All posts by Guest Author

Capital Ship 2035: The Mission Command Vessel (MCV)

Future Capital Ship Topic Week

By Harry Bennett

The Mission Command Vessel (MCV) capital ship of 2035 is a “key node” in the global U.S. Defense network dominating the tactical area of responsibility (TAOR) assigned to it. The vessel is usually supported by, and is at the center of, an accompanying Advanced Task Force (ATF). The MCV integrates their systems and capabilities for maximum combat power and efficiency. It is the ability within an ATF to integrate different weapons systems and different types of vessel to maximum effect that makes the MCV a “capital ship.”

The MCV is at once continuously connected to every other vessel in the ATF, and the systems and munitions which they control, as well as to a global network of sea and shore-based command units including links to Air Force and Army commands and their equivalents of the MCV key nodes. The intelligence which the ATF and the MCV gather is at once relayed to other commands, and in turn their intelligence to it. In the event of the failure or destruction of an MCV another MCV or shore-based command can take control of the units of the ATF to continue with the mission or withdraw the force.

The MCV is under human command and control while many of its networked assets are Unmanned Aerial Vehicles (UAV), Unmanned Underwater Vehicles (UUV) and Unmanned Amphibious Ground Vehicles (UAGV). These are third-generation systems requiring little human interaction and are capable of limited threat analysis and decision-making.

The design philosophy of the MCV is governed by two imperatives: the need for stealth, and the need for command and secure communication with massive bandwidth and high levels of computing power to ensure excellent data collection and distribution. The vessel is, then, capable of operating above and below the water, and is nuclear powered to ensure the provision of adequate power to its onboard systems. The secure-comms system developed out of DARPA’s Mobile Offboard Clandestine Communications (MOCCA) program ensures, along with the advanced autonomy of the UV elements of the ATF, that comms traffic does not compromise the MCV’s stealth capabilities.

By early twenty-first century standards, the crew of the MCV is comparatively small, but computing and communication systems are far greater in their power and reach. The vessel above surface deploys advanced defensive/offensive weapons systems including 200kw lasers and a missile system capable of engaging aerial threats including hypersonic missiles. Below surface threats to the vessel are countered by mini-torpedoes that can target conventional torpedoes, enemy Unmanned Underwater Vehicles (UUV), and be directed against mines which might inhibit the navigation of the MCV.

The MCV’s own UUV craft (each about the size of a conventional torpedo) are capable of wide deployment, carry passive sonar, and can send out active sonar pings. The returns from the active pings are received and monitored on-board the MCV. The sonar on-board the MCV’s UUV extend the sensor range of the vessel, and are also equipped with systems which allow the UUV to mimic the sound profile of a range of vessels. They are thus able to be employed as lures for enemy vessels, or to present potential threats from surface vessels or submarines where none are present. The UUVs can also be tasked to gather hydrographic, meteorological, and environmental data which may assist the mission.

The UUV units play a vital role in the security of the MCV and its ATF. The subsea security of the task force is further enhanced by the presence of two conventionally crewed SSNs which carry their own UUVs with capabilities identical to those carried by the MCV. Together the MCV, SSNs and their attendant UUVs can actively and passively detect underwater threats over an area large enough to ensure the safety of the ATF.

The reach and flexibility of the MCV is further extended by onboard Unmanned Aerial Vehicles and Unmanned Amphibious Ground Vehicles which can be deployed for the purposes of reconnaissance on land and in the air, or for offensive/defensive purposes. The UAGVs can be used to attack specific targets on land, and the UAVs of the MCV can maintain a Combat Air Patrol (CAP) over the Advanced Task Force, or be used to target beach head defenses or targets further inland. Both the UAGVs and UAVs can be employed with special force units (eg. FORECON, USMC) in carrying out deep reconnaissance operations (eg. Key Hole), or be used in support of larger USMC amphibious operations launched from conventionally crewed LPDs (Landing Platform Dock) operating with the ATF.  

The true secret of the MCV’s offensive potential lies not in its own limited offensive systems but in the new generation of general purpose Autonomous Arsenal Vessels (AAV) which will accompany the highly mobile Advanced Task Force (ATF). These AAV can have payloads dedicated to particular tasks, such as beach assault/air defense/anti-submarine warfare, or contain a general mix of smart munitions (e.g. vertically launched cruise missiles/hypersonic missiles) designed to augment the offensive and defensive capabilities of the MCV. Replenishment of the AAVs, and more extended maintenance and repair issues are handled by Force Replenishment and Repair Vessels (FRRVs).

At sea specialists based on the MCV service and maintain and repair the Arsenal Ships, and the UAVs of the MCV can maintain a Combat Air Patrol (CAP) over the Advanced Task Force. The UAVs and UAGV can be recovered either by the MCV or by LPDs, each with its USMC complement, operating as part of the ATF.

For particular missions, the MCV can also take local control of additional assets (manned and unmanned) which can be dispatched to its TAOR, and vectored to its location before being released to MCV control. Most importantly, this includes additional air assets including fighter aircraft, next generation stealth aircraft, unmanned B-52 bombers equipped with smart weapons, and next generation ground support.

The MCV capital ship is the heart of the Advanced Task Force: capable of waging a flexible Sea, Air, Land battle from the deep oceans to the littoral zones likely to become the key centers of conflict in the mid-twenty first century. It is at the same time, a command vessel, a warship, and a key node in a global intelligence combat network allowing shore-based command a continuous flow of information, and the ability to flexibly project the power of the United States military around the globe. It is the capital ship of the mid-21st century, making the most of America’s technological lead, while providing the maximum protection for the service personnel of the United States Navy.

G.H. Bennett Ph.D. is associate professor of history at Plymouth University where he has taught since 1992. He is author of 15 books dealing with military, political, and diplomatic history. He writes for the Phoenix Think Tank and is a trustee of the Britannia Royal Naval College Museum.

Featured Image: The Soviet aircraft carrier “Novorosiisk”, steaming in the open Pacific in April 1985 (Coastcomp.com)

Return of the Sea Control Ship

Future Capital Ship Topic Week

By Captain Pete Pagano, USN (ret.)

Breathtakingly disruptive technologies offer unparalleled and innovative possibilities for naval operating concepts, but a large, survivable hull in the water that is able to conduct sustained combat operations will continue to define the capital ship into the 21st century. Today, a confluence of events has made revisiting the Sea Control Ship a vital task for the sea services. From commissioning new, large-deck amphibious assault ships specifically designed to maximize aircraft operations, expanding ARG-MEU mission sets via the tiltrotor MV-22 Osprey, and most significantly the imminent deployment of the F-35B Joint Strike Fighter (JSF), such a ship with its vertical/short take-off and landing (V/STOL) aircraft and anti-submarine warfare (ASW) helicopters could conduct ASW and carry out other sea control missions such as surface warfare (SUW). Additionally its air group of F-35B aircraft could conduct strike missions in lower intensity conflict situations such as the U.S. in Libya in 2011. Such a platform is the key to the future of maritime warfare not because it is a replacement for the conventional takeoff and landing (CTOL) aircraft carrier, but rather because it is a complement that will free up the larger and all too few fleet nuclear powered aircraft carriers to focus on the power projection mission of striking enemy targets inland during a high intensity conflict.

The Concept

Naval Doctrine Publication 1 (NDP 1) and Joint Pub 3-32 define sea control as one of the core capabilities of naval forces – necessary to the accomplishment of all other naval missions and complementary to the mission of power projection. Sea control operations include destruction of enemy naval forces, suppression of enemy sea commerce, protection of vital sea lanes, and establishment of local military superiority in areas of naval operations.1  During his tenure as Chief of Naval Operations, Admiral “Bud” Zumwalt advocated a High-Low mix of warship designs in order to affordably meet the numbers of ships required to counter the Soviet Union in any major war – specifically the building of smaller aircraft carriers to supplement the Carrier Strike Groups. In 1971, USS Guam (LPH-9) was selected as the test ship for a Sea Control Ship (SCS) concept. Testing began in 1972 and was completed in July 1974.Ultimately, the tests and concept were deemed unsuccessful and the Navy did not go forward with it. The short endurance and limited payload of the early model Harrier and the limited sensor capability of both the ship and the SH-3 Sea King ASW helicopter were the chief shortcomings of the concept.  However, today such shortfalls would be remedied by the fielding the LHD/LHA (which has a sensor and communications suite comparably to a Nimitz class aircraft carrier), F-35B JSF, the sensor-rich MH-60 multi-role helicopter, and the MV-22 Osprey with its myriad capabilities.

The Ship

Today’s Sea Control Ship could be based on the America-class already in production. At more than 44,000 and 42,000 tons of displacement respectively, the America-class amphibious ships and their LHD half-sisters of the Wasp-class are far from small. The Wasp and America-class ships are over 840 feet in overall length and both types have a 106 foot beam.3 In dimensions and displacement they are akin to, and actually exceed, the war-winning Essex-class aircraft carriers that the U.S. Navy employed to fight across the Pacific to victory in the Second World War. The Essex-class aircraft carriers were 872 feet overall with a 93 foot beam and displaced 27,100 tons in their WWII configuration.4 Coincidentally, the Wasp and America classes also bear more than a passing physical resemblance to these carriers as well. With some modifications, such as shifting the island superstructure outboard supported by a sponson, the flight deck area could be enlarged. Since a Sea Control Ship would only embark vertical/short take-off and landing (V/STOL) and short takeoff/vertical landing (STOVL) aircraft, the catapults or arresting gear systems necessary for a conventional take-off and landing aircraft carrier would not be required. That saves weight, reduces costs – both construction and operating costs – and does not require as large a ship.

The chief argument often made in defense of big carriers versus small ones is that anything less than the supercarrier is not survivable – be it the Nimitz class of today, weighing in at 100,000 tons, or the earlier Kitty Hawk and Forrestal classes which ranged between 65,000 and 80,000 tons during their careers. However ,the combat record of the Essex class, which can be viewed as a surrogate for the LHA/LHD (and by extension the Sea Control Ship) in this argument, proves just the opposite. In World War II, not a single Essex class aircraft carrier was lost though several took punishing damage from aerial bombs and kamikazes. USS Bunker Hill (CV-17) was hit in quick succession by two kamikazes while covering the Okinawa landings, experiencing widespread fires and 653 casualties.5 The ship steamed back to the United States for repairs under her own power. In March of 1945, USS Franklin (CV-13) became the most heavily damaged United States aircraft carrier to survive the war after a Japanese air attack inflicted extensive damage to the flight deck, hangar deck, two decks below them, and the CIC, resulting in 724 killed and 265 wounded.6  In post-WWII service, off Vietnam in the Gulf of Tonkin, Essex-class carrier USS Oriskany experienced extensive fire damage through five decks with 44 killed when a flare inadvertently ignited and set off a chain reaction of explosions.7 Ample evidence exists that an aircraft carrier of 40,000 tons or so can take hits and survive.

On Essex-class carrier USS Yorktown (CV-10) crew stands at attention as the National Ensign is raised, during commissioning ceremonies at the Norfolk Navy Yard, Virginia, 15 April 1943. Photographed by Lieutenant Charles Kerlee, USNR. (Official U.S. Navy Photograph, now in the collections of the National Archives.)

Another argument used against small aircraft carriers, and the adjective small here is used relatively, is that the embarked air component would be correspondingly small as well. This is true in part, but with precision guided munitions (PGM) and the types of missions envisioned for the Sea Control Ship, an air group of 30 or so STOVL fixed wing and rotary wing/tiltrotor aircraft would be appropriate and sufficient for mission execution. Both the LHA and LHD class ships are designed to support an air component of over 30 fixed and rotary wing aircraft. Both ships are also able to accommodate more than 20 fixed wing STOVL aircraft as an alternative load out. During Operation Desert Storm in 1991, USS Nassau performed in this role of “Harrier carrier” and USS Bataan (LHD-4) served in this capacity as well during the opening stages of Operation Iraqi Freedom in 2013.

The LHD and LHA of today are not your grandfather’s amphibs. The command, control, computer, communication, combat systems and intelligence (C5I) capabilities are extensive and second only to a Nimitz class nuclear-powered aircraft carrier (CVN) in capability, to include: two- and three-dimensional air search radars, an extensive satellite communication suite, and intelligence support facilities. The sensor and communication assets built into the big deck amphibious ships provide further proof that sufficient capability can be built into a carrier of 40,000 to 45,000 tons.

The Air Group

The Sea Control Ship’s air group would be built around the F-35B STOVL Joint Strike Fighter. With its advanced capabilities in sensing, stealth and weapons delivery, this aircraft is a game changer that puts to rest the argument that STVOL aircraft are a step down in capability vis-à-vis their CTOL aircraft relatives. Tiltrotor and rotary wing aircraft such as the MH-60R Seahawks and the MV-22 Osprey would support the F-35B. A tanker mission package is already being developed and tested by the United States Marine Corps for the MV-22 Osprey to further support the F-35B . Additional support would exist in the form of a tiltrotor airborne early warning (AEW) aircraft.

USS AMERICA, At Sea – An F-35B Lightning II aircraft completes Envelope Expansion Testing during a Short Take-off Vertical Landing aboard USS America, Oct. 30, 2016. (US Marine Corps Photo)

For the sea control mission, the main battery would exist in the form of an ASW-tiltrotor aircraft equipped with surface search radar, dipping sonar, sonobuoys, magnetic anomaly detection (MAD) gear and torpedoes. This aircraft would also be capable of surface warfare (SUW) missions if equipped with anti-ship cruise missiles. The MV-22 airframe, combined with technology and systems already in existence, make these variants well within the realm of feasibility and affordability. Rounding out the air group in the mission of sea control would be detachments of “Romeo” and “Sierra” models of the ubiquitous H-60 helicopter for use in the inner zone ASW/SUW mission set.

Distributed and Agile

A key advantage of an air group comprised exclusively of STOVL and rotary wing aircraft is the tactical flexibility in basing that they permit. Not only would the air group be able to be based on smaller aircraft carriers and big-deck amphibious ships, but they can also be based in detachments across a number of even smaller ships, to include non-traditional ones such as modified container ships in a further expression of distributed lethality. Additionally, the air group could be shore-based on expeditionary air strips in austere locations. With this capability the air group could conduct shuttle missions between their sea control ship home base and these expeditionary sites. Vulnerability to this type of shuttle bombing operation was always a concern by Admiral Nimitz and his commanders when planning operations against the Imperial Japanese Navy and its network of island bases and mobile striking fleets. It is a vulnerability we can impose on a future adversary in a theater of operations where the geography features many islands.

Complement not Replacement

In a major combat/high intensity conflict, CTOL aircraft carriers like the Nimitz class will be fully engaged in strike-oriented power projection missions and seeing to their own fleet defense. However, the supporting missions of sea control will still need to be accomplished and will require a significant amount of air support. Enter the Sea Control Ship. Sanitization of chokepoints to allow the passage of shipping and the protection of convoys are two examples of missions for the SCS. Much like the Independence-class light aircraft carriers (CVL) that supplemented the Essex-class aircraft carriers in World War Two, Sea Control Ships could be employed to provide ASW, SUW, and assist in air defense of the carrier strike group, acting as a force multiplier to maximize the offensive punch of the CTOL carriers.

In lower intensity conflicts and small scale interventions, the Sea Control Ship and its air group may be a sufficient instrument of national power to accomplish the mission. Two recent examples of intervention operations bear this out: the employment of Kearsarge Amphibious Ready Group (ARG)/26th Marine Expeditionary Unit (MEU) in Operation ODYSSEY DAWN in 2011 and Wasp ARG/22nd MEU in Operation ODYSSEY LIGHTNING in 2016.

Opponents of the Sea Control Ship will correctly state that smaller aircraft carriers lack the sortie generation rate of the CTOL carriers and STOVL aircraft and don’t match CTOL aircraft in range, ordnance load out, and ordnance bring-back capability. However, for the missions envisioned and with employment of PGMs, the SCS and its STOVL air group do not need to exactly match the CTOL carrier and its air wing in these performance metrics. Additionally, the STOVL F-35B comes quite close to CTOL high-end tactical aircraft in performance and outclasses almost anything our potential adversaries currently field.

The Way Forward

The last decade has been described as budget-constrained and an opportunity for experimentation and innovation similar to the interwar period of the 1930s. As such, the United States Navy and Marine Corps should seize the opportunity to experiment with the Sea Control Ship concept. In this lean budget climate, it is especially appealing that nothing further need be designed or purchased to pursue this experiment. A point to consider is whether, and for how much longer, the appetite for the purchase of nuclear-powered supercarriers will exist in Washington. Developing a lower cost alternative now rather than later that can supplement the CVNs would maximize the utility of the existing carrier fleet.

The LHA-6, F-35B, MV-22 and MH-60 series are all in service. Now is the time to use these assets to develop and refine the concepts of operation and employment for a future Sea Control Ship. The Navy and Marine Corps should conduct a robust and iterative series of experiments and exercises to fully develop the concept of operations and employment and then use the results to develop a design for a purpose-built Sea Control Ship class. The America-class would be an obvious and appropriate starting point for this design. The AEW and ASW tiltrotor variants could be fielded in a fairly rapid fashion accordingly using existing off-the-shelf technology.

Much like during Admiral Zumwalt’s era, we are once again in an era of constrained budgets and rising international threats. Then, like now, innovative thinking needs to be applied to affordably generate the necessary numbers of ships and aircraft to meet the threat and accomplish the mission. The Sea Control Ship is easy to implement, as flexible as it gets, and requires very little research and development. It is the immediate solution to the Navy’s future needs.

Captain Pagano is a retired surface warfare officer who commanded the Kearsarge Amphibious Ready Group as Commodore of Amphibious Squadron Four. Prior to that, he was commanding officer of USS Carr (FFG-52). Currently he is employed as a senior analyst and instructor at Tactical Training Group Atlantic.

Notes

1. Joint Pub 3-32, 07 August 2013, I-3, 4

2. Norman Polmar, The Ships of the U.S. Fleet, 14th Edition, (Naval Institute Press, 1987), 193

3. Jane’s Fighting Ships online (IHS Global Ltd, 2016)

4. Paul H. Silverstone, U.S. Warships of World War 2, (Naval Institute Press, 1989), 42

5. Dictionary of American Fighting Ships online (Naval Historical Center)

6. Ibid

7. Wynn F. Foster, Fire on the Hangar Deck – The Ordeal of the Oriskany, (Naval Institute Press, 2001), 69

Featured Image: The amphibious assault ship USS America (LHA-6) performs flight operations while underway to Rim of the Pacific 2016. (U.S. Navy photo by Demetrius Kennon)

Swarming Sea Mines: Capital Capability?

Future Capital Ship Topic Week

By Zachary Kallenborn

A ‘capital ship,’ rightly understood, is a ship type that can defeat any other ship type. In the days of sail and dreadnoughts, it was the type of ship having the most and biggest guns. It is the ship type around which fleet doctrine and fleet architecture are established. The question is what kind of killing weapon the capital ship supports.
—Robert Rubel1

Introduction

The Navy’s Strategic Studies Group 35 concluded the “Navy’s next capital ship will not be a ship. It will be the Network of Humans and Machines, the Navy’s new center of gravity, embodying a superior source of combat power.”2

Such a network could consist of networks of sea mine swarms and their support ships. Networked sea mine swarms could converge on masses of adversary ships, bringing to bear overwhelming force. The visibility of surface support ships would enable the network to generate conventional deterrence by signaling the swarm’s presence, while helping maintain the swarm itself.3 The history of mine warfare suggests swarming sea mines could deliver a decisive force.

Sea mines can already inflict significant damage on all other types of ship, including capital ships.4 On April 14, 1988, a single contact mine nearly sank the USS Samuel B. Roberts (FFG 58), causing over $96 million in damage.5 Since World War II, mines have seriously damaged or sunk 15 U.S. ships, nearly four times more than all other threats combined.6 However, unlike aircraft carriers and other capital ships, traditional sea mines offer little ability to project power and, once identified, can be avoided.

But what if sea mines could move themselves intelligently and coordinate their actions? They could rove the seas in advance of friendly fleet movements and position themselves into an adversary’s path. Multiple mines could strike a single target. Naval mines could become a critical aspect of seapower. Networks of naval mine swarms could become the future capital ship. 

Swarming sea mines can do exactly that.

Swarming Sea Mines: The Concept

Swarming sea mines consist of interconnected, undersea drones dispersed over an area. Drones within the swarm communicate with one another to coordinate their actions. Sensor drones7 within the swarm disperse, broadly searching for incoming targets. Sensor drones relay information to attack drones to engage an adversary vessel, or stand down to allow a friendly vessel to pass.

Attack drones may be either undersea turrets or free-roaming munitions. As undersea turrets, attack drones serve as platforms for launching torpedoes or other munitions. Input from sensor drones informs the trajectory for launch. As a free-roaming munition, an attack drone functions like a traditional sea mine. Using on-board propulsion systems, the attack drone maneuvers to the adversary vessel and detonates in proximity.

Interconnectivity enables swarming attacks. Multiple attack drones may launch attacks from different directions. This increases the likelihood of successfully sinking an adversary ship because (1) strikes hit different parts of the adversary hull and (2) it enables multiple strikes on the same target, putting at risk larger ships that may survive a single detonation. Interconnectivity could also enable networks of sea mine swarms to coordinate strikes, significantly increasing the number of attack drones. Such a capability would be useful in attacking an adversary fleet, with multiple swarms coordinating target selection. 

EMB Mine being laid from an S-Boote. (Photo from Suddentscher Verlag)

As the size of the swarm grows, so too does its combat power. Larger swarms mean more sensors in the network and more munitions to overwhelm targets. The Department of Defense (DoD) recently fielded a swarm of 103 aerial drones.8 China also reportedly fielded a swarm of 1,000 aerial drones.7 In theory, a sea mine swarm could consist of tens of thousands of interconnected mines, able to overwhelm any target. The primary limitation on swarm growth is the capacity to manage the rapidly increasing complexity of drone information exchange.

Strategically, swarming sea mines could play the same roles as traditional sea mines. Sea mines may be used to control critical chokepoints. During the Iran-Iraq war, Iran seeded the entrance to the Strait of Hormuz with Soviet contact mines.9 Alternatively, they could be used to inhibit amphibious forces attempting to come ashore. During the 1990-1991 Persian Gulf War, Iraq deployed sea mines to limit coalition forces’ ability to launch an amphibious assault.10 Similarly, during the Korean War, North Korean mining of Wonsan Harbor “prevented over 50,000 U.S. Marines from coming ashore and allowed the North Koreans to withdraw their forces.”11 However, swarming sea mines can play additional roles, such as protecting friendly vessels.

Advantages over Traditional Mines

Swarming sea mines have qualitatively better capabilities. Compared to traditional mines, swarming sea mines have drastically increased the threat through autonomous movement, broad area coverage, and information integration.

Autonomous Movement

Advances in robotics enable unmanned systems to maneuver and act without human decision-making.13 DoD’s Perdix drone swarm shares a “distributed brain” to make decisions and react to the environment.14 The swarm fully controls its own behavior without human direction, other than setting broad mission goals. Other autonomous systems such as the South Korean SGR-A1 gun turret can reportedly identify and engage targets.15 Although DoD policy does not allow autonomous weapons systems to select humans as targets, traditional sea mines already autonomously engage targets.16

Maneuverability enhances the psychological effects of minefields. Fear over encountering a minefield can affect behavior without inflicting damage. Once a vessel passes through a traditional minefield, it is often safe. However, a swarming minefield may move to a new area, adding new uncertainties.

Greater maneuverability enables drone-based naval mines to incorporate automated retreat rules. For example, after a specified time, drones may disarm and leave the area. Friendly vessels may then retrieve and redeploy them in another location. For traditional naval mines, retrieval is a highly fraught task because a retrieving vessel may inadvertently detonate the mine. Emplaced mines cannot be reused; swarming sea mines can.

Autonomous decision-making would enable swarming sea mines to identify and respond to changes in environmental conditions that could mitigate their effects. With traditional bottom mines on the seafloor, strong tides and currents can shift the mines.17 Swarming mines could recognize this shift and adjust.

Types of Naval mine.A-underwater,B-bottom,SS-Submarine. 1-Drifting mine,2-Drifting mine,3-Moored Mine,4-Moored Mine(short wire),5-Bottom Mines,6-Torpedo mine/CAPTOR mine,7-Rising mine (Wikimedia Commons)

Autonomous movement is a significant departure from the capabilities of traditional naval mines. While some advanced mobile mines such as the MK 67 Submarine-Laid Mobile Mine can be placed from afar, the MK 67 remains in place.18 Other naval mines are able to move with the current. None of these mines can position themselves intelligently.

Information Integration

The inter-connectivity of a drone swarm enables naval mines to integrate information from many different sensors. Sensor drones could incorporate traditional influence sensors, including magnetic, acoustic, and seismic sensors.19 Data from multiple sensors may be shared to minimize false positives. Sensor drones may roam freely, studying an area for potential targets, creating greater situational awareness. Alternatively, buried sensor drones could enable live battle-damage assessment. If an adversary vessel survives an initial strike, additional attackers may be called to follow and engage.

Swarming naval mines may be connected into broader intelligence and surveillance networks. Information from these networks could enable the swarm minefield to reposition based on adversary behavior. For example, naval intelligence may identify an adversary vessel about to enter a given area and relay that information to the drone swarm to maneuver into the vessel’s path.

While traditional naval mines are already capable of incorporating multiple sensors to prevent false positives, they are unable to share information with one another.20

Broad Area Coverage

Maneuverability and information integration would enable swarming sea mines to greatly increase the threatened area. Sensor drones can disperse broadly to provide maximum situational awareness. Information may then be relayed to other drones to engage an incoming target.

Like attack drones, sensor drones may be free roaming or stationary, though there are trade-offs. Free-roaming sensor drones may actively search an area looking for targets. This enables much broader coverage; however, communication ranges may limit the distance they can travel. Stationary sensing drones may float near the surface or bury themselves in the seafloor. Sensor drones that bury themselves minimize the profile presented to adversaries, lowering detectability. However, stationary drones lose the benefits of mobility, providing less area coverage.

The increased area coverage is efficient because fewer munitions would be required to control a given area. Mines will take up less space on friendly vessels while having the same impact. This is especially important for submarine-launched mines, because submarines have very limited storage capacity. Currently, to equip submarines with mines requires removing torpedoes at the rate of one torpedo for every two mines.21

Challenges

Despite these significant advantages, however, operationalizing the concept entails some significant challenges. None of these challenges appears insurmountable, and work is already being done to address them, but they must be considered for concept viability and to realize the benefits of swarming.

Undersea Communication

The ability of the swarm to function as a unit depends on drone communication. Underwater, this is a major challenge. Traditional communication methods are often based on electromagnetic transmissions that are ineffective underwater.22 Underwater communications must rely on acoustic communication, which is slower, has small bandwidth, and has high error rates.23 The lack of electromagnetic communication also prevents drones from using GPS guidance for coordination and localization.

Initial research points to the inclusion of relays and surface-based control drones as a solution (see footnote 5 for a brief typology of drone archetypes). To address the lack of underwater GPS penetration, Jules Jaffe and his research team incorporated GPS-localized surface buoys that emit acoustic signals.24 Their underwater drones passively receive the buoy’s signals and, based on the known location of the surface floats, determine their own location.25 Similarly, Thomas Schmickl and his research team use a “surface base station” emitting an acoustic signal for localization and establishing boundaries to ensure no drone gets lost in the ocean’s expanse.26 The station also receives status updates from the swarm, such as task completion.

From a military perspective, a surface control drone may be undesirable because it could be identified and targeted, neutralizing the minefield. To prevent this, control drones could be underwater with a GPS periscope extending above the surface to receive and transmit signals. Alternatively, swarms could incorporate redundant control drones. If one is eliminated, the minefield stays live.

More broadly, the underwater environment creates difficulties in countering adversary attempts to disrupt communications. An adversary is likely to target inter-swarm communication because if communications are disrupted, so too is the swarm.27 Unfortunately, the properties of underwater communication mean terrestrial jamming detection technologies do not operate effectively.28

Tethering and Reseeding

Reseeding a minefield is often a significant challenge. If most mines have detonated, the minefield offers little utility. Adding mines in hostile terrain while incur risk such as on January 18, 1991 when Iraqi forces shot down a mine-dropping A-6 aircraft.29 The mobility of drone swarms diminishes some of this challenge because the drones may be deployed from afar to move into position.

Reseeded mines must also tether to the swarm’s network. An added attack drone needs to integrate with the other attackers and with the broader sensor network. Reseeded drones need to recognize that they are a part of the minefield’s network and vice versa. It also requires the distributed brain of the swarm to incorporate the new drones into task assignment and overall control.30

Coordinated re-positioning removes some difficulty. If few attack drones have been destroyed, the other drones can fill any gaps. However, as the losses grow larger, or if the swarm had few attackers to begin with, adding attackers becomes a greater challenge.

Power

The availability of power limits swarm operations. On-board power is required to maintain communications, use propulsion systems, and operate and interpret the results of sensing systems. These requirements limit the amount of time the swarm can pose a threat.

One possible solution is sea-based charging facilities. Support ships could be created whose primary role is to recharge undersea drones, including swarming sea mines. They could also be used for swarm maintenance, reseeding the swarm, or long-range transportation. Alternatively, the Navy’s work on unmanned undersea pods could allow for undersea recharging.31 This would likely be most useful for mining friendly territory because the pods would need to be pre-positioned and adversaries could target them. As swarm size increases, so too will this challenge. Large swarms may also encounter queuing problems if only a few drones can charge simultaneously. Regardless of the solution, time spent traveling to and from recharging facilities also limits time in a mission area.

Conclusion

A 2001 National Research Council study painted a bleak picture of U.S. naval mine warfare: “The current U.S. naval mining capability is in woefully bad shape with small inventories, old and discontinued mines, insufficient funding for maintenance of existing mines, few funded plans for future mine development (and none for acquisition), declining delivery assets, and a limited minefield planning capability in deployed battle groups.”32 This holds true today: the Navy’s FY17 to FY21 budget anticipates spending only $29.4 million on acquiring offensive mines.33 Similarly, the FY17 to FY21 budget for the Navy’s only research and development program for mine systems is $56.9 million.34 All new mine development is relegated to converting Submarine-Laid Mobile Mine warheads for underwater drone delivery.

If networked swarms of sea mines represent the Navy’s future capital ship, that picture must be repainted. Drastically.

Zachary Kallenborn is a Senior Associate Analyst at ANSER pursuing broad research into the military implications of drone swarms.

The author would also like to thank Jerry Driscoll, Steve Dunham, and Keith Sauls for providing useful comments and edits on a draft of the article. Needless to say, any issues or mistakes are the author’s own.

The views herein are presented in a personal capacity and do not necessarily reflect the institutional position of ANSER or its clients.

References


1. Robert C. Rubel, “The Future of Aircraft Carriers,” US Naval War College Review 64, Autumn 2011, https://www.usnwc.edu/getattachment/87bcd2ff-c7b6-4715-b2ed-05df6e416b3b/The-Future-of-Aircraft-Carriers.

2. Bill Glenney, “Institute for Future Warfare Studies Wants Your Writing on the Capital Ship of the Future,” Center for International Maritime Security (CIMSEC), https://cimsec.org/institute-for-future-warfare-studies-wants-your-writing-on-the-capital-ship-of-the-future/33307

3. John Fleming notes the importance of visibility in conventional deterrence in John Fleming, “Capital Ships: a Historical Perspective,” Naval War College, July 12, 1993, 17, http://www.dtic.mil/dtic/tr/fulltext/u2/a266915.pdf

4. John J. Rios, “Naval Mines in the 21st Century: Can NATO Navies Meet the Challenge?” thesis, Naval Postgraduate School, June 2005, 1, www.dtic.mil/dtic/tr/fulltext/u2/a435603.pdf; “Mine Warfare,” Department of the Navy, Office of the Chief of Naval Operations and Headquarters U.S. Marine Corps, NWP 3-15 and MCWP 3-3.1.2, https://archive.org/stream/milmanual-mcwp-3-3.1.2-mine-warfare/mcwp_3-3.1.2_mine_warfare_djvu.txt.

5. Scott C. Truver, “Taking Mines Seriously: Mine Warfare in China’s Near Seas,” Naval War College Review 65, Spring 2012, https://www.usnwc.edu/getattachment/19669a3b-6795-406c-8924-106d7a5adb93/Taking-Mines-Seriously–Mine-Warfare-in-China-s-Ne; Bradley Peniston, “The Day Frigate Samuel B. Roberts Was Mined,” USNI [U.S. Naval Institute] News, May 22, 2015, https://news.usni.org/2015/05/22/the-day-frigate-samuel-b-roberts-was-mined.

6. Scott C. Truver, 2012.

7. In general, there are four drone archetypes: Attacker, Sensor, Controller, and Decoy (the ASCDs). Attack drones carry munitions or are themselves munitions. Sensor drones provide information about the surrounding environment. Control drones manage the swarm’s behavior to ensure the swarm can operate together, providing direct leadership or ensuring the operation of communication channels. Decoy drones serve no role other than to increase the apparent size of the swarm, creating psychological effects, or drawing fire for functional drones. This framework is the author’s own; however, it is consistent with others such as Jeffrey Kline’s Shooter, Scout, and Commander. Jeffrey E. Kline, “Impacts of the Robotics Age on Naval Force Design, Effectiveness, and Acquisition,” Naval War College Review 70, Summer 2017, https://www.usnwc.edu/getattachment/db52797a-a972-44cd-951b-f2b847b193b3/Impacts-of-the-Robotics-Age-on-Naval-Force-Design,.aspx.

8. “Department of Defense Announces Successful Micro-Drone Demonstration,” DoD news release, January 9, 2017, https://www.defense.gov/News/News-Releases/News-Release-View/Article/1044811/department-of-defense-announces-successful-micro-drone-demonstration/.

9. Gary Mortimer, “Chinese One Thousand Drone Swarm Smashes Intel Record,” sUAS News: The Business of Drones, February 13, 2017, https://www.suasnews.com/2017/02/chinese-one-thousand-drone-swarm-smashes-intel-record/.

10. Captain Gregory J. Cornish, U.S. Navy, “U.S. Naval Mine Warfare Strategy: Analysis of the Way Ahead,” U.S. Army War College, April 2003.

11. Gregory J. Cornish, 2003.

12. John J. Rios, citing Gregory K. Hartmann and Scott C. Truver. Weapons That Wait: Mine Warfare in the U.S. Navy. Updated Edition. (Annapolis, MD: Naval Institute Press, 1991), 231.

13. Determining appropriate rules of engagement is also a critical, related challenge; however, that is not within the scope of this article.

14. “Perdix Fact Sheet,” DoD Strategic Capabilities Office, June 1, 2017, https://www.defense.gov/Portals/1/Documents/pubs/Perdix%20Fact%20Sheet.pdf.

15. Alexander Velez-Green, “The Foreign Policy Essay: The South Korean Sentry—A ‘Killer Robot’ to Prevent War,” Lawfare, March 1, 2015, https://www.lawfareblog.com/foreign-policy-essay-south-korean-sentry%E2%80%94-killer-robot-prevent-war.

16. DoD Directive 3000.09: “Autonomy in Weapon Systems,” November 21, 2012, https://cryptome.org/dodi/dodd-3000-09.pdf.

17. Scott C. Truver, 2012.

18. National Research Council, Committee for Mine Warfare Assessment, “Naval Mine Warfare: Operational and Technical Challenges for Naval Warfare,” Washington D.C.: National Academy Press, 2001, 58.

19. For additional details on mine actuation mechanisms, see “Mine Warfare,” section 2.2.3.2, “Influence Actuation Logic.”

20. “Mine Warfare.”

21. “Mine Warfare.”

22. John Heidemann, Milica Stojanovic, and Michele Zorzi, “Underwater Sensor Networks: Applications, Advances, and Challenges,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, January 2012, http://rsta.royalsocietypublishing.org/content/370/1958/158.

23. Luiz Filipe M. Vieira, “Underwater Sensor Networks,” in Jonathan Loo, Jaime Lloret Mauri, and Jesus Hamilton Ortiz, Eds., Mobile Ad Hoc Networks: Current Status and Future Trends (Boca Raton, FL: CRC Press, 2012).

24. Jules S. Jaffe, et al., “A Swarm of Autonomous Miniature Underwater Robot Drifters for Exploring Submesoscale Ocean Dynamics,” Nature Communications 8, 2017, https://www.nature.com/articles/ncomms14189; for a more accessible version of their research, see Jesse Emspak, “Scientists Used Underwater Drone Swarms to Solve the Mystery of Plankton Mating,” Quartz, January 24, 2017, https://qz.com/893590/scientists-used-underwater-drone-swarms-to-solve-the-mystery-of-plankton-mating/.

25. Jules Jaffe, et al., 2017.

26. Thomas Schmickl, et al., “CoCoRo—The Self-Aware Underwater Swarm,” 2011 Fifth IEEE [Institute of Electrical and Electronics Engineers] International Conference on Self-Adaptive and Self-Organizing Systems, 2011, http://zool33.uni-graz.at/artlife/sites/default/files/cocoro_SASO_paper_revision_as_finally_submitted.pdf.

27. Paul Scharre, “Counter-Swarm: A Guide to Defeating Robotic Swarms,” War on the Rocks, March 31, 2015, https://warontherocks.com/2015/03/counter-swarm-a-guide-to-defeating-robotic-swarms/.

28. S. Misra, et al, “Jamming in Underwater Sensor Networks: Detection and Mitigation,” IEE [Institution of Engineering and Technology] Communications 6, November 6, 2012, http://ieeexplore.ieee.org/document/6353315/.

29. National Research Council, Committee for Mine Warfare Assessment, 2001, 18.

30. Some initial work has been done on scalable drone swarm control algorithms. See Payam Zahadat and Thomas Schmickl, “Division of Labor in a Swarm of Autonomous Underwater Robots by Improved Partitioning Social Inhibition,” Adaptive Behavior 24, 2016, http://journals.sagepub.com/doi/full/10.1177/1059712316633028.

31. Michael Hoffman, “Undersea Pods to Hold US War Supplies,” Defense Tech, January 16, 2013, https://www.defensetech.org/2013/01/16/undersea-pods-to-hold-us-war-supplies/.

32. National Research Council, Committee for Mine Warfare Assessment, 2001, 57.

33. “Department of Defense Fiscal Year (FY) 2017 President’s Budget Submission: Navy, Justification Book Volume 1 of 1, Weapons Procurement, Navy,” Secretary of the Navy, February 2016, 307, http://www.secnav.navy.mil/fmc/fmb/Documents/17pres/WPN_Book.pdf

34. “Department of Defense Fiscal Year (FY) 2017 President’s Budget Submission: Navy, Justification Book Volume 3 of 5, Research, Development, Test, and Evaluation, Navy, Budget Activity 5,” Secretary of the Navy, February 2016, 947, http://www.secnav.navy.mil/fmc/fmb/Documents/17pres/RDTEN_BA5_Book.pdf.

Featured Image: EMC Contact Mines aboard a Leberecht Maas class destroyer in Autumn 1940 (via Navweaps.com)

The Network as the Capital Ship

Future Capital Ship Topic Week

By Robert C. Rubel

Introduction

From the galleasses at the Battle of Lepanto to the aircraft carriers of today, the capital ship has been that ship type that is capable of defeating all other types. That is the general and simplistic definition of the term, but to speculate on the future capital ship, we must understand the underlying characteristics of a capital ship and its role in fleet architecture and design. We will start with the ship itself and then move outward to its context and implications for maritime strategy.

The Core of the Fleet

The adjective “capital” is used because the ships to which it has applied have been the biggest and most expensive of the naval vessels of their day. This was the case due to the armament they carried; the most and biggest guns available and later the most and most capable aircraft. Whether smooth bore cannon versus rams, number of guns available for a broadside or the caliber of rifled guns, the name of the game has been weight of fire and hitting at distance. The protection of capital ships required significant amounts of investment, first in armor, then in escorts. The expense and the difficulty of building capital ships meant that they were the least numerous ship type. However, their number was important in determining overall naval power. Generally, the capital ship inventory of the most powerful navies was in the dozens.

The physical characteristics just discussed had a powerful influence on fleet design and by extension on maritime strategy. The capital ship was the tool by which a nation could contend for command of the sea, either globally or regionally. Thus a nation’s fleet was designed around the capital ship in various ways.

First, they had to be supported by a variety of lesser ship types that performed functions such as scouting and protection. In this sense the capital ship was the pivot of fleet design. Given the existence of other, potentially hostile capital ship fleets, distribution of capital ships was a key issue. If there was a sea invasion threat to the nation, a “home fleet” of capital ships was necessary. On the other hand, depending on the threats to a nation’s maritime commerce, there was frequently a need to deploy capital ships, individually or in small squadrons, to counter or eliminate these threats, but that raised the danger that they would be caught by a larger force and destroyed. The British concept of the battle cruiser, a heavily armed but lightly armored and fast ship, was intended to address this dilemma. As additional threats such as the torpedo boat, submarine, and aircraft emerged, additional protective measures had to be taken such as escorts and design changes including torpedo bulges and dense anti-aircraft secondary batteries.

The capital ship has been the ultimate arbiter of command of the sea, both in war and peace. Command of the sea can be most usefully thought of as the balance of strength among contending navies. The navy with command of the sea is free to disperse its forces to exercise control in various localities and more broadly, has various strategic options open to it that are closed to the navy and nation that has lost command. The expense of capital ships and their consequent relative scarcity, the time required to replace losses and their intimate connection with command of the sea, coupled with the strategic importance of such command, led national leaders and admirals to be cautious about committing their capital ship fleets to the test of battle. Even a small perceived imbalance of power has caused admirals to try and avoid pitched battle; like going “all in” in Poker, one must be very confident of one’s hand.1 Thus decisive naval battles have been rare and most of those that have occurred involved the weaker force being surprised, cornered or forced into battle by their national leader.

Since the age of sail, the capital ship has been the unit of measure for naval power. When a nation seeks great power status, it starts building a powerful navy, this being true even of historically continental powers such as Germany, the Soviet Union, and now China. This has produced naval arms races and wars. The Washington Naval Treaty of 1922 was an attempt to suppress naval arms races by limiting the total tonnage of warships and imposing a hiatus on building capital ships among the U.S., Great Britain, France, Italy, and Japan.

Imperial Japanese Navy aircraft carrier Kaga (Colorized by Lootoko, Jr.)

After World War II, the U.S. Navy found itself with near absolute global command of the sea but retained a significant number of its capital ships for the purpose of exercising command of the sea in peacetime. Such exercise consisted of deploying carrier battle groups around the periphery of Eurasia in order to enforce the international order the U.S. desired. In this case the necessary number of capital ships became a function of the combination of deployment demands, maintenance requirements, training, and personnel tempo. 

Capital Capabilities

The large deck aircraft carrier has been the capital ship since the start of World War II. Its hold on this status is based on the effectiveness and utility of its embarked tactical aircraft. The question is whether it will retain that status or be replaced by something else. We will take on this question based on the characteristics and factors that have been discussed.

Let’s start with weapons. The advent of micro circuitry, new forms of sensing and artificial intelligence have transformed missiles, in all their forms, into perhaps the dominant and decisive type of weapon at sea, both for offense and defense. Most ship types carry them and countries such as China have developed land-based ballistic missiles of very long range that can seek ships. Advanced surface-to-air missile systems now constitute a lethal threat to any aircraft except  perhaps those possessing the most advanced stealth technology. Modern anti-ship missiles are increasingly sophisticated and hard to defend against.

All of this has difficult if not dire implications for the continued status of the aircraft carrier as capital ship. Certainly, additional measures can be taken to enhance the defense of both tactical aircraft and the carrier, but these will add to the expense of the total system to the point that it could outweigh the value of the offensive capability it possesses. At that point, according to George Friedman, it becomes “senile.”2 If indeed the missile becomes the key weapon, many different ship types can carry them, for both war at sea and shore bombardment. The question then becomes whether missiles are best concentrated in a large “arsenal ship” or distributed out among a lot of different ships. If concentrated in a few large hulls, it is possible that these “missile battleships” (BBM?) would be the new capital ship. Such concentration would certainly make it easier to coordinate missile salvos.

However, looking beyond the ship itself reveals some factors that militate against concentration. The first is the inherent risk in concentrating offensive firepower in a single ship. Vice Admiral Arthur Cebrowski articulated the concept of tactical stability which states that as we pack more offensive capability into a ship, there is a point at which its defensive capability ceases to increase proportionately. At that point, escorts are needed.3 Moreover, if a task force has a key capability installed on one or a few ships, their loss would neutralize the whole force, and thus it is tactically vulnerable and subject to catastrophic failure rather than graceful degradation. For this reason, the Navy is developing the concept of distributed lethality: mounting offensive missiles on as many ships as possible in order to complicate enemy targeting and reducing the risk of catastrophic degradation to the force as a whole. 

Another issue is the distribution dilemma. For today’s Navy, it takes two forms: global and regional. Globally, having only ten available aircraft carriers limits the presence the U.S. can generate in multiple regions simultaneously. Moreover, strategic adjustments to deployment patterns must be made on the basis of carrier groups, which is a rather coarse methodology, sort of like trying to draw a precise, detailed picture with a large-tipped magic marker. Regionally, deploying carrier groups must “starburst” into individually operating ships to accommodate all the Geographic Combatant Commander’s engagement commitments. This prevents routine training to maintain combat readiness skills and of course opens individual ships, especially the carrier, to surprise attack. There is also the risk involved in operating carriers in the threatened littoral. This risk is manifest not only at the tactical level in which attacks are more likely to be successful, but in the strategic risk of losing a precious capital ship. Again, the emerging concept of distributed lethality promises a way to avoid or at least moderate the dilemmas and risks.4

The emergence of the missile as the “weapon of decision” both at sea and ashore has a couple major implications. First, since missiles can be mounted on almost anything, the relationship between ship size and characteristics and weapon power is broken. It would seem to make little difference if a salvo of missiles is launched from a single ship or many. Second, the distribution of offensive power among a lot of different ships promises to reduce both operational and strategic risk in various ways and eases the distribution dilemmas.5 This would seem to spell doom to the capital ship concept, and in this writer’s opinion, it does, at least in the conventional sense of a single ship type.

There is, however, another way to look at the matter. The key capability of a capital ship has been to deliver a superior weight of fire at a longer range than anything else. Certainly, our “BBM” would have plenty of missiles to fire, but that is not enough. Those missiles must be fed targeting information to be of any use. International law doesn’t permit firing missiles down a line of bearing and letting them open up their sensors at a certain point and hit the juiciest-looking contact. That makes them “indiscriminate” and therefore illegal. So, without targeting, the BBM or any missile ship intending to fire over the horizon, is useless.

Guided missile cruiser USS Lake Erie (CG 70), during a joint Missile Defense Agency, U.S. Navy ballistic missile flight test.  (U.S. Navy photo)

Missiles are getting smarter, but there are a couple of reasons that it is tactically and operationally inadvisable to just light off a salvo with incomplete targeting and identification. First, if facing sophisticated defenses, the salvo must be timed precisely to saturate or at least confuse defenses so that at least some missiles get through. Second, missiles themselves will likely be at least somewhat scarce resources and so must be used efficiently. To achieve both objectives, an area-wide network of sensors, processing and decision making must exist beyond the hulls of the fleet. Granted, individual ships will have their own targeting capabilities, but these likely will not be sufficient for getting full kinetic range from their missiles.

Merging Capital Ship and Networked Force Concepts

Putting it all together, it seems useful to regard the fleet battle force network as the future equivalent of the capital ship. It and it alone allows the delivery of a useful weight of fire at long range in a naval fight. The application of the capital ship term may not be absolutely necessary, but it does confer some useful organizational effects.

First, if the network becomes the pivot of fleet design, certain new perspectives emerge. A key one is a fresh understanding of how existing and potential ship types relate to each other. There isn’t room in this essay to tease out all of these threads, but there are several insights that can be mentioned.

First, since the network consists of physical nodes and connectors (sensors, communication relays, etc.) it must receive physical as well as cyber protection. This is an important potential new role for aircraft carriers. Using a new air wing composition, the carriers can provide air superiority over distributed lethality forces and protect airborne assets like P-8s and Tritons, provide communications relay in the event that satellites are knocked out, and perhaps provide targeting services to missile ships. Thus, carriers would become escorts for the network. An advantage of this new function is that they would not have to operate as close in to the enemy shore as they would if their air wings constituted the key offensive strike capability and the risk to aircraft is reduced. This would allow carriers to remain viable and useful for the foreseeable future.

Second, since physical concentration would not be necessary for combat effectiveness, the risks associated with the regional distribution dilemma would be substantially avoided. Globally, since combat power would be distributed among a larger number of ships, a finer strategic distribution picture could be drawn, assuming that each forward fleet has its own battle force network established.

A network-enabled distributed lethality force would also mitigate the strategic risks associated with the traditional capital ship concept, especially in an era of renewed naval competition. A fight for command of the sea using such a force would not necessarily entail an “all in” decision, providing some strategic decision making flexibility for fleet commanders. Crises or perhaps limited conflicts that occur within the range arcs of major power denial systems could produce a risk dilemma for the U.S. if its offensive power remains concentrated in traditional capital ships. This is precisely what, for instance, the Chinese hope to create if conflict breaks out over any of their contested island claims or even war on the Korean Peninsula.

Missile technology appears to give a decisive edge to the tactical offensive at sea – the historically normal state of affairs. In the early years of the Pacific War, aircraft carriers dealt with this condition by attempting to strike effectively first, the paradigm being the Battle of Midway. However, if the enemy’s offensive power (missiles, say) is dispersed and hidden, then such a remedy is unavailable. Thus capital ships, in attempting to intervene in some littoral conflict would be excessively vulnerable; that is, their loss would be incommensurate with the strategic gains promised by the operation. Capital ships should only be risked when the potential strategic gain, usually command of the sea, is worth such risk. The point is that in the emerging world it may not be worthwhile to employ traditional capital ships even when regional command of the sea is at risk, as they could be lost without prospect of meaningful gain. Network-enabled flotillas would substantially obviate the dilemma.6

Without going into the murky world of cyber warfare, it is worthwhile to point out that the network has offensive and defensive potential beyond supporting missile warfare. Offensive cyber attacks can disrupt enemy command and control and targeting. It would make sense to have such capabilities inside the lifelines of a fleet battle force network in order to achieve effective coordination with missile and other forces. In terms of network design, we may yet be in the “pre-Dreadnought era” awaiting that breakthrough concept that makes all other approaches obsolete. Applying the capital ship framework to the battle force network may help us develop or at least recognize that breakthrough when it comes along.

There are other capital ship-related concepts such as staying powerthat could be useful when applied to the design and operation of battle force networks. Capital ships were built to take hits and still fight. Obviously no ship can endure multiple hits indefinitely, so the notion of staying power helped designers figure out how much protection was needed and make the necessary tradeoffs with armament, speed, sea keeping, magazine capacity, etc. How long the ship needed to hang in there was a valuable determination and so it might be with the network. Staying power might not be measured in minutes as it was with battleships, but some other criterion such as confidence or available bandwidth might be adopted.

Conclusion

This article does not advocate reducing the number of aircraft carriers or for constructing any new class of ship; the designation of the battle force network as the modern instantiation of the capital ship is a way of establishing a new logic that underpins fleet design. If fleet design is regarded as the prerequisite and precursor to fleet architecture, the logic of network-enabled missile warfare will clarify what kinds and numbers of ships the Navy should have.8 There are, of course, many other considerations and influences on fleet architecture, but achieving institutional focus via the network as capital ship concept would go a long way in helping the Navy rapidly enhance its offensive lethality and use its available resources efficiently.

Emerging technology and shifting geopolitical conditions are changing how naval warfare will be conducted in the future. The U.S. Navy must adapt or find itself strategically outmaneuvered. Effective adaptation will require more than updates to current ship types; it will require totally new approaches to fleet design. Instead of thinking outside the box, it might help the Navy to think outside the hull.9 Adopting the network-as-capital ship idea is one way to do that.

Professor Emeritus Rubel is retired but serves as an advisor to the CNO on fleet design and architecture. He spent thirty years on active duty as a light attack and strike fighter aviator. After leaving active duty he joined the faculty of the U.S. Naval War College, serving as Chairman of the Wargaming Department and later Dean of the Center for Naval Warfare Studies. In 2006 he designed and led the War College project to develop the concepts that resulted in the 2007 Cooperative Strategy for 21st Century Seapower. He has published over thirty articles and book chapters dealing with maritime strategy, operational art and naval aviation.

1. Alfred Thayer Mahan, Lessons of the War With Spain and Other Articles, (Boston, Little, Brown and Co., 1899), p. 31. Mahan discusses the effect of the loss of a single ship on the naval balance with Spain before the war.

2. George and Meredeth Friedman, The Future of War, (New York: St. Martin’s Griffin, 1996), p. 26 and Chapter 8, “The Aircraft Carrier as Midwife,” pp 180-204.

3. Wayne P. Hughes Jr, Fleet Tactics and Coastal Combat, (Annapolis, MD: US Naval Institute Press, 2000), pp. 286-291. Prof. Hughes influenced Admiral Cebrowski’s thinking, and the discussion of massing  for defense on the cited pages provides a more in-depth look at the logic of instability.

4. Robert C. Rubel, “Deconstructing Nimitz’s Principle of Calculated Risk,” Naval War College Review, Autumn 2015, (Newport, RI: Naval War College Press), pp. 31-45. The article contains a detailed discussion of the various risks and distribution dilemmas inherent to aircraft carriers using the Battle of Midway as a case study.

5. Hughes. Chapter 11, “Modern Tactics and Operations,” pp. 266-309. Prof. Hughes offers a detailed and mathematical discussion of modern missile combat through the lens of operations research.

6. Rubel, “Cede No Water: Naval Strategy, the Littorals and Flotillas,” Proceedings, September 2013, (Annapolis, MD: US Naval Institute), pp. 40-45.

7. Hughes, pp. 268-274.

8. Hughes, “The New Navy Fighting Machine: A Study of the Connections Between Contemporary Policy, Strategy, Sea Power, Naval Operations, and the Composition of the United States Fleet” (Monterey, CA: Naval Postgraduate School).

9. Rubel, “Think Outside the Hull,” Proceedings, June 2017, (Annapolis, MD: US Naval Institute), pp. 42-45.

Featured Image: USS Yorktown (CV-10) Crew stands at attention as the National Ensign is raised, during commissioning ceremonies at the Norfolk Navy Yard, Virginia, 15 April 1943. (Photographed by Lieutenant Charles Kerlee, USNR. Official U.S. Navy Photograph, now in the collections of the National Archives)