Tag Archives: featured

September Member Round-Up Part One

 Welcome to Part One of the September 2015 Member Round-up, covering the first two weeks of the month. CIMSEC members examined several international maritime security issues, including Russian blue water operations, European maritime security threats, the PLA-N maritime strategy in the Asia-Pacific and aspects of the U.S. military defense procurement program.

The first part of the September Round-up begins with Alex Calvo for The Jamestown Foundation, where he discuses Russia’s naval presence in Spain’s African exclave of Ceuta. Mr. Calvo describes the strategic importance of Ceuta as a launching point for Russian surface fleet operations throughout the Mediterranean Sea region. Additionally, a geopolitical assessment is provided regarding the unique relationship between Spain and Russia in a period of high tensions between Russia and NATO over Ukraine.

Continuing on European maritime security issues, Chuck Hill, for his Coast Guard Blog, discusses the development of Offshore Patrol Vessels (OPV) in France and in the Netherlands. Mr. Hill identifies the development of OPVs in France as a response to the government attempting to increase their enforcement capabilities of EEZ territory. Regarding the Netherlands, Mr. Hill describes the specifications of future OPVs with emphasis on the deployment of ‘hull vane’ technologies to increase OPV mobility, stability and range.

Entering the Asia-Pacific region, Ankit Panda, for The Diplomat, analyzes aspects of innocent passage and the movement of U.S. warships near the newly constructed Chinese islands in the South China Sea. With tensions increasing in the region, Mr. Panda explains that continued cooperation between India and Vietnam could enhance the strategic security relationship between the two countries allowing for a more effective approach to confronting China.

In a separate article, Mr. Panda explains that Vietnam has independently begun to increase its maritime capabilities by approving Coast Guard vessels to deploy major weapon systems. This will allow the Vietnamese CG to be more active in the nation’s maritime security objectives and will significantly increase the effectiveness of EEZ enforcement. Mr. Panda also provided a description of three major Chinese missile systems that pose significant regional and global threats to military adversaries. The Df-16 SRBM, the YJ-18 anti-ship cruise missile and the DF-41 ICBM are components of China’s missile force that greatly contribute to the country’s access denial strategy and global military influence.

Harry Kazianis, for The National Interest, shares an analysis on the U.S. Navy’s plan to modernize the Aegis Combat System’s hardware and software. The technological improvements being added will provide increased effectiveness for the Aegis system to conduct its integrated air and missile defense operations. Also for The National Interest, Mr. Kazianis discusses China’s new DF-21D anti-ship ballistic missile as well as the characteristics of a conflict between China and the U.S. in the South China Sea.

Bryan McGrath for The War on the Rocks, concludes the Round-up with discussing aspects of the U.S. Navy’s procurement strategy. He provides a detailed examination on the number of ships required by the U.S. Navy to meet the current security threats facing the United States as well as to sustain the requirements of the maritime objectives of the navy itself. Mr. McGrath explains that the current and projected size of the U.S. Naval fleet, 273 and 308 respectively, is too small to remain effective in multiple regions. He references the U.S. Navy’s 346-ship fleet from the Clinton-era as an appropriate number for managing the current maritime environment and providing sufficient influence in all U.S. theatres of operation.    

Members of CIMSEC were also active elsewhere so far in September:

At CIMSEC we encourage members to continue writing, either here on the NextWar blog or through other means. You can assist us by emailing your works to me, the Director of Member Publicity, at dmp@cimsec.org to make sure we include them in our next round-up.

Aiding India’s Next-Generation Aircraft Carrier: A Review

By Peter Marino

As global power shifts both to Asia and within Asia, strategic realignments between states are picking up pace. The US-India relationship is one such partnership that is receiving increased reassessment from specialists in both capitals. In his recent paper, Making Waves, Carnegie Endowment scholar Ashley Tellis weighs in on the topic, suggesting an expansion and deepening of the security relationship through a close collaboration on the design and construction of India’s next aircraft carrier class, the Vishal. I took a brief look at the paper and examined its stated and implicit conclusions.

Peter Marino holds an MSc in Global Politics from The London School of Economics and is a graduate of Norwich University. He lived in Shanghai from 2003 to 2008 and served as head of China development for London-based Aurigon, Ltd. He founded and sold Quaternion, a political risk startup, and is currently establishing a new Think Tank for International Affairs aimed at promoting engagement with the “Millennial Generation.” He also produces Globalogues, a video blog with commentary on global politics and economics. The views expressed in this article are his own.

Information Management and the Future of Naval Aviation

By Michael Glynn

Aviators and operators hitting the fleet today have reasons to be excited. Naval Aviation is in the process of recapitalizing the fleet with a stable of very capable platforms and sensors: the E-2D carrying the highly advanced APY-9 multifunction radar; the P-8A with a powerful acoustic system and the APS-154 Advanced Airborne Sensor radar; and the EA-18G armed with the very capable ALQ-218 electronic warfare system and Next Generation Jammer.

The advances are not restricted to manned platforms alone. The MQ-4C will enable wide area search and ISR operations, covering hundreds of thousands of square miles during 30 hour flights. The MQ-8C will bring impressive endurance to small deck surface ships. Longer dwell time promises to yield more collection opportunities and push more data to warfighters.

But observers should be cautioned that these new platforms, new sensors, and emerging autonomy won’t necessarily yield higher quality intelligence or more information to commanders. Warfighters today are fighting not to generate enough information, but rather to manage the incredible amounts of data that today’s sensors record and store. The fleet is struggling to keep from being drowned in a sea of data. The battle of the information age is to separate the useful information from the vast amount of meaningless noise.

Our sensors today already develop tremendous amounts of data. How do we store it, access it, make sense of it, and disseminate it? How will we manage this in the future with even more data as unmanned systems become more common? Can autonomy and data fusion be part of the answer? Will our training and intelligence analysis need to change? Let’s examine these challenges in detail.

Large Data Sets, Autonomy, and Data Fusion

The increasing use of unmanned systems will bring longer mission profiles and hence longer windows of time where sensors can collect. This will generate extremely large amounts of information each flight. To put the challenge in perspective, consider a modern maritime patrol aircraft, the P-8A and its partner, the soon to be deployed MQ-4C UAV. On an eight hour mission, a Poseidon will generate up to 900 gigabytes of sensor information. How much more data will the unmanned Triton generate during its thirty hour flights?

Any operator in the fleet will admit that the amount of data gathered by our platforms today far surpasses the bandwidth of our long range communication networks. What happens to data that can’t be transferred off an aircraft during its mission? How best to manage information that may be over a day “time-late” when a UAV lands? What sensor information should be broadcast to operators ashore and what should be saved for post-flight access? These are challenging questions for program mangers, requirements officers, and operators to solve.

In the same vein, the large data set generated by sensors today offers the possibility of using analytics to sift through them and draw conclusions. However, this will only happen if managers design suitable architectures to extract the data post-flight, store it, and make it available to customers. We will discuss this concept later.

A second broad trend worth mentioning is automation and the ability to use technology to parse the data. Algorithms in modern sensors allow these systems to automatically capture, store, and disseminate information. Legacy surface search radars required an operator to manually plot a contact, log its position on paper, and update the position as time went by. Modern surface search radars can automatically identify, assign track numbers, and update tracks of dozens, if not hundreds of contacts, and promote certain tracks to datalinks such as Link 16. The track information is also recorded on-board and available for post-mission download, analysis, and storage.

The benefits of automation and data storage don’t end there. Today’s platforms either already do or will soon employ data fusion engines that merge complimentary information from multiple sensors to produce a higher-fidelity view of the battlespace. These systems will identify a surface contact by radar and overlay an electronic line of bearing signal that arrives from the same direction as the radar contact. The fusion engine will recognize the radar signal is coming from that ship and by analyzing the parameters of the signal might be able to provide a possible identification of the type of vessel. The system will then merge the radar contact and the electronic emission into a single track and promote it automatically to a datalink.

The capability of our sensors and our ability to store the data they produce is improving rapidly. Unless we think about how we collect and process this data, we risk not being able to capitalize on the capability. Let’s examine some actions we can take to prevent the technological advances from outpacing our ability to control them.

Recognizing the Challenge

Our warfighters and intelligence professionals need to examine the process by which they collect, store, process, and disseminate information. We need to match technology with roles a computer can accomplish and utilize our manpower where the skills of a human are most needed. Too often, our warfighters are employed in roles to which they are poorly suited.

In parts of the fleet, an observer can find operators plotting the locations of ships in paper logs when mission systems are recording the same information and storing it with far greater fidelity and fewer errors. These mission systems scale easily, plotting not one track history, but thousands. The same observer could find aviators submitting message traffic to meteorological commands listing environmental measurements at one location when the aircraft they just flew recorded similar measurements at dozens of locations spread over hundreds of miles. The observer could also find an intelligence officer spending their time preparing a PowerPoint brief for a commander instead of analyzing the information brought home by crew.

Humans are excellent at recognizing patterns and drawing conclusions from data. When it comes to tasks like plotting and updating radar contacts or transcribing information in a log, a machine wins every time. Yet we can find numerous cases in which we ask humans to “beat the machine” and conduct a rote task when the technology exits to automate the process. We need to train our operators to adopt a “sensor supervisor” approach and use technology to automate post-mission product creation.

Action Ahead

Are we making wise use of the billions of dollars spent on collection platforms if we don’t examine our own information processing requirements? When we bring new sensors to the fleet, are we process mapping to determine how best to analyze and disseminate the data they collect? Do we even know what types of information our systems are collecting? In all of these cases, Naval Aviation as an organization can get better.

Leaders in Naval Aviation and the Information Dominance Corps have several solutions that can be implemented. The first is to examine and implement a “pull” based system of information portals where collection platforms can post data and customers of all types can access it. Currently, the fleet relies on a “push” model where a unit is assigned to accomplish a collection task, and then information is reported back to stakeholders. Under a “pull” system, information would be posted to IP accessible portals where any authorized user can discover the information and utilize it for their analysis purpose. This is a far more efficient system, prevents stovepipes, and will enable next generation “big data” analytics efforts including applications in the Naval Tactical Cloud.

Next, information analysis and dissemination need to be viewed as a key part of the kill chain and performed so as to optimize mission effectiveness. Is a trained intelligence analyst better suited to sifting through ambiguous data and drawing conclusions about adversary behavior or best used building PowerPoint slides? Software today can be easily adopted to automatically generate post mission message traffic, briefing slides, and other products. This allows human capital to be reallocated into value-added efforts.

In a similar manner, Naval Aviation should examine how we can train our aviators and operators to best employ their sensors. We should expose our young aviators and sensor operators to concepts of information management early in their training. Understanding the strengths and weaknesses both of the human sitting in the seat and the sensor system will go far to optimize our collection platforms. This will allow operators to let machines do what they do best, and apply human minds to the analytical tasks they are best suited for.

Conclusion

The platforms and sensors being introduced to the fleet are very capable and will grow more so with intelligent management of the data they produce. Let us write and think about how best to manage the information our warfighters gather as they prepare to deter and win the conflicts of tomorrow.

Lieutenant Glynn is a naval aviator and member of the CNO’s Rapid Innovation Cell. The views expressed in this article are entirely his own.

This article featured as a part of CIMSEC’s September 2015 topic week, The Future of Naval Aviation. You can access the topic week’s articles here

Trusting Autonomous Systems: It’s More Than Technology

By CDR Greg Smith

How will naval aviation employ unmanned aerial vehicles (UAVs) in the future? The answer is, of course, “it depends.” It depends on technology, on the economy and budgets, on whether we are at war or peace, and on leadership. It also depends on less interesting things like how squadrons and air wings are organized. Given the rapid advances in unmanned systems technology and the success of unmanned platforms like Predator and BAMS-D,[1] UAVs will certainly proliferate and significantly impact the future of naval aviation. If properly integrated, future manned-unmanned teams could deliver exponential increases in combat power, but integration of unmanned aircraft requires a level of trust in autonomous systems that does not yet exist in naval aviation. Building trust will require technical improvements that increase the “trustworthiness” of UAVs, but it will also require naval aviation to establish organizations that enhance trust in UAVs with the goal of fully integrating them into the fight. Indeed, organization will likely be the limiting factor with regard to the pace of integrating trusted UAVs. Therefore, naval aviation should consider the impact organization will have on the ability of aviators to trust UAVs and balance this among the competing requirements for introducing new unmanned platforms.

The Issue is Trust

Although naval aviators are perceived as natural risk-takers, they are trained to take no unnecessary risk and to mitigate risk throughout every evolution. Therefore, UAV integration will occur only when aviators trust UAVs to the same extent that they trust another aviator flying in close proximity as part of a strike package or during coordinated antisubmarine warfare sorties today. 

The proliferation and success of UAVs in the past decade belies the fact that aviators still do not trust them. The vast majority of unmanned aircraft continue to fly only scheduled sorties in pre-established air space in order to ensure separation from manned aircraft. In addition, naval aviators operate with an abundance of caution around UAVs. Aircrews are briefed on planned UAV routes and orbits prior to a mission and routinely deviate from airspace assignments or coordinate new air space in flight to ensure safe separation from UAVs. Being notified that an operator has lost communications with a nearby UAV (i.e. it is autonomously executing a pre-programmed reacquisition profile) assists manned aircraft, but it also raises the hair on the back of an aviator’s neck. In the terminal area it becomes necessary to fly closer to UAVs, which is accomplished safely with the assistance of ground air traffic controllers. Still, as with any congestion, the threat to manned aircraft increases, especially in expeditionary locations. After several, near mid-air collisions with UAVs in 2010, one task force commander grounded his manned aircraft at a remote operating location until he was assured that the local control tower and UAV operators, who were physically located half-way around the world, would improve procedural compliance. Anecdotes like these abound, demonstrating both the adaptability and skepticism of aviators flying near UAVs. After nearly a decade of sharing the sky with UAVs, most naval aviators no longer believe that UAVs are trying to kill them, but one should not confuse this sentiment with trusting the platform, technology, or operators. 

Building trust in autonomous systems should be a goal of those who will design the UAVs of the future as well as those who will employ them in the Fleet, because establishing trust in autonomous systems may be the tipping point that will unleash the revolutionary combat potential of UAVs. Naval aviation could fully integrate trusted UAVs into every mission area of every community. Unmanned tankers, wingmen (wingbots?), jammers, decoys, missile trucks, minesweepers, and communications relays could be launched from the decks of aircraft carriers, destroyers, support ships, from bases ashore, or from aircraft cargo bays, wing pylons and bomb bay stations in the coming decades, truly revolutionizing naval aviation. However, lack of trust is a critical obstacle which must be overcome before such a proliferation of UAVs can occur.

There are several technological improvements that can contribute to trust by enhancing situational awareness and the safety of both manned and unmanned platforms.  Improvements in see-and-avoid technology are needed to assist UAV operators when the UAV is flying in proximity of manned platforms. UAV command and control architectures and traffic collision avoidance systems (TCAS), as well as radars and data links, require improved reliability, security, and flexibility to ensure survivability in an anti-access environment or in the face of cyber or space attacks. Systems that provide manned platforms with increased situational awareness regarding the location of UAVs and the intended flight profile would also enhance trustworthiness. Today, the vast majority of naval aviation is not comfortable sharing an altitude block with a UAV in day, visual meteorological conditions (VMC), much less during war at sea in an anti-access environment. Technological improvements that make UAVs more trustworthy are necessary but not sufficient for establishing trust between an aviator and a machine. Sufficient trust will also require training, mission experience, and technical understanding of the system. 

Organization Matters

Given the technological enhancements described above, it is not a stretch to imagine a manned F-35 establishing a CAP station with a UAV wingman, or a P-8 crew employing UAVs or unmanned undersea vehicles (UUVs) to search for a submarine, or an E-2D using a UAV to extend the range of its radar or data link, or an EA-18G commanding a UAV to jam air defenses or deliver an electromagnetic pulse. There remain challenges to fielding these capabilities, but the technology will soon exist to safely integrate UAVs into these naval aviation missions and many more.  This level of integration raises numerous questions about UAV organizations and their personnel. 

Who would be responsible for the success, failure, and safety of the missions? Would each community operate UAVs that support its mission or would a UAV community operate all UAVs performing the full spectrum of naval aviation missions? How would a UAV operator develop the expertise to execute complex tactical tasks in close coordination with manned platforms? What tactical and technical training will be required to integrate UAVs in this manner? How are the skills of pilots and UAV operators similar? How are they different? What portions of the unmanned sorties are accomplished autonomously and which require a link with a UAV operator? From where will UAVs launch and recover? From where will they be controlled and who will control them?

The answers to these questions depend on how squadrons of the future will be organized to command, operate and maintain the UAVs. In turn, each organizational model significantly influences the amount of additional training, coordination, and experience required to achieve the trust necessary to fully integrate UAVs. Consider the issue of who controls the UAVs.  Some options include: control by the pilot of a manned aircraft themself; control by another aviator in the same aircraft or section; control by an aviator from the same naval aviation community outside the section; control by a UAV operator from a UAV community — aboard ship, ashore, or airborne; and fully autonomous operation.  The amount of trust required to execute complex missions in close proximity to UAVs is the same regardless of how the UAV is controlled, but the amount of trust inherent in each scenario varies greatly.   Decisions about these elements will significantly influence how quickly aviators will be able to trust, and therefore integrate, UAVs. As technology overcomes the challenges posed by the various capabilities implied above, organizational structures will determine how quickly UAVs can be integrated into the fight.

Beyond U-CLASS

Naval aviation’s plans for its next UAV, the Unmanned Carrier Launched Airborne Surveillance System (U-CLASS), will prudently focus on ensuring the safe introduction of a novel platform in a budget constrained environment. Yet, looking beyond U-CLASS, there is the potential for naval aviation to exponentially increase its combat effectiveness by integrating UAVs in every mission area. Technological innovation is necessary to make UAVs more trustworthy, but naval aviation should also understand how organization will facilitate or impede the integration of trusted UAVs. The optimal structure of future UAV units will maximize trust between manned and unmanned platforms and allow for innovation and growth in integration. 

Commander Smith is a Naval Flight Officer and the former Commanding Officer of VP-26.  These are his views and do not reflect the views of the United States Navy.

This article featured as a part of CIMSEC’s September 2015 topic week, The Future of Naval Aviation. You can access the topic week’s articles here