s main base at Severomorsk. With the accession of Finland and Sweden to NATO, Marines can help bolster undersea capability throughout the Baltic Sea.

A medium-range ASW aircraft should be able to conduct ASW patrols 200-300 nautical miles away from the ARG or expeditionary base for at least 4-6 hours, while carrying sufficient sonobuoys and torpedoes to detect, classify, and engage a hostile submarine. In order to save time and money on sensor development, the radar, sonobuoy processing system, EW suite, and sonobuoy launchers from an MH-60R can be utilized aboard a different aircraft. The Marine Corps has several options for developing a new medium endurance ASW aircraft. Two options are the MV-22 and the MQ-9B.

Multiple reconfigurations of the ARG and MEU make the present the perfect time to eliminate the ARG ASW gap by introducing Marine ASW assets. The introduction of the F-35B into the Air Combat Element (ACE) is changing the composition of the ACE. The Marines are experimenting with 8-10 F-35Bs instead of 6 AV-8s, which reduces space available on the LHD for MV-22s. The planned decommissioning of the Dock Landing Ship (LSD) is also shifting the composition of the ARG. The LSD had a large flight deck but no hangar and no permanent flight deck crew, limiting the LSD to flight deck or well deck operations.

PHILIPPINE SEA (Jan. 24, 2022) Aviation Boatswain’s Mate (Handling) Airman Juliet Collazo signals to an MV-22B Osprey attached to Marine Medium Tiltrotor Squadron (VMM) 165 (Reinforced), 11th Marine Expeditionary Unit (MEU), as it takes off from the flight deck of USS Essex. (U.S. Navy photo by Mass Communication Specialist 2nd Class Wesley Richardson)

The LPD-17 class has a large flight deck capable of operating two MV-22s simultaneously and a hangar designed to conduct maintenance on an MV-22, or holding two MH-60s. The LPD’s air department enables simultaneous well deck and flight deck operations. The elimination of the LSD and its replacement with an ARG composed of an LHD/LHA and two LPDs drastically increases the aviation capabilities inherent in the ARG. The Navy-Marine Corps team should take advantage of that shift to develop an organic ASW capability.

Option 1: Existing Airframes

Force Design 2030 planned to divest three MV-22 squadrons. The FD2030 2022 update stated that instead the Marines will shift from 14 squadrons composed of 12 aircraft to 16 squadrons of 10 aircraft.3 Instead of eliminating those eight aircraft, the Marine Corps should instead make a 17th squadron of 10 aircraft that is equipped for ASW. This squadron should be collocated at NAS North Island with the Navy’s MH-60R squadrons or at NAS Jacksonville with the P-8 and MH-60R squadrons so that Marine ASW aviators can train with their Navy counterparts.

Marine Corps experiments with more F-35Bs and fewer MV-22s aboard the LHD suggest that instead of eliminating surplus MV-22s, they could be converted into ASW aircraft. These reconfigured aircraft would utilize the MH-60Rs electronics/ASW suite to save time on fielding and development as well as saving resources on spare parts and training. NAVAIR would need to determine whether the airframe has sufficient electrical power generation to support the additional sensors. The Navy has sent MH-60R detachments on ARG deployments before, and their sensor suite is useful for ASW and surface warfare.

Another ASW MV-22 option is to utilize the multi-static active coherent (MAC) buoys. NAVAIR would have to determine whether the buoy processing system would fit into an MV-22, but MAC buoys are the most capable sonobuoys in the U.S. Navy’s inventory and their utilization by a medium-range ASW aircraft would dramatically increase the lethality of the ARG’s ASW capability. Foreign military sales could make this platform a force multiplier and reduce overall program cost. Spain, Turkey, Australia, and South Korea all operate LHDs and MH-60Rs. An MV-22 equipped with MH-60R sensors would increase allied ASW capabilities without adding additional sensor training and logistics pipelines for their forces. France, Britain, Italy, and Japan also operate aircraft carriers or LHDs and might be interested in a medium-range ASW platform. A successful platform could even be bought by the Navy for integration into the carrier air wing and used to eliminate the CSG’s ASW gap.

Option 2: UAVs

An alternative medium-range ASW aircraft is the MQ-9B Sea Guardian. The Marine Corps is already purchasing 18 MQ-9s from General Atomics, with the desire to acquire more. The Air Force is looking to transfer 100+ MQ-9s to another service. General Atomics has developed an ASW and ISR sensor kit for the MQ-9 Reaper, and states an ASW mission radius of 1,613NM or 25 hours aloft. In 2021, General Atomics signed a $980 million contract with Australia to buy 12 MQ-9Bs which was canceled in 2022.4 They carry sonobuoys and radar for detection and classification of submarines, but currently lack torpedoes to prosecute engagements. The lack of antisubmarine armament is a major drawback for these aircraft, but these aircraft have participated in fleet exercises and are available today.5

April 16, 2021 – The Marine Corps’ first MQ-9A at an undisclosed location in the Central Command area of responsibility. (U.S. Marine Corps photo by 1st Lt. John Coppola/Released)

General Atomics has also developed a kit that converts existing MQ-9s into short takeoff and landing (STOL) platforms without diminishing the range. This capability would enable MQ-9Bs to operate extended ASW patrols from the LHD and expeditionary bases. In April 2021, the MQ-9B participated with other unmanned systems during the Unmanned Integrated Battle Problem Exercise.6 This exercise demonstrated the ability of unmanned systems to effectively integrate into the navy’s fleet architecture. The USMC and USN should experiment with the STOL MQ-9B Sea Guardian during exercises like Talisman Saber 23.

Conclusion

In World War II, Marine aircraft operating from islands and escort carriers provided ASW aircraft to the fight. The Marines have not been required to conduct ASW operations since. The Navy will have significant difficulty resourcing all of the escort requirements for carrier strike groups, amphibious ready groups, and TASW missions. Without organic ASW aircraft the ARG is vulnerable to submarines, especially sub-launched long-range missiles.

The Marine Corps has two rapid options for establishing an ASW capability – a modified MV-22 or the MQ-9B Sea Guardian. Although the Corps has not planned to acquire ASW aircraft, the Commandant’s thoughts on the importance of ASW in the High North and the western Pacific combined with the ARG’s vulnerability means that consideration for a platform must be considered. The Commandant is divesting of legacy equipment and end strength to invest in future equipment. With the Navy’s shortage of ASW assets, it makes sense for the Marine Corps to support the maritime fight not just with land-based anti-surface fires and sensing, but also with its own ASW aircraft.

LCDR Jason Lancaster is a Surface Warfare Officer. He has served at sea aboard amphibious ships, destroyers, and a destroyer squadron. Ashore, he has worked on various N5 planning staffs. He is an alumnus of Mary Washington College and holds an MA in History from the University of Tulsa. His views are his own and do not reflect the official position of the U.S. Navy or Department of Defense.

References

1. Berger, David (2020, November). Marines Will Help Fight Submarines. Proceedings.

2. Marine Scout Bombing Squadron Three Four Three. (1945). VMSB-343 – War Diary, 4/1-30/45. US Marine Corps.

3. United States Marine Corps. (2022). Force Design 2030 Annual Update May 2022. Washington DC: United States Marine Corps.

4. Clark, C. (2022, April 1). Aussies ‘secretly cancel’ $1.3B AUD drone deal; Nixing French subs may cost $5B . Breaking Defense.

5. General Atomics. (2022, April 5). Versatile multi-domain MQ-9B SeaGuardian has revolutionized anti-submarine warfare . Breaking Defense.

6. Office of Naval Research Strategic Communications. (2021, April 22). Unmanned Capabilities Front and Center During Naval Exercise. US Navy Press Release.

Featured Image: PHILIPPINE SEA (March 27, 2019) F-35B Lightning II aircraft, assigned to Marine Fighter Attack Squadron (VMFA) 121, and MV-22 Ospreys, assigned to Marine Medium Tiltrotor Squadron (VMM) 268, are secured to the flight deck of the amphibious assault ship USS Wasp (LHD 1). (U.S. Navy photo by Mass Communication Specialist 1st Class Daniel Barker)