Tag Archives: drones

Evaluating the Naval Response to the Red Sea Crisis

Red Sea Topic Week

By Colin Barnard

Though Alfred Thayer Mahan is famous for his advocacy of strong naval fleets to win decisive battles at sea, he saw the enduring purpose of navies as something much broader and not constrained to war: enabling and, if necessary, disrupting maritime trade. Even though Mahan could not have imagined autonomous weapons, the Houthis’ campaign against merchant shipping in the Red Sea would have been familiar to him. Whatever technology is used, however, maritime trade has been disrupted before; and, as before, the U.S. Navy and several of its allies are fighting to enable it, demonstrating the Navy’s enduring purpose for all to see. This analysis evaluates the naval response so far, from cooperating with merchant shipping, the cost effectiveness and vulnerabilities of using warships and missiles to counter drones, and the role of allies, to the potential implications for a future conflict with China and current efforts in defense innovation to prepare for it.

Cooperating with Merchant Shipping

Threats against merchant shipping are not new: pirates, German U-boats, and even other merchant ships have disrupted merchant shipping in the past. Navies, coast guards, and the international shipping community have long feared the potential for terrorists to exploit the vulnerability of merchant ships in one of the world’s many maritime chokepoints, of which the Bab-el-Mandeb Strait in the Red Sea is one of the most critical. A terrorist group backed by Iran, the Houthis have exploited the geography of the Red Sea to their advantage, targeting shipping to disrupt trade with disproportionate impact in order to effect political change–i.e., hindering Israel’s campaign against Hamas in Gaza. Protecting shipping from such terrorism is a job for naval forces, but they must cooperate with merchant shipping in doing so, as they have in the past.

Enter Naval Cooperation and Guidance for Shipping (NCAGS). An important NATO doctrine, NCAGS provides NATO navies with the tools to cooperate and guide merchant shipping during crisis and conflict. Its shortfalls arise because of the voluntary nature of this relationship. Though shipping can never be guaranteed full protection–especially without troops on the ground to mitigate land-based threats–navies must provide value to the shipping industry if it is to trust and rely on them for what protection they can provide. While the NCAGS doctrine has been practiced by NATO navies for decades, it does not seem to have worked as designed in the Red Sea. Early in the crisis, Reuters reported that shipping was “in the dark” on U.S. and allied naval efforts to counter Houthi attacks. The always candid John Konrad, founder and CEO of gCaptain, took to Twitter to highlight the perils of this apparent disconnect.

While communication between the NCAGS enterprise and shipping was likely better than publicly available information suggests, as Nathan Strang claimed, it would not be unreasonable to suggest the need for a closer relationship between the two. If they are not already, industry liaison officers could be used to better link the U.S. Navy and shipping, and foreign area officers could help allies get on the same page. Public affairs officers also have a role to play. If the NCAGS enterprise was doing its job per Strang, but efforts were difficult to surmise because of classification, carefully crafted news releases about these efforts could have helped put shipping at ease. Depending on NATO’s role in such a crisis, the NATO Shipping Center, NATO’s single point of contact for the international shipping community, would be the best link between the two. NATO has come to aid of merchant shipping before, even when the threat was outside its area of responsibility; and crises like this would help shore up its relationship with shipping in the event of crises or conflict closer to home.

Cost Effectiveness and Vulnerabilities: Destroyer vs. Drones

At the same time naval forces are demonstrating their enduring purpose in the Red Sea, outsiders are questioning the sustainability of manned, multi-billion warships facing off against much cheaper, unmanned drones. The missiles used to shoot down these drones cost upwards of $4 million, while the drones themselves cost only hundreds of thousands. But the issue of cost effectiveness in asymmetric warfare is not new. In the land campaigns of the Global War on Terror, for example, costly munitions were expended in the targeting of much less costly targets. That cost effectiveness is suddenly an issue for public discussion during a maritime campaign is yet another example of seablindness, but the concern is reasonable. Unmanned and easy to replicate, drones can be used to exhaust more expensive naval munitions before attacking warships directly without putting the drone operator at risk. The discussion of cost effectiveness has, therefore, extended to the vulnerability of warships.

This vulnerability was the subject of a recent article by Brandon Weichert, who bemoaned the Arleigh Burke-class guided missile destroyer as “a great navy warship past its prime.” Current and former naval officers were quick to criticize the article, which uses the 2000 attack on USS Cole as its prime example of such vulnerability but says nothing about weapon posture or layered defense (the Cole was moored in Yemen for refueling and unready when the attack occurred). While warship vulnerability against drones is concerning, all of history’s advances in weapon technology elicited similar concern. From the longbow and machine gun to the submarine and nuclear bomb, these advances created asymmetry even among peers, and only democratization of these technologies restored the balance. In the meantime, it should be obvious that the best course of action, as the United States (and now UK, too) is following, is to target bases and operators before drones become a threat–though it is doubtful that such strikes alone will be enough to make a difference.

While the Houthi’s use of autonomous systems is the latest example of their democratization, the Second Nagorno-Karabakh War was the first indication of such democratization on a mass scale, as well as the first instance of these systems being a decisive factor in war. Prior to the 2020 conflict, autonomous systems—drones—were the purview of major powers with the money to procure and employ them. In Nagorno-Karabakh, Azerbaijan employed them as a force of their own, devastating Armenian air defenses, tanks, artillery, and supply lines without putting traditional aircraft or their pilots in harm’s way. Similarly, in the Russo-Ukrainian war, Ukrainian forces have all but stopped the Russian Navy in the Black Sea, using drones to disrupt and in some cases destroy Russian warships. As John Antal warned in his detailed analysis of the Second Nagorno-Karabakh War, autonomous systems, now employed by state and non-state actors alike, are here to stay. 

Absent Allies and Coalitions of the Willing

Due to the impact of Houthi attacks on world trade, the U.S. and several of its allies formed a coalition of the willing to respond to the crisis. Like the international response to piracy in the Horn of Africa, international naval cooperation has become a rule rather than an exception in the post-Cold War era. Globalization has necessitated this cooperation, increasing the impact of the threats to, and mitigations of maritime security relative to more traditional threats. But unlike the response to piracy, which saw NATO, the EU, and even China, India, and Russia deploy forces to protect maritime trade, NATO is notably absent from this crisis. The Israel-Hamas conflict has divided many allies on their response to the Houthi threat, even if all are affected by the disruption of merchant shipping in the Red Sea. NATO has the means to make a difference in this crisis, but politics as usual are in the way.

As of this writing, 14 states are supporting the U.S.-led Operation Prosperity Guardian. Of these 14, only eight are NATO members–the United States included. The EU’s Operation Aspides has even fewer supporters, though they include some of the NATO members absent from Prosperity Guardian. Of course, not all states supporting Prosperity Guardian are contributing warships; but the presence of staff officers, as Norway is contributing, will enhance cooperation. One of the merchant ships attacked early on in this crisis was Norwegian-flagged, incentivizing this contribution, but the general threat posed to freedom of navigation in the Red Sea should be incentive enough for all capable states to contribute. As should be obvious even to the seablind, the impact of supply chain disruption as seen during COVID, the grounding of the Ever Given, and, more recently, the destruction of the Francis Scott Key bridge, necessitates their contribution.

Whether or not it ultimately contributes to the crisis response, NATO must once again confront the challenge of deterring and defending against its perennial foe, Russia, while also contributing to maritime security. Worrisomely, NATO’s Allied Maritime Strategy is out-of-date. Its latest Strategic Concept, released in 2022, refocuses on Russia while maintaining NATO’s role as a maritime security actor; but it poorly articulates the maritime dimensions of NATO’s security environment. NATO is, first and foremost, a maritime alliance, and it needs a maritime strategy to guide its force structure and operational concepts. Such a strategy is more important considering the potential for a future conflict with China. If the U.S. Navy and potentially other NATO navies must surge to the Pacific, alliance buy-in will be needed to manage the varying threats to maritime security in and near NATO’s area of responsibility.

Implications for a Future Conflict with China 

As the U.S. Navy and coalition members stand off against Houthi drones (and missiles) in the Red Sea, the implications for future conflict are worth examining. As in the Russo-Ukrainian War, drones have reduced asymmetry in this crisis; and they were decisive in the Second Nagorno-Karabakh War. Clearly, such technology must be at the forefront of the U.S. Navy’s planning for a future conflict with China, which has the industrial capacity to produce drones in far greater quantities than so far exhibited. Updates to strategy and the fleet design it informs need to be quick, as warships, submarines, aircraft, and their integration with this technology cannot happen overnight. The new U.S. Navy Chief of Naval Operations, Lisa Franchetti, called this state of affairs a “1930s moment.” In the 30s, the U.S. Navy was too small and insufficiently resourced for the coming Second World War, and the U.S. Navy is not much different today (shipbuilding delays being one of the most troubling examples).

While the U.S. Navy’s strategy prior to the Second World War was centered on battleships, as Franchetti explained, it shifted from this platform-centric strategy to one integrating naval forces above and below the sea to defeat the Nazis and Imperial Japan. The next shift in strategy is clearly toward autonomy. The Navy is already making significant efforts to this end. The Replicator Initiative, focused on commercially sourcing and mass producing drones to take on China, is the overarching example of these efforts. The Navy’s unmanned  Task Force 59 in the Middle East is the prime example of the Navy’s role at the pointy end of this strategy, developing and implementing its tactics. Likewise, other branches, especially the U.S. Marine Corps, are making efforts to better design themselves for next generation warfare. How exactly this next generation warfare will look is still unclear, but drones are likely to be used to counter drones. The era of drone-on-drone warfare is near.

One of the biggest lessons to be learned from the drone warfare experienced so far is offense-defense balance. Drones add to an already saturated battle space, increasing the burden on layered defenses. Leveraging emerging technology to improve offensive capabilities is critical, but defensive capabilities must be given corresponding weight. Importantly, however, neither offensive nor defensive capabilities need to be wholly reliant on emerging technology; “old ways” may prove to be more effective than imagined, as they were for Lieutenant General Van Riper in the infamous Millennium Challenge. The novel 2034, co-authored by retired Admiral James Stavridis and Elliot Ackerman, imagines how these old ways might make the difference in a conflict with China, should new technology be defeated. New technology might win some wars and mitigate certain crises; where it is not the deciding factor, however, old ways—or some combination of the old and new, as is currently on display in Ukraine—may be.

Conclusion

Navies are demonstrating their enduring purpose in the Red Sea Crisis, but their response has been far from perfect. The seemingly strained relationship between navies and merchant shipping evident early in the crisis is concerning, but establishing better relationships between the two using liaison officers and the NATO Shipping Center–if NATO involves itself—could help in the future. The cost-effectiveness and vulnerabilities of the naval response are also concerning, as is the absence of certain allies. Regardless, the drone technology at the center of this crisis is here to stay, and the implications for a future conflict are the most concerning of all. Defense innovation efforts are already underway to prepare for such a conflict, but over reliance on emerging technology to go on offense, without simultaneously preparing for defense, could be fatal. Going forward, navies are at the center of these challenges, especially war with China. Thankfully, the Red Sea Crisis could prove their perfect test.

Colin Barnard is a PhD candidate at King’s College London and foreign area officer in the U.S. Navy Reserve, currently assigned to a unit supporting U.S. Naval Forces Europe-Africa/U.S. Sixth Fleet in Naples, Italy. He was formerly on active duty for ten years, during which he supported U.S. and NATO operations across Europe, the Middle East, and North Africa. He has previously written for CIMSEC and the U.S. Naval Institute’s Proceedings. The views expressed in this publication are the author’s and do not imply endorsement by the U.S. Department of Defense or U.S. Navy.

Featured Image: The British-registered cargo ship Rubymar sinking, after it was targeted by Yemen’s Houthi forces in international waters in the Red Sea, on March 3, 2024, in the Red Sea. (Photo by Yemeni Al-Joumhouriah TV)

Unmanned Ships: A Fleet to Do What?

By Jonathan Panter

On March 18, 2021, former Congresswoman Elaine Luria of Virginia criticized the Navy’s then-recently-released Unmanned Campaign Framework as “full of buzzwords and platitude but really short on details.” When promised a classified concept of operations, she added, “I think the biggest question I have [is]… it is a fleet to do what?”

Two and a half years later, the American public – soon to spend half a billion dollars on unmanned vessels – could ask the same thing. What strategic ends are unmanned vessels intended to serve? The Navy has yet to update the Unmanned Campaign Framework. The document promises all the right things (“faster, scalable, and distributed decision-making”; “resilience, connectivity, and real time awareness”) but provides little granular detail about the differential utility of unmanned systems across mission and warfare areas.

Nevertheless, unmanned vessels are receiving more attention than ever. The media frenzy surrounding Ukraine’s “drone boats” continues; the Navy’s Task Force 59 (responsible for testing small unmanned surface vessels in the Persian Gulf) gets the feature-length treatment in Wired; and a front-page article in the New York Times all but lobbies for more unmanned ships.

Perhaps a concept of operations for unmanned surface vessels is floating around in the classified world. But elsewhere, buzzwords still rule the day. Just weeks ago the Department of Defense announced its new “Replicator” initiative to deploy thousands of drones within two years: it will be “iterative,” “data-driven,” “game-changing,” and of course, “innovative” (variations of the latter appear 22 times in the announcement). Never mind that, in warfare, “innovative” is not always synonymous with “useful.”

Part of the problem is conceptual. The term “unmanned system” includes everything from a civilian hobbyist quadcopter used for spotting artillery in Ukraine, to the Navy’s as-yet-unbuilt “large unmanned surface vessel,” a tugboat-sized ship that is supposed to launch cruise missiles. This expansive terminology can confuse lay observers or new students of the subject. Unmanned systems have matured at different rates. Some have been thoroughly tested and proven their mettle in real-world operations; others are, at present, theoretical or even daydreams. The U.S. military has decades of experience operating unmanned aerial systems (or “aerial drones”), for instance. But the record of unmanned surface vessels – the focus of this article – is limited. Only two types of unmanned surface vessels have seen operational duty in the current era: Ukraine’s (decidedly non-autonomous) explosive-laden drones, and the U.S. Navy’s tiny “Saildrone,” a vessel with little current purpose besides visually-identifying other ships in a permissive environment. Despite these narrow use cases, the two examples are almost-unfailingly invoked in claims that a naval revolution is underway.

When the same few words, and the same few examples, so frequently justify a wholesale strategic pivot, policymakers and strategists should take pause. If the Navy intends to reorient its ways and means of warfare – and if the taxpayer is expected to pay for it – then Congress and the American people deserve a formal, public strategy document on the general purposes and risks of unmanned surface vessels.

The Missions of the Navy

The 2021 Unmanned Campaign Framework is less a plan than a promotional pamphlet. The Framework dedicates one page each to the Department of Defense’s four unmanned systems “portfolios” – air, surface, subsurface, and ground – an understandably brief introduction given the infancy of the technology and classification concerns. Because specific programs are prone to change, it is more informative to examine the promise of unmanned systems from the perspective of the underlying strategic motivation for their development. That context is a shift to what the Navy calls “distributed maritime operations”: a plan to field more platforms, in a more dispersed fashion, networked together to share information and concentrate fires, while keeping people outside the enemy’s weapons envelope, and sending more expendable assets inside of it. Unmanned ships, the Framework contends, free up humans for other tasks, reduce the risk to human life, increase the fleet’s persistence, and make it more resilient by providing more “nodes” in the network. They are also – the Navy frequently claims – cheap. The Chief of Naval Operations’ Navigation Plan 2022 also promises that unmanned systems will deliver particular means of warfare (e.g., increased distribution of forces) but again, without specifying the differential application of such means across mission and warfare areas.

The first step in determining the likely future distribution of unmanned surface vessel risk is projecting where those vessels are most likely to be used. Setting aside strategic deterrence, which remains the realm of ballistic missile submarines, the Navy’s core four missions are sea control, presence, power projection, and maritime security.

Forward Presence is the practice of keeping ships persistently deployed overseas, demonstrating U.S. capabilities and resolve, in order to deter adversaries and reassure allies. Unmanned ships’ putative “advantages” – that they are cheap, small, expendable, and don’t risk personnel – are decidedly counterproductive for this purpose. Deterrence and reassurance require convincing adversaries and allies that one has skin in the game, and risking an unmanned asset hardly compares to risking a destroyer and her crew. On the other hand, the Navy’s large and medium unmanned surface vessels, if ever successfully fielded (and there are ample reasons to suggest that severe challenges remain) might contribute to the credible combat power that deterrence requires.

Another possible argument is that unmanned vessels will free up manned ships for those specific presence operations where a human touch is invaluable (such as port visits), reducing strain on the fleet. But that raises a conundrum. For a ship to demonstrate credible combat power, it must be able to shoot. And the Navy has made clear that any unmanned ship with missiles and guns will be under human control. Particularly in the next few decades, when unmanned vessels’ maintenance and support requirements will be high, nearby manned ships will probably provide that control. Hence, while unmanned vessels could increase the fleet’s vertical-launch capacity – and therefore its combat credibility – they may also worsen operational tempo or contribute to higher overall costs.

Power Projection is the use of ships to fire missiles, launch aircraft, land troops, or provide logistical resupply in support of combat operations on land. The Navy’s large unmanned surface vessel is expected to serve this mission by swelling the Navy’s capacity to launch land-attack missiles. Destroyers and guided missile submarines already serve this function, but unmanned vessels will, according to their advocates, do so more cheaply and with less human risk. But since manned assets’ capabilities in this area are proven, and unmanned assets’ capabilities are not, the Navy must explain what happens if the new technologies fail, and the traditional fleet – perhaps prematurely shrunken or reordered to accommodate the unmanned systems – has to step in to pick up the slack. Unmanned vessels are not officially intended to “replace” manned warships, but a significant strategic imperative for their development is the Navy’s tacit acknowledgment that, given constrained budgets, it cannot achieve its desired fleet expansion with manned ships alone.

Sea Control is attacking enemy ships, aircraft, and submarines, so that the U.S. and its allies can use the sea for power projection or make it passable for wartime commerce. Its corollary is sea denial: preventing an enemy from using of the sea for his purposes. This is where unmanned surface vessels are really supposed to shine. The two biggest arguments for their value-add in sea control are intelligence, surveillance and reconnaissance (ISR), and increased anti-ship missile capacity. There are also interesting emerging use cases, such as swarming electromagnetic warfare.

Small unmanned surface vessels, like the Saildrone – the argument goes – can loiter in large numbers, for weeks at a time (using solar power), all over a battlespace, looking and listening for enemies. While such a niche case for surveillance can be useful, the problem is that maritime surface ISR can struggle to match the global access and persistence of space-based and airborne ISR. Even in relatively constrained areas like the East and South China Seas, the search areas are vast. Unmanned surface vessels cannot match the revisit rates of low earth orbit satellites when combing large swaths of the ocean’s surface. In the last few years, the vast growth in low-earth orbit satellite constellations (both commercial and government-owned) has further diminished the urgency and budget efficiency of meeting ISR needs with surface ships. Ironically, the Saildrone and similar craft may end up being more dependent on space, because unmanned surface ISR assets operating over the horizon will rely on satellite communications to send mission data back. As for airborne ISR (that conducted by manned or unmanned aircraft), small unmanned surface vessels deployed en masse can exceed the persistence of aircraft, but at the cost of sensor reach: these vessels’ low “height of eye” inherently limits the range of their electro-optical sensors.

That relates to the second role unmanned ships are expected to serve in the sea control mission: offensive surface warfare. As noted, the Navy has been explicit that any unmanned ship with kinetic capabilities will be controlled by humans. As such, these vessels cannot be compared to, say, a command-guided missile that switches to radar in the terminal phase. Any kinetic-equipped unmanned vessel will rely on over-the-horizon communications relay provided by satellites, manned and unmanned surface vessels, or airborne assets. But if the Navy expects a satellite-degraded environment, as is possible in a conflict with a peer competitor, then surface and airborne assets will substantially assume the relay burden (requiring far greater numbers of them). Considering the Navy’s stated intent that most unmanned assets be “attritable,” however, it remains to be seen how long such a distributed network would last before manned vessels must themselves assume the relay function, bringing them closer to the enemy’s weapons engagement zone.

Maritime Security refers to constabulary functions such as protecting commerce from terrorists and pirates and preventing illegal behavior such as arms smuggling and drug running. In such operations, small and medium unmanned surface vessels could technically conduct surveillance, issue warnings, or engage threats with small-caliber weapons while under remote human control. The latter, however, seems especially unlikely in practice. Maritime security is a peacetime endeavor, conducted in congested sea space among civilians. Accordingly, there is a high premium on positive identification of bad actors, and generally the goal is not to kill anyone. A human touch will be required – not just “in the loop,” but probably on-scene.

Another problem is that, if unmanned vessels are small and cheap – two of their most celebrated characteristics – terrorists and drug runners may be able to disable them quite easily. Saildrone, therefore, adds most value for maritime security ISR under the following narrow set of conditions: when no aviation assets, satellite coverage, or allied coast guards are available; manned ships or shore facilities are within communications range; it is sunny, or enough sunny days have recently passed to keep batteries charged; and the targets of surveillance are incapable of shooting at, or (as with Iran in 2022), attempting to capture the drone monitoring them from within visual range.

The Risks of Concentration

Most contemporary Navy ships can be used for a variety of the missions delineated above. Destroyers can be used for power projection, sea control, presence, and maritime security; aircraft carriers can be used for all of those; amphibious assault ships are best for power projection and presence but can readily support maritime security. None of this is true for any unmanned vessel – not any in production, and none even in the design phase. A large unmanned surface vessel will have one purpose: to support power projection. Medium unmanned surface vessels will have two purposes: to contribute to sea control and maritime security.

Multi-mission capability, however, is not necessarily the goal. Unmanned assets, proponents argue, will not replace manned ships, but rather augment them as part of a “hybrid fleet.” The Navy expects a force structure that is 40 percent unmanned by 2050, although that does not mean that each naval mission area will be 40 percent unmanned. Some missions will rely more heavily on unmanned platforms than others will. This means the risks of unmanned vessels will not be evenly distributed across the Navy’s missions.

In general, we can forecast that unmanned vessels will fall out of operation (in peacetime) or attrite more quickly (in wartime) than manned ships for two reasons. First, the technology is immature and likely to remain so for a long time; currently, unmanned vessels are prone to inherent hull, mechanical, and electrical casualties, and cyber vulnerabilities. In brief, persistence is these vessels’ greatest challenge (and one the Defense Advanced Research Projects Agency is attempting to solve). Unmanned vessels may be required to keep station for weeks or months, in contrast to aerial drones’ persistence times, which are measured in hours. The longer unmanned surface vessels are at sea without maintenance, the greater their chance of routine equipment failure that either requires remote troubleshooting or on-scene repair. The former incurs both electromagnetic targeting and cyber risk. Second, unmanned vessels are explicitly designed to be less survivable, or “expendable” in the words of proponents.

The New York Times feature article mentioned previously illustrates the problem. It observes that the Navy has not scaled the success of Saildrone by integrating larger unmanned surface vessels into the fleet. This failure is attributable, the article argues, to bureaucratic inertia and industry capture. Missing from the discussion is the fact that the hull, mechanical, and electrical solutions required to field a 2000-ton medium unmanned surface vessel (especially one capable of persistent operations) are an order of magnitude more complex than those required for the 14-ton Saildrone. The propulsion requirements alone, let alone combat systems, place the former decades behind the latter in technological maturity. It is therefore nearly guaranteed that by 2030, for instance – even if the Navy has increased the overall percentage of unmanned vessels in its force structure – the Navy will not be able to have significant numbers of unmanned vessels in key mission areas.

Accordingly, the Navy must assess concentration risk: what happens when certain missions, but also warfare areas within those mission areas, degrade at different rates due to the differential survivability of manned versus unmanned assets. As a thought experiment, let us assume the Navy hits its 40 percent unmanned target. However, because Saildrones are far less technically complex, and far cheaper, than large unmanned surface vessels, the future fleet has more of the former than the latter. That future fleet would therefore be more reliant on unmanned assets for maritime security than for presence. Suppose, then, that China executes a successful cyber attack against a network of Saildrones; suddenly the maritime security mission is compromised, and the Navy must draw on its manned assets to support it – at the expense of the presence mission.

Sound unrealistic? Ukraine recently hacked Iranian-made drones used by Russia; during the Solar Winds hack, malicious code was delivered via legitimate code process; and the National Oceanic and Atmospheric Administration’s satellite network was hacked on at least one known occasion. And these are only some of the reasons why any unmanned asset with external communications capability must be assumed as cyber-vulnerable by default.

Beware Innovation for Innovation’s Sake

It should make the hairs stand up on the back of one’s neck when a new capability is described as simultaneously cheaper and more effective; when dozens of articles use the same buzzwords; when strategy documents are heavy on sweeping generalizations and light on detail; when the claim that technology will “mature” is delivered as a certainty; when “innovative” is treated as synonymous with “useful;” or when the same few empirical examples appear in every article on a subject. All of these are present in spades in media coverage of unmanned vessels.

If the U.S. Navy is to embark on a costly project with uncertain chances of success, it owes Congress and the American people a better Unmanned Campaign Framework, or an unclassified concept of operations that disaggregates the role of unmanned ships across the Navy’s various missions, and the warfare areas that comprise them. Such a concept must be honest about concentration risk and suggest ways to mitigate it. And Congress, which has already begun to take a deeper interest in unmanned platforms, should hold the Navy to account.

Jonathan Panter is a Ph.D. Candidate in Political Science at Columbia University. His dissertation examines the strategic logic of U.S. Navy forward presence. Prior to attending Columbia, he served as a Surface Warfare Officer in the U.S. Navy.

The author thanks Anand Jantzen and Ian Sundstrom for comments on an earlier draft of this article.

Featured Image: NAVAL STATION KEY WEST, Fl. – (Sept. 13, 2023) Commercial operators deploy Saildrone Voyager Unmanned Surface Vessels (USVs) out to sea in the initial steps of U.S. 4th Fleet’s Operation Windward Stack during a launch from Naval Air Station Key West’s Mole Pier and Truman Harbor(U.S. Navy photo by Danette Baso Silvers/Released)

Exercise Digital Horizon: Accelerating the Development of Unmanned Surface Vehicles

By George Galdorisi

The international community has been tremendously proactive in undertaking operations, exercises, experiments, and demonstration to accelerate the development and fielding of unmanned surface vehicles, reflecting the real importance of these systems to world navies. Much of this work has occurred in and around the Arabian Gulf under the auspices of Commander U.S. Fifth Fleet and Task Force 59.

These ambitious exercises throughout the course of 2022 provided a learning opportunity for all participating navies. These culminated in the capstone unmanned event, Exercise Digital Horizon, a three-week event in the Middle East focused on employing artificial intelligence and 15 different unmanned systems: 12 unmanned surface vehicles (USVs) and three unmanned aerial vehicles (UAVs).

A key goal of Digital Horizon was to speed new technology integration across the 5th Fleet, and to seek cost-effective alternatives for Maritime Domain Awareness (MDA) missions. As Carrington Malin described the importance of Digital Horizon:

“Despite the cutting-edge hardware in the Arabian Gulf, Digital Horizon is far more than a trial of new unmanned systems. This exercise is about data integration and the integration of command and control capabilities, where many different advanced technologies are being deployed together and experimented with for the first time.

The advanced technologies now available and the opportunities that they bring to enhance maritime security are many-fold, but these also drive an exponential increase in complexity for the military. Using the Arabian Gulf as the laboratory, Task Force 59 and its partners are pioneering ways to manage that complexity, whilst delivering next-level intelligence, incident prevention and response capabilities.”1

Digital Horizon brought together emerging unmanned technologies and combined them with data analytics and artificial intelligence in order to enhance regional maritime security and strengthen deterrence by applying leading-edge technology and experimentation.2 Vice Admiral Brad Cooper, commander of U.S. Naval Forces Central Command, U.S. 5th Fleet and Combined Maritime Forces introduced the exercise and highlighted its potential: “I am excited about the direction we are headed. By harnessing these new unmanned technologies and combining them with artificial intelligence, we will enhance regional maritime security and strengthen deterrence. This benefits everybody.”3

Click to expand. Graphic illustration depicting the unmanned systems that will participate in exercise Digital Horizon 2022. The three-week unmanned and artificial intelligence integration event involved employing new platforms in the region for the first time. (U.S. Army graphic by Sgt. Brandon Murphy)

Captain Michael Brasseur, then-commodore of Task Force 59, emphasized the use of unmanned maritime vehicles to conduct intelligence, surveillance and reconnaissance missions, including identifying objects in the water and spotting suspicious behavior.4 He noted: “We pushed beyond technological boundaries and discovered new capabilities for maritime domain awareness to enhance our ability to see above, on and below the water.”5

During Digital Horizon, Task Force 59 leveraged artificial intelligence to create an interface on one screen, also called a “single pane of glass,” displaying the relevant data from multiple unmanned systems for watchstanders in Task Force 59’s Robotics Operations Center (ROC). Reviewing what was accomplished during this event, Captain Brasseur marveled at the pace of innovation: “We are challenging our industry partners in one of the most difficult operational environments, and they are responding with enhanced capability, fast.”6

One of the features of Digital Horizon, and in line with the first word of the exercise, “Digital,” was the ability of one operator to command and control five unique drones, a capability long-sought by U.S. Navy officials.7 The Navy is acutely aware of the high cost of manpower and is dedicated to moving beyond the current “one UXS, multiple joysticks, multiple operators,” paradigm that has plagued UXS development for decades.

Digital Horizon was a unique exercise from the outset. Task Force 59 worked with the Department of Defense’s Defense Innovation Unit (DIU) in order to leverage that organization’s expertise as a technology accelerator. Additionally, given the U.S. Navy’s ambitious goals to rapidly test and subsequently acquire USVs to populate the Fleet, CTF-59 used a contractor-owned/contractor operated (COCO) model to bring a substantial number of unmanned systems to Digital Horizon, well beyond those already in the inventory. This approach sidestepped the often clunky DoD acquisition system while providing appropriate oversight during the exercise and gaining operational experience with new systems.

MANAMA, Bahrain (Nov. 19, 2022) Various unmanned systems sit on display in Manama, Bahrain, prior to exercise Digital Horizon 2022. (U.S. Army photo by Sgt. Brandon Murphy)

Another distinctive feature of Digital Horizon involved launching and recovering small UAVs from medium-size USVs. This lash-up leveraged the capabilities of both unmanned assets, enabling the long-endurance USVs to carry the shorter-endurance UAVs to the desired area of operations. This “operationalized” a CONOPS that emerged from the U.S. Navy laboratory community years ago.8

The results of Digital Horizon lived up to the initial hype. During a presentation at the 2023 Surface Navy Association Symposium, here is how Vice Admiral Cooper described what was accomplished during Digital Horizon:

“We are creating a distributed and integrated network of systems to establish a “digital ocean” in the Middle East, creating constant surveillance. This means every partner and every sensor, collecting new data, adding it to an intelligent synthesis of around-the-clock inputs, encompassing thousands of images, from seabed to space, from ships, unmanned systems, subsea sensors, satellites, buoys, and other persistent technologies.

No navy acting alone can protect against all the threats, the region is simply too big. We believe that the way to get after this is the two primary lines of effort: strengthen our partnerships and accelerate innovation…One of the results from the exercise was the ability to create a single operational picture so one operator can command and control multiple unmanned systems on one screen, a ‘Single Pane of Glass’ (SPOG)…Digital Horizon was a visible demonstration of the promise and the power of very rapid tech innovation.”9

The results of Digital Horizon could change the way the world’s navies conduct maritime safety and security. Having multiple unmanned systems conduct maritime surveillance, with the operations center then using big data, artificial intelligence and machine learning to amalgamate this sea of data into something that commanders can use to make real-time decisions, enables navies to “stretch” their crewed vessels and use them for more vital missions than merely conducting surveillance.

As one example of how Digital Horizon brought together COTS unmanned surface vehicles with COTS systems and sensors, the T-38 Devil Ray was equipped with multiple state-of-the-art COTS sensors to provide persistent surveillance. The T-38 provided AIS, full motion video from SeaFLIR-280HD and FLIR-M364C cameras, as well as the display of radar contacts on a chart via the onboard Furuno DRS4D-NXT Doppler radar. These were all streamed back to Task Force 59’s Robotics Operations Center via high bandwidth radios and SATCOM.

These exercises and initiatives are important if the Navy is to convince a skeptical Congress that its plans for unmanned systems are sound, and represent an important course change in the way the Navy intends to communicate with Congress, by “showing, not telling” what its unmanned systems can do.10 This approach is vital, for as long as Congress remains unconvinced regarding the efficacy of the unmanned systems the Navy wishes to procure; it is unlikely that funding will follow.11

Secretary of the Navy, Carlos Del Toro, explained this new “show, don’t tell,” philosophy built on an ongoing series of exercises, experiments and demonstrations, further indicating that he believes the Navy is “on the same page as Congress:”

“The Navy has a responsibility to be able to prove that the technology that Congress is going to invest in actually works and it meets what we need to address the threat. I think that’s the responsible thing to do…I don’t see it as a fight between Congress and the Department of Navy. I think we’re aligned in our thinking about what has to be done.”12

Indeed, in remarks at the Reagan National Defense Forum, Secretary Del Toro said the Navy intends to stand up additional unmanned task forces around the globe modeled after what Task Force 59 accomplished during Digital Horizon, noting:

“We’ve demonstrated with Task Force 59 how much more we can do with these unmanned vehicles—as long as they’re closely integrated together in a [command and control] node that, you know, connects to our manned surface vehicles. And there’s been a lot of experimentation; it’s going to continue aggressively. And we’re going to start translating that to other regions of the world as well. That will include the establishment of formal task forces that will fall under some of the Navy’s other numbered fleets.”13

Secretary of the Navy Del Toro continued this drumbeat during the U.S. Naval Institute/AFCEA “West” Symposium in February 2023. In a keynote address describing the Navy’s progress and intentions regarding integrating unmanned systems into the Fleet, he emphasized the progress that CTF-59 had made, especially in the area of successfully integrating unmanned systems and artificial intelligence during Digital Horizon.14

A Marine Advanced Robotics WAM-V unmanned surface vessel operates in the Arabian Gulf, Nov. 29, during Digital Horizon 2022. (U.S. Army photo by Sgt. Brandon Murphy)

Importantly, the U.S. Navy has now created the infrastructure to accelerate the testing and evaluation of unmanned surface vehicles. In 2019, the Navy stood up Surface Development Squadron One to provide stewardship for unmanned experimentation and manned-unmanned teaming.15 In 2022, seeking to put additional emphasis on unmanned maritime vehicles, the Navy established Unmanned Surface Vessel Division One (USVDIV-1), under the command of Commander Jeremiah Daley.16

This new division oversees medium and large unmanned surface vessels out of Port Hueneme Naval Base in Ventura County.17 Unmanned Surface Vessel Division One is engaged with the Fleet to move the unmanned surface vessels further west and exercise autonomy, payloads, and hull, mechanical and electrical (HM&E) systems to ensure that future programs of record (LUSV and MUSV) are successful from inception, and that they provide lethality and combat effectiveness for future naval and joint forces.

Digital Horizon presages a new paradigm in the way navies will think about uncrewed assets, no longer as “vehicles” but rather as “systems” that are nodes in a web of assets delivering far greater capability than the sum of the parts. World navies will conduct ambitious unmanned exercises, experiments and demonstrations throughout 2023 and beyond, and the lessons learned from Digital Horizon will no doubt inform those efforts.

Captain George Galdorisi (USN – retired) is a career naval aviator whose thirty years of active duty service included four command tours and five years as a carrier strike group chief of staff. He began his writing career in 1978 with an article in U.S. Naval Institute Proceedings. He is the author of 15 books, including four New York Times best-sellers. The views presented are those of the author, and do not reflect the views of the Department of the Navy or the Department of Defense.

References

1. Carrington Malin, “A Testbed for Naval Innovation,” Middle East AI News, December 1, 2022.

2. Aaron-Matthew Lariosa, “US Navy Highlights TF 59 Contributions to Fleet’s Unmanned Vision,” Naval News, January 23, 2023.

3. “U.S. Launches New Unmanned & AI Systems Integration Event,” U.S. Naval Forces Central Command Public Affairs, November 23, 2022, accessed at: https://www.cusnc.navy.mil/Media/News/Display/Article/3226901/us-launches-new-unmanned-ai-systems-integration-event/.

4. J.P. Lawrence, “Navy’s ‘Influx’ of Aquatic and Aerial Drones Tested in the Middle East,” Stars and Stripes, December 1, 2022.

5. “Digital Horizon Wraps Up: Task Force 59 Perspective, Second Line of Defense, December 22, 2022.

6. Geoff Ziezulewicz, “New in 2023: Here Comes the First-Ever Surface Drone Fleet,” Navy Times, January 3, 2023.

7. Justin Katz, “Accenture Demos Data Vis, C2 for Multiple USVs During Navy’s Digital Horizons Exercise,” Breaking Defense, December 16, 2022.

8. Vladimir Djapic et al, “Heterogeneous Autonomous Mobile Maritime Expeditionary Robots and Maritime Information Dominance,” Naval Engineers Journal, December 2014.

9. Audrey Decker, “5th Fleet Commander Details ‘Digital Ocean’ After TF-59 Reaches FOC,” Inside the Navy, January 16, 2023.

10. See, for example, George Galdorisi, “Catch a Wave: Testing Unmanned Surface Vehicles Is Becoming an International Endeavour,” Surface SITREP, Winter 2022.

11. “Navy Failing to Make ‘Critical Pivot’ In Unmanned Investment,” Inside the Navy, October 10, 2022.

12. Justin Katz, “Show, Don’t Tell: Navy Changes Strategy to Sell Unmanned Systems to Skeptical Congress,” Breaking Defense, March 10, 2022.

13. Jon Harper, “Navy to Establish Additional Unmanned Task Forces Inspired by Task Force 59,” Defense Scoop, December 4, 2022.

14. Remarks by the Honorable Carlos Del Toro, Secretary of the Navy, at the U.S. Naval Institute/AFCEA “West” Symposium, February 16, 2023.

15. Meagan Eckstein, “Navy Stands Up Surface Development Squadron for DDG-1000, Unmanned Experimentation,” USNI News, May 22, 2019.

16. “Navy to Stand Up New USV Command This Summer,” Inside the Navy, January 13, 2022.

17. Joshua Emerson Smith and Andrew Dyer, “Navy Ramps Up Efforts on Unmanned Vessels,” San Diego Union Tribune, May 16, 2022, and Diana Stancy Correll, “Navy Creates Unmanned Surface Vessel Division to Expedite Integration of Unmanned Systems,” Navy Times, May 16, 2022.

Featured Image: T38 Devil Ray during Exercise Digital Horizon. (Photo by Dave Meron)

Two Platforms for Two Missions: Rethinking the LUSV

By Ben DiDonato

The Navy’s current Large Unmanned Surface Vehicle (LUSV) concept has received heavy criticism on many fronts. To name but a few, Congress has raised concerns about concepts of operation and technology readiness, the Congressional Research Service has flagged the personnel implications and analytical basis of the design, and legal experts have raised alarm over the lack of an established framework for handling at-sea incidents involving unmanned vessels. An extensive discussion of these concerns and their implications would take too long, but in any case, criticism is certainly extensive, and the Navy must comply with Congress’s legal directives.

That said, the core issues with the current LUSV concept arise from one fundamental problem. It’s trying to perform two separate roles – a small surface combatant and an adjunct missile magazine – which have sharply conflicting requirements and require radically different hulls. A small surface combatant needs to minimize its profile, especially its freeboard, to better evade detection, needs a shallow draft for littoral operations, and must have not only a crew, but the necessary facilities for them to perform low-end security and partnership missions to provide presence. The adjunct missile magazine, on the other hand, must accommodate the height of the Mk 41 VLS which substantially increases the draft and/or freeboard, should not have a crew, and should avoid detection in peacetime to increase strategic ambiguity. Not only do these conflicts make it irrational to design one vessel to fulfill both missions, but they point to two entirely separate types of vessels since the adjunct missile magazine role should not be filled by a surface ship at all.

The Adjunct Missile Magazine

The adjunct missile magazine role is best filled by a Missile Magazine Unmanned Undersea Vessel (MMUUV). Sending this capability underwater immediately resolves many of the issues associated with a surface platform since it cannot be boarded, hacked, detected by most long-range sensors, or hit by anti-ship missiles, and so obviates most crew, security, and legal questions. The size required to carry a full-sized VLS also makes it highly resistant to capture since it should have a displacement on the order of 1,000 tons, far more than most nets can bring in, and it could also be designed with a self-destruct capability to detonate its magazine.

The cost should be similar to the current LUSV concept since it can dispense with surface ship survivability features like electronic warfare equipment and point defense weapons to offset the extra structural costs. Because it has no need to fight other submarines and would use standoff distance to mitigate ASW risks, it has no need for advanced quieting or sonar and could accept an extremely shallow dive depth. Even a 150-foot test depth would likely be sufficient for the threshold requirement of safe navigation, and anything past 200 feet would be a waste of money. These are World War One submarine depths. Furthermore, since it only needs to fire weapons and keep up with surface combatants while surfaced, a conventional Mk 41 VLS under a watertight hatch could be used instead of a more complex unit capable of firing while submerged. For additional savings, the MMUUV could be designed to be taken under tow for high-speed transits rather than propel itself to 30+ knots. A speed on the order of 5 knots would likely be sufficient for self-propelled transit, and it would only need long range, perhaps 15,000 nautical miles, to reach its loiter zone from a safe port without tying up underway replenishment assets. Since visualization is helpful for explaining novel concepts, the Naval Postgraduate School (NPS) design team produced a quick concept model to show what this platform might look like. In the spirit of minimizing cost at the expense of performance, and projecting that tugs could handle all port operations, all control surfaces are out of the water while surfaced to reduce maintenance costs.

Rendering of the MMUUV. (Author graphic)

On the command-and-control front, the situation is greatly simplified by the fact that the MMUUV would spend most of its time underwater. In its normal operating mode, it would be dispatched to a pre-planned rendezvous point where it would wait for a one-time-use coded sonar ping from a traditional surface combatant commanding it to surface. It would then be taken under tow and fired under local control using a secure and reliable line-of-sight datalink to eliminate most of the concerns associated with an armed autonomous platform. A variation of this operating mode could also be used as a temporary band-aid for the looming SSGN retirement, since MMUUVs could be loaded with Tomahawks, prepositioned in likely conflict zones, and activated by any submarine or surface ship when needed to provide a similar, if less flexible and capable, concealed strike capability to provide strategic ambiguity. Finally, these platforms could be used as independent land attack platforms by pre-programming targets in port and dispatching them like submersible missiles with a flight time measured in weeks, instead of minutes or hours. Under this strike paradigm, a human would still have control and authorize weapon release, even if that decision and weapon release happens in port instead of at sea. This focus on local control also mitigates cybersecurity risks since the MMUUV would not rely on more vulnerable long-range datalinks for most operations and could perform the independent strike missions with absolutely zero at-sea communications, making cyberattack impossible.

As a novel concept, this interpretation of the adjunct missile magazine concept obviously has its share of limitations and unanswered questions, particularly in terms of reliability and control. Even so, these risks and concerns are much more manageable than the problems with the current LUSV concept, and so give the best possible chance of success. More comprehensive analysis may still find that this approach is inferior to simply building larger surface combatants to carry more missiles, but at least this more robust concept represents a proper due-diligence effort to more fully explore the design space.

The Small Surface Combatant

The other role LUSV is trying to fill is that of a small surface combatant. These ships take a variety of forms depending on the needs and means of their nation, but their role is always a balance of presence and deterrence to safeguard national interests at minimal cost. The US Navy has generally not operated large numbers of these types of ships in recent decades, but the current Cyclone class and retired Pegasus class fit into this category.

While limited information makes it difficult to fully assess the ability of the current LUSV concept to fill this role, what has been released does not paint a promising picture. The height of the VLS drives a very tall hull for a ship of this type which makes it easy to detect, and therefore vulnerable, a problem that is further compounded by limited stealth shaping and defensive systems. There also does not seem to be any real consideration given to other missions besides being an adjunct missile magazine, with virtually no launch capabilities or additional weapons discussed or shown. This inflexibility is further compounded by the Navy’s muddled manning concept, which involves shuffling crew around to kludge the manned surface combatant and unmanned missile magazine concepts together in a manner reminiscent of the failed LCS mission module swap-out plan. Finally, the published threshold range of 4,500 nautical miles, while likely not final, is far too short for Pacific operations without persistent oiler support.

The result is a vulnerable, inflexible ship unsuited to war in the Pacific, and thus incapable of deterring Chinese aggression. This may indicate the current LUSV concept is intended more as a technology demonstrator than an actual warship. However, because the U.S. Navy urgently needs new capabilities to deter what many experts see as a window of vulnerability to Chinese aggression, the current plan is unacceptable.

Fortunately, there is an alternative ready today. The Naval Postgraduate School has spent decades studying these small surface combatants and refining their design, and is ready to build relevant warships today. The latest iteration of small surface combatant design, the Lightly Manned Autonomous Combat Capability (LMACC), achieves the Navy’s autonomy goals while providing a far superior platform at a lower cost and shorter turnaround time. Where the LUSV design is large, unstealthy, and poorly defended, the LMACC has a very low profile, aggressive stealth shaping, SeaRAM, and a full-sized AN/SLQ-32 electronic warfare suite designed to defend destroyers, making it extremely difficult to identify, target, and hit. While the LUSV concept is armed with VLS cells, LMACC would carry the most lethal anti-ship missile in the world, LRASM, as well as a wide range of other weapons to let it fulfill diverse roles like anti-swarm and surface fire support, something that cannot be done with LUSV’s less diverse arsenal. To maximize its utility in the gray zone, the LMACC design boasts some of the best launch facilities in the world for a ship of its size.

On the manning front, LMACC has a clearly defined and legally unambiguous plan with a permanent crew of 15, who would partner with the ship’s USV-based autonomous capabilities and team with a variety of other unmanned platforms. This planned 15-person crew is complemented by 16 spare beds for detachments, command staff, special forces, or EABO Marines to maximize flexibility, and also hedges against the unexpected complications with automated systems which caused highly publicized problems for LCS.

LMACC was designed with the vast distances of the Pacific in mind, so it has the range needed for effective sorties from safe ports and provisions to carry additional fuel bladders when even more range is needed. Unlike the LUSV concept which Congress has rightly pushed back on, LMACC is a lethal, survivable, flexible, and conceptually sound design ready to meet our needs today.

The full details of the LMACC design were published last year and can be found in a prior piece, and since that time the engineering design work has been nearly completed. A rendering of the updated model, which shows all exterior details and reflects the floorplan, is below. Our more detailed estimating work, which has been published in the Naval Engineer’s Journal and further detailed in an internal report to our sponsor, Director, Surface Warfare (OPNAV N96), shows we only need $250-$300 million (the variation is primarily due to economic uncertainty) and two years to deliver the first ship with subsequent units costing a bit under $100 million each. The only remaining high-level engineering task is to finalize the hullform. This work could be performed by another Navy organization such as Naval Surface Warfare Center Carderock, a traditional warship design firm, one of the 30 alternative shipyards we have identified, an independent naval architecture firm, or a qualified volunteer, so we can jump immediately into a production contract or take a more measured approach based on need and funding.

Rendering of the LMACC. (Author graphic)

LMACC has also been the subject of extensive studies and wargaming, including the Warfare Innovation Continuum and several Joint Campaign Analysis courses at NPS. Not only have these studies repeatedly shown the value of LMACC when employed in its intended role teamed with MUSVs and EABO Marines, especially in gray zone operations where its flexibility is vital, but they have also revealed its advantage in a shooting war with China is so decisive that not even deliberately bad tactics stop it from outperforming our current platforms in a surface engagement. Finally, while our detailed studies have focused on China as the most pressing threat, LMACC’s flexibility also makes it ideally suited to pushing back on smaller aggressors like Iran and conducting peacetime operations, such as counterpiracy, to guarantee its continued utility in our ever-changing world.

Conclusion

While there are still some questions about the MMUUV concept which could justify taking a more measured approach with a few prototypes to work out capabilities, tactics, and design changes before committing to full-rate production, there is an extensive body of study, wargaming, and engineering behind LMACC which conclusively prove its value, establish its tactics, and position it for immediate procurement at any rate desired. If the Navy is serious about growing to meet the challenge of China in a timely manner, it should begin redirecting funding immediately to pivot away from the deeply flawed LUSV concept and ask Congress to authorize serial LMACC production as soon as possible. Splitting the LUSV program into two more coherent platforms as described in this article will allow the Navy to fully comply with Congress’s guidance on armed autonomy, aggressively advance the state of autonomous technology, and deliver useful combat capability by 2025.

Mr. DiDonato is a volunteer member of the NRP-funded LMACC team lead by Dr. Shelley Gallup. He originally created what would become the armament for LMACC’s baseline Shrike variant in collaboration with the Naval Postgraduate School in a prior role as a contract engineer for Lockheed Martin Missiles and Fire Control. He has provided systems and mechanical engineering support to organizations across the defense industry from the U.S. Army Communications-Electronics Research, Development and Engineering Center (CERDEC) to Spirit Aerosystems, working on projects for all branches of the armed forces. Feel free to contact him at Benjamin.didonato@nps.edu or 443-442-4254.

Additional points of contact:

The LMACC program is led by Shelley Gallup, Ph.D. Associate Professor of Research, Information Sciences Department, Naval Postgraduate School. Dr. Gallup is a retired surface warfare officer and is deeply involved in human-machine partnership research. Feel free to contact him at Spgallup@nps.edu or 831-392-6964.

Johnathan Mun, Ph.D. Research Professor, Information Sciences Department, Naval Postgraduate School. Dr. Mun is a leading expert and author of nearly a dozen books on total cost simulation and real-options analysis. Feel free to contact him at Jcmun@nps.edu or 925-998-5101.

Feature Image: Austal’s Large Unmanned Surface Vessel (LUSV) showing an optionally-manned bridge, VLS cells and engine funnels amidships, and plenty of free deck space with a tethered UAS at the rear. The LUSV is meant to be the U.S. Navy’s adjunct missile magazine. (Austal picture.)