Tag Archives: mission command

Put the Commander back in Commander’s Intent

By Capt. Bill Shafley

Commander’s intent is the cornerstone of mission command.1 Yet, it remains a nebulous form of communication. In naval operations, commander’s intent is infrequently understandable, let alone actionable. It is filled with jargoned terms like purpose, method, key tasks, end state, critical information requirements (CCIRs), and acceptable level of risk (ALR). While these terms of reference create nicely formatted PowerPoint charts, the resultant commander’s intent is an exchange of sterile terms that inhibit rather than enable mission command. The processes that create commander’s intent are staff-centric. The thinking surrounding mission command is commander-centric.2 The resulting mismatch prevents shared awareness, slows disciplined initiative, and challenges a commander’s ability to take prudent risk.3

The Critical Role of Commander’s Intent

Not only can we get better at writing intent, we must do so in a manner that enables our up-echelon commanders to take advantage of the creativity, ingenuity, and style of their subordinate commanders. First, commanders must take back the responsibility for thinking about and crafting their own intent. The Naval Planning Process (NPP) has whittled away the commander’s role in the process of analyzing a mission, developing courses of action, and creating a written order, and the commander’s role must be restored.4 Second, commanders must personalize their intent and ensure it reflects their vision of the unfolding operation, not the staff’s version of same. Successful intent statements are plain language attempts at a commander’s visualization of the battle. It lays the foundation and provides the framework for all that unfolds.5 Finally, commanders need to be developed for effective leadership in an environment where mission command is the norm. In an era where communication is ubiquitous and spans of control are ever-growing, the information demands of higher headquarters grow as well. This is making it more and more challenging to define commander’s business.

Formalized opportunities for this type of development need to be programmed into the career path of senior leaders. Improving self-awareness, deepening critical thinking skills, and providing the opportunity to reflect upon the responsibilities of and best practices for executive decision making are a must. 

Essential Element of Mission Command

In a white paper issued by Chairman of the Joint Chiefs of Staff General Martin Dempsey, “The commander is the central figure in Mission Command.”6 Staffs have neither the authority nor the accountability to execute operations. From receipt of the mission to orders production, the commander is the pivot point in command and control.7 NPP is all about planning, while commander’s intent is about decision making.8

As Milan Vego stated, “There is possibly no greater responsibility for a commander but to make decisions on the employment of…combat forces.”9 Staffs need to get out of the commander’s intent business. The planning process gives them ample opportunity to inject their expertise into mission analysis and course of action (COA) development. The by-product of a staff generated commander’s intent is that it feeds off the data collected, analyzed, and presented to the commander. It flows from the steps of mission analysis and COA development and thereby gets structured in terms of tasks, end state, and risk. Even the most involved commander will find it challenging to weave intent into this staff process. A personal example brings these observations to the forefront.

During strike group work-ups, the destroyer squadron (DESRON) staff worked diligently in developing its planning bona-fides. We committed to five-paragraph orders that included commander’s intent, CCIRs, and ALR as a format to communicate our mission tasking with assigned units. With the notion that these orders to subordinate units would give them ample understanding of what needed to occur, the staff needed to make follow-on decisions and decide how much risk we as a team were willing to accept to accomplish the assigned mission.

As the commander, I spent time with my planners throughout the planning process in an attempt to ensure the strike group’s mission and how it fed the fleet end state was adequately captured. Our planners developed a Situation, Mission, Enemy Situation, Admin, Command and Signal (SMEAC) five-paragraph order format. Over the course of work-ups, we refined the manner in which we captured the friendly and enemy situations. We labored over purpose and method. We added critical information requirements and discussed risk. Yet, after each order, reflection, and modification of our format, I still found myself summarizing that data in plain language from commander to commander to ensure we could see the forest through the trees.

In hindsight, I have concluded that the order is for watchstanders and subordinate planners, the intent is for commanders. It was clear to me in practice that my planners could only get me so far. I needed to add clarity to their words and do it a manner that made sense to my subordinate commanders. Without that additional clarity, the shared awareness, disciplined initiative, and prudent risk-taking I was trying to achieve would remain opaque.    

Commander’s Personal Viewpoint

As Gen. Dempsey described it, “In mission command, the commander must understand the problem, envision the end state, and visualize the nature and design of the operation.”10 Intent should reflect a commander’s personal and deep understanding of the mission. It should describe how subordinate units and warfighting functions come together to bring about a desired effect against an enemy force. It is, in its purest form, visualization. It communicates in clear terms for subordinate commanders how the boundaries and conditions around which a battle ahead should unfold. Intent communicates roles, success, failure, and pace. It describes to subordinate commanders and their staffs what is required to make decisions and who can make them and even how to act in the absence of further orders. Milan Vego has offered rules of thumb in drafting intent, including writing it in the first person, ensure it reflects the personality of the commander, keep it short and memorable, and write clearly and precisely.11 Intent crafted in this manner is akin to scaffolding around a building. It is simple pieces simply put together.  

Reflecting again on recent personal experience, workups provide numerous opportunities for strike group and warfare commanders to use intent as a reflection of this deeper understanding of the mission. Multi-warfare, multi-phased operations that consume a common set of resources create opportunities for friction, early culmination, and priorities. Commanders know where the breaking point lies and must be able to communicate that eventuality in a manner that is meaningful. We can use these opportunities to apply Vego’s reminders and really dig into what the sequence of tactical operations presented mean to the afloat fighting force and its staying power in the fight. 

Admiral Chester W. Nimitz achieved this in his famous Calculated Risk letter in the days leading up to the Battle of Midway.12 In a mere five sentences, he was able to communicate when it was appropriate for Rear Admirals Frank J. Fletcher and Raymond A. Spruance to commit their forces to action.13 Nimitz artfully told his commanders simply to avoid attack unless you know you can win. With that clear direction in hand, they took off to Midway and made the decisions necessary to turn the tides of the war.

Faced with the same resource challenge associated with the commitment of combat power during our own work-ups, we struggle to make it that clear. Nimitz understood it from the strategic through the tactical level. Fletcher and Spruance were tactically competent, their strike forces ready to take the fight to the enemy. Nimitz was aware of how this engagement was sequenced in time and space throughout his area of operations. He knew what failure meant to the remainder of the campaign in terms of residual combat power. It is a very good example of simple pieces put together simply.

Raising Commander’s Intent Above the Noise

Modern commanders keep a lot of plates spinning. There are horizontal and vertical relationships to foster within and beyond the immediate organization. There are allies and partners that need to be brought into the fold and enabled. As a local commander looks to the fight two echelons up and attempts to tap into the developing situation, even with the best staffs and the most refined process, it gets harder and harder to know what decision lies ahead and how commanders must work together to solve them. The time available to think and reflect is at a premium. A commander’s span of control affects his ability to influence subordinates directly. These challenges impact a commander’s ability to craft clear and meaningful intent. Buying back time through efficient and effective communication and developing our senior leaders for these challenges can mitigate some of this risk.

In the age of digital communication, we are clobbered by the exchange of information. Commanders are robbed of the time to write something thoughtfully, let alone consume it, and provide feedback. This deprives commanders of one of the remaining meaningful tools they may have to communicate complexity in these dispersed environments. Most commanders will argue that time is the biggest challenge to their collective ability to think critically, reflect deeply, and cogently communicate important information.

As a best practice, deliberate use of the battle rhythm and the various voice and video tools available can alleviate some of these pressures. As the battle rhythm drives the commander’s decision cycle, it can be used to home in on and tease out information necessary to assess ongoing operations and guide follow-on ones. A well-crafted and judicious set of critical information requirements are similarly helpful.14 While voice, video, and data tools remain available, interaction between and amongst commanders virtually affords the opportunity to communicate intent broadly. Minutes count in these environments. Time spent preparing for the battle rhythm and time spent consuming the information it presents slices away at the cognitive power of commander and their staffs. It is important to make wise use of it. Strike group workups provide another example.

Time must be guarded, and information exchange streamlined and relevant for commanders to gain the advantage in this environment. Workups deliberately tax afloat staffs to stress test the processes used to generate orders to subordinate units. Time becomes the most precious commodity. As workups evolve, the pace at which the changes occur to the base plan deliberately create trade-offs and resource constraints. As the fluidity of the tactical situation evolves, the challenge becomes to recognize those trade-offs, communicate them to higher headquarters, and capture them in a running change to commander’s intent. This rapidly evolving tactical situation, inside of this complex communications environment quickly exposes the weaknesses of even the best set of staff processes.

I frequently found myself challenged to keep a broader view. My own personal time to think critically about what was occurring around me in time and space was taken away brief after brief. Fatigue was setting in from endless phone calls in the middle of the night about tactical information that I had asked for in pristinely written orders that turned out to be irrelevant. Despite a fantastic staff and what I thought were fairly refined processes, my ability to think critically, write cogently, and re-assess my intent remain challenged.

Learning to Personalize Intent

Leaders are swimming in information, striving to make sense of it, and looking for where best to apply scarce resources to best effect. We can’t just expect a senior leader to learn how to be effective in this environment through broadening headquarters assignments alone. There are few opportunities for group commanders to get the balance of education and training necessary to excel in these new environments.15 Exposure to additional leader development opportunities that stress self-awareness, critical thinking, and executive decision making are necessary investments for commanders. These should include board selected in-residence opportunities at senior service colleges, political-military think tank fellowships, and corporate leadership development courses. Pulling forward courses like CAPSTONE for newly selected flag officer down to the major command level would go a long way in developing our senior commanders. Every year counts in an officer’s career progression. Spending 18-24 months off the flight-line or away from the waterfront is a calculated risk in its own right. In residence education, and more than once perhaps, is a must to provide the time away from the “building” to develop. Opportunities like these would help senior officers with the process of growing into roles where doing at the tactical level is replaced with sensing, shaping, and communicating priorities and expectations synonymous with executive leadership.16

Conclusion

Nimitz, Fletcher, and Spruance are tall figures for senior leaders to emulate. Though the environments they commanded in were markedly different in many ways, they wrestled with many of the same issues we wrestle with today. Their formations were large and diffused over many miles. And while communication methods improved over time, they were still left with fog and friction to overcome.

But none of them sailed with the same retinue of staffs, processes, and methods of communication that we sail with today. Yet they still succeeded with crafting plans that synchronized forces in space and time, and in a manner that created effects that employed resources effectively and efficiently. Simple written notes to each other created a shared understanding of the mission at hand and the roles of the forces assigned.

Commanders today are disadvantaged in many ways. We have large staffs and refined processes. Our communications methods create opportunities for over-communicating and are bereft of the right information at the right time for the right decision. Doubling down on putting the commanders back in intent, providing them with the skills necessary to create time and space for thinking and reflection, and deepening our investment in their development will help lay the foundation for successful mission command.

Captain Bill Shafley is a career Surface Warfare Officer and currently serves as Commodore, Destroyer Squadron 26, and Sea Combat Commander for Eisenhower Carrier Strike Group. He has served on both coasts and overseas in Asia and Europe. He is a graduate of the Naval War College’s Advanced Strategy Program and a designated Naval Strategist. These views are presented in a personal capacity.

References

1. For a good working definition of Mission Command, see ADRP 6-0 (2012).  p. 1-3.  https://usacac.army.mil/sites/default/files/misc/doctrine/CDG/cdg_resources/manuals/adrp/adrp6_0_new.pdf.

2. General Martin Dempsey (2012) “Mission Command White Paper, 03 APR 2012,” p. 4. https://www.jcs.mil/Portals/36/Documents/Publications/missioncommandwhitepaper2012.pdf.

3. For the tenets of Mission Command, see ADRP 6-0 (2012).  p 2-1. 

4. Milan Vego, “The Bureaucratization of the Military Decision Making Process,” Joint Forces Quarterly: Vol 88, 1st Qtr 2018, p. 39. https://ndupress.ndu.edu/Publications/Article/1411771/the-bureaucratization-of-the-us-military-decisionmaking-process/  

5. Dempsey, “White Paper,” p. 4.

6. Ibid.

7. Ibid.

8. Vego, “Military Decision Making,” p. 35.

9. Ibid., 36.

10. Dempsey, “White Paper,”  p. 4.

11. Vego, “Military Decision Making,” p. 39.

12. Robert C. Rubel, “Deconstructing Nimitz’s Principle of Calculated Risk,” Naval War College Review: Vol. 68: No. 1, Article 4. https://digital-commons.usnwc.edu/nwc-review/vol68/iss1/4.

13. Ibid.

14. See my previous published work in CIMSEC regarding Information exchange and Mission Command. https://cimsec.org/the-currency-of-mission-command/43263.

15. SWOS Major Command and the Major Command Course at NLEC are the two predominant courses for SWO Major Commanders.  Over the course of 4 weeks, both courses do their best to provide these opportunities, but they are not enough.

16. See Heather Venerable’s recent work regarding education and Senior Officers.  https://cimsec.org/playing-to-win-crafting-a-creative-strategic-vision-for-maritime-superiority/.

Featured Image: POLARIS POINT, Guam (Feb. 7, 2020) Capt. Al Alarcon, prospective commanding officer of the submarine tender USS Frank Cable (AS 40), salutes sideboys as he arrives at a change of command ceremony aboard the ship. (U.S. Navy photo by Mass Communication Specialist Second Class Heather C. Wamsley/Released)

Unmanned Mission Command, Pt. 2

By Tim McGeehan

The following two-part series discusses the command and control of future autonomous systems. Part 1 describes how we have arrived at the current tendency towards detailed control. Part 2 proposes how to refocus on mission command.

Adjusting Course

Today’s commanders are accustomed to operating in permissive environments and have grown addicted to the connectivity that makes detailed control possible. This is emerging as a major vulnerability. For example, while the surface Navy’s concept of “distributed lethality” will increase the complexity of the detection and targeting problems presented to adversaries, it will also increase the complexity of its own command and control. Even in a relatively uncontested environment, tightly coordinating widely dispersed forces will not be a trivial undertaking. This will tend toward lengthening decision cycles, at a time when the emphasis is on shortening them.1 How will the Navy execute operations in a future Anti-Access/Area-Denial (A2/AD) scenario, where every domain is contested (including the EM spectrum and cyberspace) and every fraction of a second counts? 

The Navy must “rediscover” and fully embrace mission command now, to both address current vulnerabilities as well as unleash the future potential of autonomous systems. These systems offer increased precision, faster reaction times, longer endurance, and greater range, but these advantages may not be realized if the approach to command and control remains unchanged. For starters, to prepare for future environments where data links cannot be taken for granted, commanders must be prepared to give all subordinates, human and machine, wide latitude to operate, which is only afforded by mission command. Many systems will progress from a man “in” the loop (with the person integral to the functioning), to a man “on” the loop (where the person oversees the system and executes command by negation), and then to complete autonomy. In the future, fully autonomous systems may collaborate with one another across a given echelon and solve problems based on the parameters communicated to them as commander’s intent (swarms would fall into this category). However, it may go even further. Mission command calls for adaptable leaders at every level; what if at some level the leaders are no longer people but machines? It is not hard to imagine a forward deployed autonomous system tasking its own subordinates (fellow machines), particularly in scenarios where there is no available bandwidth to allow backhaul communications or enable detailed control from afar. In these cases, mission command will not just be the preferred option, it will be the only option. This reliance on mission command may be seen as a cultural shift, but in reality, it is a return to the Navy’s cultural roots.

Back to Basics

Culturally, the Navy should be well-suited to embrace the mission command model to employ autonomous systems. Traditionally once a ship passed over the horizon there was little if any communication for extended periods of time due to technological limitations. This led to a culture of mission command: captains were given basic orders and an overall intent; the rest was up to them. Indeed, captains might act as ambassadors and conduct diplomacy and other business on behalf of the government in remote areas with little direct guidance.2 John Paul Jones himself stated that “it often happens that sudden emergencies in foreign waters make him [the Naval Officer] the diplomatic as well as the military representative of his country, and in such cases he may have to act without opportunity of consulting his civic or ministerial superiors at home, and such action may easily involve the portentous issue of peace or war between great powers.”3  This is not to advocate that autonomous systems will participate in diplomatic functions, but it does illustrate the longstanding Navy precedent for autonomy of subordinate units.

Another factor in support of the Navy favoring mission command is that the physics of the operating environment may demand it. For example, the physical properties of the undersea domain prohibit direct, routine, high-bandwidth communication with submerged platforms. This is the case with submarines and is being applied to UUVs by extension. This has led to extensive development of autonomous underwater vehicles (AUVs) vice remotely operated ones; AUVs clearly favor mission command.

Finally, the Navy’s culture of decentralized command is the backbone of the Composite Warfare Commander (CWC) construct. CWC is essentially an expression of mission command. Just as technology (the telegraph cable, wireless, and global satellite communication) has afforded the means of detailed control and micromanagement, it has also increased the speed of warfighting, necessitating decentralized execution. Command by negation is the foundation of CWC, and has been ingrained in the Navy’s officer corps for decades. Extending this mindset to autonomous systems will be key to realizing their full capabilities.

Training Commanders

This begs the question: how does one train senior commanders who rose through the ranks during the age of continuous connectivity to thrive in a world of autonomous systems where detailed control is not an option? For a start, they could adopt the mindset of General Norman Schwarzkopf, who described how hard it was to resist interfering with his subordinates:

“I desperately wanted to do something, anything, other than wait, yet the best thing I could do was stay out of the way. If I pestered my generals I’d distract them:  I knew as well as anyone that commanders on the battlefield have more important things to worry about than keeping higher headquarters informed…”4

That said, even while restraining himself, at the height of OPERATION DESERT STORM, his U.S. Central Command used more than 700,000 telephone calls and 152,000 radio messages per day to coordinate the actions of their subordinate forces. In contrast, during the Battle of Trafalgar in 1805, Nelson used only three general tactical flag-hoist signals to maneuver the entire British fleet.5

Commanders must learn to be satisfied with the ambiguity inherent in mission command. They must become comfortable clearly communicating their intent and mission requirements, whether tasking people or autonomous systems. Again, there isn’t a choice; the Navy’s adversaries are investing in A2/AD capabilities that explicitly target the means that make detailed control possible. Furthermore, the ambiguity and complexity of today’s operating environments prohibit “a priori” composition of complete and perfect instructions.

Placing commanders into increasingly complex and ambiguous situations during training will push them toward mission command, where they will have to trust subordinates closer to the edge who will be able to execute based on commander’s intent and their own initiative. General Dempsey, former Chairman of the Joint Chiefs of Staff, stressed training that presented commanders with fleeting opportunities and rewarding those who seized them in order to encourage commanders to act in the face of uncertainty.

Familiarization training with autonomous systems could take place in large part via simulation, where commanders interact with the actual algorithms and rehearse at a fraction of the cost of executing a real-world exercise. In this setting, commanders could practice giving mission type orders and translating them for machine understanding. They could employ their systems to failure, analyze where they went wrong, and learn to adjust their level of supervision via multiple iterations. This training wouldn’t be just a one-way evolution; the algorithms would also learn about their commander’s preferences and thought process by finding patterns in their actions and thresholds for their decisions. Through this process, the autonomous system would understand even more about commander’s intent should it need to act alone in the future. If the autonomous system will be in a position to task its own robotic subordinates, that algorithm would be demonstrated so the commander understands how the system may act (which will have incorporated what it has learned about how its commander commands).

With this in mind, while it may seem trivial, consideration must be made for the fact that future autonomous systems may have a detailed algorithmic model of their commander’s thought process, “understand” his intent, and “know” at least a piece of “the big picture.” As such, in the future these systems cannot simply be considered disposable assets performing the dumb, dirty, dangerous work that exempt a human from having to go in harm’s way. They will require significant anti-tamper capabilities to prevent an adversary from extracting or downloading this valuable information if they are somehow taken or recovered by the enemy. Perhaps they could even be armed with algorithms to “resist” exploitation or give misleading information. 

The Way Ahead

Above all, commanders will need to establish the same trust and confidence in autonomous systems that they have in manned systems and human operators.6 Commanders trust manned systems, even though they are far from infallible. This came to international attention with the airstrike on the Medecins Sans Frontieres hospital operating in Kunduz, Afghanistan. As this event illustrated, commanders must acknowledge the potential for human error, put mitigation measures in place where they can, and then accept a certain amount of risk. In the future, advances in machine learning and artificial intelligence will yield algorithms that far exceed human processing capabilities. Autonomous systems will be able to sense, process, coordinate, and act faster than their human counterparts. However, trust in these systems will only come from time and experience, and the way to secure that is to mainstream autonomous systems into exercises. Initially these opportunities should be carefully planned and executed, not just added in as an afterthought. For example, including autonomous systems in a particular Fleet Battle Experiment solely to check a box that they were used raises the potential for negative training, where the observers see the technology fail due to ill-conceived employment. As there may be limited opportunities to “win over” the officer corps, this must be avoided. Successfully demonstrating the capabilities (and the legitimate limitations) of autonomous systems is critical. Increased use over time will ensure maximum exposure to future commanders, and will be key to widespread adoption and full utilization.  

The Navy must return to its roots and rediscover mission command in order to fully leverage the potential of autonomous systems. While it may make commanders uncomfortable, it has deep roots in historic practice and is a logical extension of existing doctrine. Former General Dempsey wrote that mission command “must pervade the force and drive leader development, organizational design and inform material acquisitions.”Taking this to heart and applying it across the board will have profound and lasting impacts as the Navy sails into the era of autonomous systems.

Tim McGeehan is a U.S. Navy Officer currently serving in Washington. 

The ideas presented are those of the author alone and do not reflect the views of the Department of the Navy or Department of Defense.

References

[1] Dmitry Filipoff, Distributed Lethality and Concepts of Future War, CIMSEC, January 4, 2016, https://cimsec.org/distributed-lethality-and-concepts-of-future-war/20831

[2] Naval Doctrine Publication 6: Naval Command and Control, 1995, http://www.dtic.mil/dtic/tr/fulltext/u2/a304321.pdf, p. 9      

[3] Connell, Royal W. and William P. Mack, Naval Customs, Ceremonies, and Traditions, 1980, p. 355.

[4] Schwartzkopf, Norman, It Doesn’t Take a Hero:  The Autobiography of General Norman Schwartzkopf, 1992, p.523

[5] Ibid 2, p. 4

[6] Greg Smith, Trusting Autonomous Systems: It’s More Than Technology, CIMSEC, September 18, 2015, https://cimsec.org/trusting-autonomous-systems-its-more-than-technology/18908     

[7] Martin Dempsey, Mission Command White Paper, April 3, 2012, http://www.dtic.mil/doctrine/concepts/white_papers/cjcs_wp_missioncommand.pdf

Featured Image: SOUTH CHINA SEA (April 30, 2017) Sailors assigned to Helicopter Sea Combat Squadron 23 run tests on the the MQ-8B Firescout, an unmanned aerial vehicle, aboard littoral combat ship USS Coronado (LCS 4). (U.S. Navy photo by Mass Communication Specialist 3rd Class Deven Leigh Ellis/Released)

Unmanned Mission Command, Pt. 1

By Tim McGeehan

The following two-part series discusses the command and control of future autonomous systems. Part 1 describes how we have arrived at the current tendency towards detailed control. Part 2 proposes how to refocus on mission command.

Introduction

In recent years, the U.S. Navy’s unmanned vehicles have achieved a number of game-changing “firsts.” The X-47B Unmanned Combat Air System (UCAS) executed the first carrier launch and recovery in 2013, first combined manned/unmanned carrier operations in 2014, and first aerial refueling in 2015.1 In 2014, the Office of Naval Research demonstrated the first swarm capability for Unmanned Surface Vehicles (USV).2 In 2015, the NORTH DAKOTA performed the first launch and recovery of an Unmanned Underwater Vehicle (UUV) from a submarine during an operational mission.3 While these successes may represent the vanguard of a revolution in military technology, the larger revolution in military affairs will only be possible with the optimization of the command and control concepts associated with these systems. Regardless of specific mode (air, surface, or undersea), Navy leaders must fully embrace mission command to fully realize the power of these capabilities.

Unmanned History

“Unmanned” systems are not necessarily new. The U.S. Navy’s long history includes the employment of a variety of such platforms. For example, in 1919, Coast Battleship #4 (formerly USS IOWA (BB-1)) became the first radio-controlled target ship to be used in a fleet exercise.4 During World War II, participation in an early unmanned aircraft program called PROJECT ANVIL ultimately killed Navy Lieutenant Joe Kennedy (John F. Kennedy’s older brother), who was to parachute from his bomb-laden aircraft before it would be guided into a German target by radio-control.5 In 1946, F6F Hellcat fighters were modified for remote operation and employed to collect data during the OPERATION CROSSROADS atomic bomb tests at Bikini.6 These Hellcat “drones” could be controlled by another aircraft acting as the “queen” (flying up to 30 miles away). These drones were even launched from the deck of an aircraft carrier (almost 70 years before the X-47B performed that feat).

A Hellcat drone takes flight. Original caption: PILOTLESS HELLCAT (above), catapulted from USS Shangri-La, is clear of the carrier’s bow and climbs rapidly. Drones like this one will fly through the atomic cloud. (All Hands Magazine June 1946 issue)

However, the Navy’s achievements over the last few years were groundbreaking because the platforms were autonomous (i.e. controlled by machine, not remotely operated by a person). The current discussion of autonomy frequently revolves around the issues of ethics and accountability. Is it ethical to imbue these machines with the authority to use lethal force? If the machine is not under direct human control but rather evaluating for itself, who is responsible for its decisions and actions when faced with dilemmas? Much has been written about these topics, but there is a related and less discussed question: what sort of mindset shift will be required for Navy leaders to employ these systems to their full potential?

Command, Control, and Unmanned Systems

According to Naval Doctrine Publication 6 – Command and Control (NDP 6), “a commander commands by deciding what must be done and exercising leadership to inspire subordinates toward a common goal; he controls by monitoring and influencing the action required to accomplish what must be done.”7 These enduring concepts have new implications in the realm of unmanned systems. For example, while a commander can assign tasks to any subordinate (human or machine), “inspiring subordinates” has varying levels of applicability based on whether his units consist of “remotely piloted” aircraft (where his subordinates are actual human pilots) or autonomous systems (where the “pilot” is an algorithm controlling a machine). “Command” also includes establishing intent, distributing guidance on allocation of roles, responsibilities, and resources, and defining constraints on actions.8 On one hand, this could be straightforward with autonomous systems as this guidance could be translated into a series of rules and parameters that define the mission and rules of engagement. One would simply upload the mission and deploy the vehicle, which would go out and execute, possibly reporting in for updates but mostly operating on its own, solving problems along the way. On the other hand, in the absence of instructions that cover every possibility, an autonomous system is only as good as the internal algorithms that control it. Even as machine learning drastically improves and advanced algorithms are developed from extensive “training data,” an autonomous system may not respond to novel and ambiguous situations with the same judgment as a human. Indeed, one can imagine a catastrophic military counterpart to the 2010 stock market “flash crash,” where high-frequency trading algorithms designed to act in accordance with certain, pre-arranged criteria did not understand context and misread the situation, briefly erasing $1 trillion in market value.9

“Control” includes the conduits and feedback from subordinates to their commander that allow them to determine if events are on track or to adjust instructions as necessary. This is reasonably straightforward for a remotely piloted aircraft with a constant data link between platform and operator, such as the ScanEagle or MQ-8 Fire Scout unmanned aerial systems. However, a fully autonomous system may not be in positive communication. Even if it is ostensibly intended to remain in communication, feedback to the commander could be limited or non-existent due to emissions control (EMCON) posture or a contested electromagnetic (EM) spectrum. 

Mission Command and Unmanned Systems

In recent years, there has been a renewed focus across the Joint Force on the concept of “mission command.” Mission command is defined as “the conduct of military operations through decentralized execution based upon mission-type orders,” and it lends itself well to the employment of autonomous systems.10 Joint doctrine states:

“Mission command is built on subordinate leaders at all echelons who exercise disciplined initiative and act aggressively and independently to accomplish the mission. Mission-type orders focus on the purpose of the operation rather than details of how to perform assigned tasks. Commanders delegate decisions to subordinates wherever possible, which minimizes detailed control and empowers subordinates’ initiative to make decisions based on the commander’s guidance rather than constant communications.”11

Mission command for an autonomous system would require commanders to clearly confer their intent, objectives, constraints, and restraints in succinct instructions, and then rely on the “initiative” of said system. While this decentralized arrangement is more flexible and better suited to deal with ambiguity, it opens the door to unexpected or emergent behavior in the autonomous system. (Then again, emergent behavior is not confined to algorithms, as humans may perform in unexpected ways too.) 

In addition to passing feedback and information up the chain of command to build a shared understanding of the situation, mission command also emphasizes horizontal flow across the echelon between the subordinates. Since it relies on subordinates knowing the intent and mission requirements, mission command is much less vulnerable to disruption than detailed means of command and control.

However, some commanders today do not fully embrace mission command with human subordinates, much less feel comfortable delegating trust to autonomous systems.  They issue explicit instructions to subordinates in a highly-centralized arrangement, where volumes of information flow up and detailed orders flow down the chain of command. This may be acceptable in deliberate situations where time is not a major concern, where procedural compliance is emphasized, or where there can be no ambiguity or margin for error. Examples of unmanned systems suitable to this arrangement include a bomb disposal robot or remotely piloted aircraft that requires constant intervention and re-tasking, possibly for rapid repositioning of the platform for a better look at an emerging situation or better discrimination between friend and foe. However, this detailed control does not “function well when the vertical flow of information is disrupted.”12 Furthermore, when it comes to autonomous systems, such detailed control will undermine much of the purpose of having an autonomous system in the first place.

A fundamental task of the commander is to recognize which situations call for detailed control or mission command and act appropriately. Unfortunately, the experience gained by many commanders over the last decade has introduced a bias towards detailed control, which will hamstring the potential capabilities of autonomous systems if this tendency is not overcome.

Current Practice

The American military has enjoyed major advantages in recent conflicts due to global connectivity and continuous communications. However, this has redefined expectations and higher echelons increasingly rely on detailed control (for manned forces, let alone unmanned ones). Senior commanders (or their staffs) may levy demands to feed a seemingly insatiable thirst for information. This has led to friction between the echelons of command, and in some cases this interaction occurs at the expense of the decision-making capability of the unit in the field. Subordinate staff watch officers may spend more time answering requests for information and “feeding the beast” of higher headquarters than they spend overseeing their own operations.

It is understandable why this situation exists today. The senior commander (with whom responsibility ultimately resides) expects to be kept well-informed. To be fair, in some cases a senior commander located at a fusion center far from the front may have access to multiple streams of information, giving them a better overall view of what is going on than the commander actually on the ground. In other cases, it is today’s 24-hour news cycle and zero tolerance for mistakes that have led senior commanders to succumb to the temptation to second-guess their subordinates and micromanage their units in the field. A compounding factor that may be influencing commanders in today’s interconnected world is “Fear of Missing Out” (FoMO), which is described by psychologists as apprehension or anxiety stemming from the availability of volumes of information about what others are doing (think social media). It leads to a strong, almost compulsive desire to stay continually connected.  13

Whatever the reason, this is not a new phenomenon. Understanding previous episodes when leadership has “tightened the reins” and the subsequent impacts is key to developing a path forward to fully leverage the potential of autonomous systems.

Veering Off Course

The recent shift of preference away from mission command toward detailed control appears to echo the impacts of previous advances in the technology employed for command and control in general. For example, when speaking of his service with the U.S. Asiatic Squadron and the introduction of the telegraph before the turn of the 20th century, Rear Admiral Caspar Goodrich lamented “Before the submarine cable was laid, one was really somebody out there, but afterwards one simply became a damned errand boy at the end of a telegraph wire.”14

Later, the impact of wireless telegraphy proved to be a mixed blessing for commanders at sea. Interestingly, the contrasting points of view clearly described how it would enable micromanagement; the difference in opinion was whether this was good or bad. This was illustrated by two 1908 newspaper articles regarding the introduction of wireless in the Royal Navy. One article extolled its virtues, describing how the First Sea Lord in London could direct all fleet activities “as if they were maneuvering beneath his office windows.”15 The other article described how those same naval officers feared “armchair control… by means of wireless.”16 In century-old text that could be drawn from today’s press, the article quoted a Royal Navy officer:

“The paramount necessity in the next naval war will be rapidity of thought and of execution…The innovation is causing more than a little misgiving among naval officers afloat. So far as it will facilitate the interchange of information and the sending of important news, the erection of the [wireless] station is welcomed, but there is a strong fear that advantage will be taken of it to interfere with the independent action of fleet commanders in the event of war.”

Military historian Martin van Creveld related a more recent lesson of technology-enabled micromanagement from the U.S. Army. This time the technology in question was the helicopter, and its widespread use by multiple echelons of command during Viet Nam drove the shift away from mission command to detailed control:

“A hapless company commander engaged in a firefight on the ground was subjected to direct observation by the battalion commander circling above, who was in turn supervised by the brigade commander circling a thousand or so feet higher up, who in his turn was monitored by the division commander in the next highest chopper, who might even be so unlucky as to have his own performance watched by the Field Force (corps) commander. With each of these commanders asking the men on the ground to tune in his frequency and explain the situation, a heavy demand for information was generated that could and did interfere with the troops’ ability to operate effectively.”17

However, not all historic shifts toward detailed control are due to technology; some are cultural. For example, leadership had encroached so much on the authority of commanders in the days leading up to World War II that Admiral King had to issue a message to the fleet with the subject line “Exercise of Command – Excess of Detail in Orders and Instructions,” where he voiced his concern. He wrote that the:

“almost standard practice – of flag officers and other group commanders to issue orders and instructions in which their subordinates are told how as well as what to do to such an extent and in such detail that the Custom of the service has virtually become the antithesis of that essential element of command – initiative of the subordinate.”18

Admiral King attributed this trend to several cultural reasons, including anxiety of seniors that any mistake of a subordinate be attributed to the senior and thereby jeopardize promotion, activities of staffs infringing on lower echelon functions, and the habit and expectation of detailed instructions from junior and senior alike. He went on to say that they were preparing for war, when there would be neither time nor opportunity for this method of control, and this was conditioning subordinate commanders to rely on explicit guidance and depriving them from learning how to exercise initiative. Now, over 70 years later, as the Navy moves forward with autonomous systems the technology-enabled and culture-driven drift towards detailed control is again becoming an Achilles heel.

Read Part 2 here.

Tim McGeehan is a U.S. Navy Officer currently serving in Washington. 

The ideas presented are those of the author alone and do not reflect the views of the Department of the Navy or Department of Defense.

References

[1] Northrup Grumman, X-47B Capabilities, 2015, http://www.northropgrumman.com/Capabilities/x47bucas/Pages/default.aspx

[2] David Smalley, The Future Is Now: Navy’s Autonomous Swarmboats Can Overwhelm Adversaries, ONR Press Release, October 5, 2014, http://www.onr.navy.mil/en/Media-Center/Press-Releases/2014/autonomous-swarm-boat-unmanned-caracas.aspx

[3] Associated Press, Submarine launches undersea drone in a 1st for Navy, Military Times, July 20, 2015, http://www.militarytimes.com/story/military/tech/2015/07/20/submarine-launches-undersea-drone-in-a-1st-for-navy/30442323/

[4] Naval History and Heritage Command, Iowa II (BB-1), July 22, 2015, http://www.history.navy.mil/research/histories/ship-histories/danfs/i/iowa-ii.html

[5] Trevor Jeremy, LT Joe Kennedy, Norfolk and Suffolk Aviation Museum, 2015, http://www.aviationmuseum.net/JoeKennedy.htm

[6] Puppet Planes, All Hands, June 1946, http://www.navy.mil/ah_online/archpdf/ah194606.pdf, p. 2-5

[7] Naval Doctrine Publication 6:  Naval Command and Control, 1995, http://www.dtic.mil/dtic/tr/fulltext/u2/a304321.pdf, p. 6

[8] David Alberts and Richard Hayes, Understanding Command and Control, 2006, http://www.dodccrp.org/files/Alberts_UC2.pdf, p. 58

[9] Ben Rooney, Trading program sparked May ‘flash crash’, October 1, 2010, CNN, http://money.cnn.com/2010/10/01/markets/SEC_CFTC_flash_crash/

[10] DoD Dictionary of Military and Associated Terms, March, 2017, http://www.dtic.mil/doctrine/new_pubs/jp1_02.pdf

[11] Joint Publication 3-0, Joint Operations, http://www.dtic.mil/doctrine/new_pubs/jp3_0.pdf

[12] Ibid

[13] Andrew Przybylski, Kou Murayama, Cody DeHaan , and Valerie Gladwell, Motivational, emotional, and behavioral correlates of fear of missing out, Computers in Human Behavior, Vol 29 (4), July 2013,  http://www.sciencedirect.com/science/article/pii/S0747563213000800

[14] Michael Palmer, Command at Sea:  Naval Command and Control since the Sixteenth Century, 2005, p. 215

[15] W. T. Stead, Wireless Wonders at the Admiralty, Dawson Daily News, September 13, 1908, https://news.google.com/newspapers?nid=41&dat=19080913&id=y8cjAAAAIBAJ&sjid=KCcDAAAAIBAJ&pg=3703,1570909&hl=en

[16] Fleet Commanders Fear Armchair Control During War by Means of Wireless, Boston Evening Transcript, May 2, 1908, https://news.google.com/newspapers?nid=2249&dat=19080502&id=N3Y-AAAAIBAJ&sjid=nVkMAAAAIBAJ&pg=470,293709&hl=en

[17] Martin van Creveld, Command in War, 1985, p. 256-257.

[18] CINCLANT Serial (053), Exercise of Command – Excess of Detail in Orders and Instructions, January 21, 1941

Featured Image: An X-47B drone prepares to take off. (U.S. Navy photo)

Distributed Lethality: Old Opportunities for New Operations

Distributed Lethality Topic Week

By Matthew Hipple

The BISMARCK, a single ship capable of striking fear into the heart of an entire nation.
The BISMARCK, a single ship whose threat was sufficient to muster an entire fleet for the hunt.

The essence of naval warfare has always been opportunism – from the vague area of gravity generated by an in-port “fleet in being,” to the fleet-rallying threat generated by even a BISMARK or RANGER alone. The opportunity is generated by forces more mobile and self-contained than any army, more persistent than an air force, and empowered to act with no connection to higher authority in a domain that leaves no trace.  It is that ability for a small number of independent ships, or even a single vessel, to provide opportunity and create, “battlespace complexity,” that is distributed lethality’s core. Distributed lethality is not naval warfighting by new principles; it is a return to principles.

[otw_shortcode_button href=”https://cimsec.org/buying-cimsec-war-bonds/18115″ size=”medium” icon_position=”right” shape=”round” color_class=”otw-blue”]Donate to CIMSEC![/otw_shortcode_button]

The best defense is not an overwhelming obsession with defense.
The best defense is not an overwhelming obsession with defense.

Unfortunately, the virtuous autonomy of the past was, in part, only protected by the limited technology of the day. As technology allowed, decentralized execution was replaced by the luxury and false confidence of constant connection to higher authority through an electronic umbilical. It is the kind of devolution that turned into Secretary Gates’ nightmare, “I was touring a [Joint Special Operations Command] in Kabul and discovered a direct line to somebody on the NSC, and I had them tear it out while I was standing there.” In parallel, America began the ahistorical project of investing all offensive opportunity not even in a single class of ship, but a single ship surrounded by a fleet obsessed with its defense.  As early as 1993, President Clinton stated that when a crisis broke out, his first question would be, “where is the nearest carrier.” Sorry, other ships! For the Navy to sensibly rebalance, distributed lethality must succeed. For distributed lethality to succeed, we must decentralize and de-tether mission command, weapons release authority, and weapons support systems.

Decentralized and disconnected methods of command must be embraced, as centralization is only an imagined luxury. Modern centralization is based on the assumption we will have the connectivity appropriate for it. This is no longer tenable in a world of increasingly advanced peers and hyundaized lesser adversaries. Anti-Access, Area-Denial (A2/AD) depends on opponents making themselves visible, of which electronic emission is critical. A2/AD will also inevitably seek to disrupt our C2 connections.

doyle-dday
“Permission? We don’t need no stinkin’ permissions.” “The Battle for Fox Green Beach,” watercolor by Dwight Shepler, showing the Gleaves class destroyer USS Emmons(DD 457) foreground and her sister-ship, the USS Doyle, to the right, within a few hundred yards of the landing beach, mixing it up with German shore batteries on D-Day.

The current major-node CWC concept will need to be broken down to a more compact, internal model designed around the Hunter Killer Surface Action Group. Rules of Engagement must be flexible to the point that American commanders need not look over their shoulders to a higher OPCON. Consider, the destroyer CO’s at Normandy didn’t consider waiting for direction or requesting approval before shifting from small boat screening to shore bombardment from the shoals. They recognized the opportunity – the necessity – and executed of their own will.

In contrast, today it might be a regular occurrence to double-and-triple check our actions with American OPCON while operating with NATO in TACON off Somalia. American CO’s could use the freedom to make pragmatic, on-the-spot decisions not only for immediate concerns of mission effectiveness, but as representatives of their higher military command and, potentially, the state. Coalition commanders would have greater trust in the spot decisions of their American counterparts, rather than worry they sit precariously atop a changing several-step staffing process.

Though encouraging equivalent RoE flexibility for coalition partners may be challenging, our autonomy may encourage our partners to interpret their home nation guidance in a flexibility equivalent to their trust in the US commander they fight beside. That lack of hesitancy will be critical during a conflict, and in that sudden moment in the South China Sea or Mediterranean when a small SAG of coalition partners find themselves in the midst of a conflict that has just begun. Imposing the peacetime discipline necessary to trust the CO’s we have trained, prepared, and empowered to do their jobs is the only thing that will jump-start a shift in a mind-set now dominated by subordination. 

In the execution of more flexible orders, ships must be re-invested with control of their own weapon systems. CO’s oversee non-nuclear weapon systems that they do not control – that are solely the purview of off-ship authorities. In particular, as weapon systems like Tomahawk become deployable for ASuW, off-ship authority’s iron grip on their control must break.  This decentralization also matters outside the stand-up fight at sea. The organic ability to program and deploy Tomahawk missiles for land strike allows surface ships to execute attacks of opportunity on land infrastructure, or execute and support opportunistic maritime raids as groups of marines harass adversaries, or turn isolated islands into temporary logistics or aviation operations bases. For winning the sudden-and-deadly fight in the littoral environment but integrating with opportunistic amphibious operations, the surface fleet could find some inspiration from the USS BARB, the only submarine in WWII to “sink” a train with its crew-come-amateur-commandos. From Somalia to the South China Sea, naval commanders should be told what to do, not how – and be allowed to do it. The less reliant the force is on these ephemeral links and the less these links are unnecessarily exercised in peacetime, the greater a force’s instinct to operate independently and with confidence in an imposed or needed silence. 

CAPT Ramius, relieved to discover he is not dealing with "some buckaroo."
CAPT Ramius, relieved to discover he is not dealing with “some buckaroo.”

There may be a level of discomfort with decentralization and disconnection. If leaders fear the impact of a “strategic corporal,” surely a “buckaroo,” as  CAPT Ramius would call him, that would be truly horrifying. That fear would be a reflection of a failure of the system to produce leaders, not the importance and operational effectiveness of independence. There is a reason the US once considered the Department of the Navy to be separate and peer to the Department of War – noting the institution and its individual commanders as unique peace and wartime tools for strategic security and diplomacy. Compare today’s autonomy and trust with that invested in Commodore Perry during his mission to Japan or Commodore Preble’s mission to seek partnership with Naples during the First Barbary Pirates War. Reliance on call-backs and outside authority will gut a naval force’s ability to operate in a distributed manner when those connections disappear. Encouraging it by default will ensure the muscle memory is there when needed.

Finally, Distributed Lethality requires the hardware to allow surface combatants to operate as effective offensive surface units in small groups. The kinetic end of the spectrum, upgraded legacy weapons and an introduction of new weapon systems has been extensively discussed since the 2015 Surface Navy Association National Symposium when VADM Rowden and RADM Fanta rolled out Distributed Lethality in force. However, weapon systems are only as good as the available detection systems. Current naval operations rely heavily on shore-based assets, assets from the carrier, and joint assets for reconnaissance. In the previous Distributed Lethality topic week, LT Glynn argued for a suite of surveillance assets, some organic to individual ships, but most deploying from the shore or from carriers.  Presuming a denied environment, and commanders empowered to seek and exploit opportunities within their space, the best argument would be for greater emphasis on ship-organic assets. They may not provide the best capabilities, but capabilities are worthless if assets cannot find, reach, or communicate with a Hunter-Killer SAG operating in silence imposed by self or the enemy. They also prevent an HKSAG from being completely at the mercy or limitations of a Navy or joint asset coordinator – while simultaneously relieving those theater assets for higher-level operations and opportunity exploitation.

Ultimately – distributed lethality is the historical default mode of independent naval operations given a new name due to the strength of the current carrier-based operational construct. Admiral Halsey ordered CAPT Arleigh Burke to intercept a Japanese convoy at Bougainville, “GET ATHWART THE BUKA-RABAUL EVACUATION LINE ABOUT 35 MILES WEST OF… IF ENEMY CONTACTED YOU KNOW WHAT TO DO.” The surface fleet must embrace a culture assuming our commanders “KNOW WHAT TO DO.” We must build an operational construct in which acting on that instinct is practiced and exercised in peacetime, for wartime. The operational and diplomatic autonomy, as well as the OLD IRONSIDES style firepower of single surface combatants, is necessary to rebalance a force gutted of its many natural operational advantages. Distributed lethality must return the surface force to its cultural and operational roots of distributed autonomy, returning to the ideas that will maximize opportunity to threaten, undermine, engage with, and destroy the adversary.

Matthew Hipple is the President of CIMSEC and an active duty surface warfare officer. He also leads our Sea Control and Real Time Strategy podcasts, available on iTunes.

[otw_shortcode_button href=”https://cimsec.org/buying-cimsec-war-bonds/18115″ size=”medium” icon_position=”right” shape=”round” color_class=”otw-blue”]Donate to CIMSEC![/otw_shortcode_button]