Category Archives: Future Tech

What is coming down the pipe in naval and maritime technology?

Assessing UAV Survivability

An oft-cited draw-back of unmanned air systems is their vulnerability to a variety of threats both physical, such as anti-aircraft fire, and electronic, including jamming. Researchers and industry are beginning to more seriously examine these threats as the number of drones operating proliferates.

How do UAVs stack up against these various threats, especially in the maritime environment?

On the physical front, depending on at what altitude they are operating, maritime UAVs face similar threats to helicopters and patrol aircraft. Small tactical UAS flying surveillance missions at relatively low altitudes over land or water are vulnerable to the simplest anti-aircraft threat, small arms fire. In 2011, a Fire Scout UAV operating from USS Halyburton (FFG 40) over Libya was shot down by some sort of ground fire. While flying over-water, drones might face close-in-weapons systems ranging from 20-30mm to larger naval guns in the 57mm-to-155mm range. Recently, Naval Post Graduate School (NPS) Systems Engineering – Test Pilot School Co-Op students Lieutenants Jacob King and Jared Wolcott completed research on ScanEagle survivability against small arms. Their analysis shows that the overall probability of kill (pk) in a given scenario may exceed 50% against a 12.7mm (.50 caliber) weapon, and that the greatest driving factor in the UAV’s survivability is its slant range to the threat. They recommend upgrades to optics modules to allow the aircraft to operate at higher altitudes which will reduce the probability of detection, increase aiming error and ballistic dispersion, and possibly eliminate small-arms threats altogether by flying above and outside enemy weapons range. Future low-altitude maritime UAS will also be vulnerable to shoot-down from directed energy weapons, such as the laser system which will deploy onboard USS Ponce (AFSB(I) 15) later this summer.

Moving up the spectrum of vulnerabilities, there are several publically released incidents which provide anecdotal evidence on combat losses of UAVs from surface-to-air missiles and manned aircraft. In August 1995, a Predator was shot down over Bosnia. Another Pred was shot down over Kosovo in May 1999 by a 1960s-era Soviet Strela surface-to-air missile. An Iraqi Mig-25 downed another MQ-1 over Iraq on December 23, 2002. The Air Force equipped some Predators with Stinger air-to-air missiles in 2002, but had little success countering the Iraqi air threat. In 2012, Iranian SU-25s tried unsuccessfully to shoot down U.S. Predators over the Arabian Gulf. Also in 2012, Israeli F-16s shot down an Iranian tactical UAV over Israeli territory, then did so again off the coast of Haifa in April 2013. Against modern naval SAMs, lower, slower-flying UAVs would likely be highly vulnerable.

There is little reason that compact chaff and flare systems could not be integrated onto most medium- and large-size UAS platforms to offer them some passive protection from these threats. Perhaps the highest-end protective system against shoulder-launched surface-to-air missiles is the Directional Infrared Countermeasures (DIRCM), which has been fitted on a variety of U.S. fixed- and rotary-wing aircraft. DIRCM detects, tracks, and jams infra-red guided missiles using a FLIR and laser. Raytheon’s Common Infrared Counter-Measures (CIRCM) is designed to be lightweight enough for large UAS platforms. Higher-end UAVs, such as the X-47B, feature infrared and radar signature reduction characteristics, though these measures are not cost-effective on tactical UAVs.

Jamming, spoofing, and environments where communications links and even GPS navigation are jammed are an emerging threat to UAVs. On 4 December 2011, Iran’s cyber warfare unit allegedly brought down a U.S. RQ-170 surveillance UAV in some sort of controlled manner. Enhancing autonomy is one way to add resiliency to UAS operating in an electromagnetically-contested environment. Boeing performed some interesting work on bio-inspired autonomy with ScanEagles, one of the most numerous UAVs operating at sea today. The goal of this experimentation was for the UAVs operating in a swarm of vehicles to form a beyond line of site (BLOS) relay network. In addition to relaying UAV surveillance data and telemetry over-the-horizon without the use of satellite communications, the project demonstrated the ability of a ScanEagle to fly autonomously through a jammed environment, then exfiltrate the data collected via the BLOS relay once it exited the denied area. Read more here on UAV communications relays.

One primary desirable attribute of unmanned aircraft, especially smaller, less expensive types, is that combat losses are much more acceptable than with manned aircraft. Though as the NPS study notes, “the loss of a small UAV does not incur any loss of life or a large cost, the potential loss of the ISR mission it performs is becoming increasingly important to the combatant commanders. The survivability discipline must be applied to UAVs to ensure that these assets become more survivable and can complete their assigned missions in a higher threat environment.”

This article was re-posted by permission from, and appeared in its original form at NavalDrones.com.

India Looks to Prevent Another Mumbai Attack With UAVs

NA9India’s growing unmanned aerial vehicle fleet is being put through its paces in defending against a future Mumbai-style complex terrorist attack.  During a 48-hour-long exercise, Gemini-2, UAVs from the Navy’s 342 Air Squadron cued patrol boats and coastal police to thwart mock terrorists attempting to infiltrate Southern India’s shoreline from the sea.  The first iteration of Gemini was held in November 2012, and other multi-agency coastal security exercises (‘Sagar Kavach’) have been conducted frequently since the Lashkar-e-Taiba attacks on Mumbai in 2008.

India’s ground-based tactical Searcher MK II and longer-ranged Heron UAVs are a component of a more comprehensive maritime observation network consisting of manned aircraft, cooperating fishermen, and coastal surveillance radars and cameras installed in 90 lighthouses along India’s 7,500 km coastline.  India’s army and air force are also acquiring some small tactical UAVs to support anti-terror surveillance in urban areas.

This article was re-posted by permission from, and appeared in its original form at NavalDrones.com.

Thinking Weapons are Closer Than We Think

This piece also at USNI News.

The Defense Advanced Research Projects Agency (DARPA) has constructed a neuromorphic device—the functioning structure of a mammalian brain—out of artificial materials. DARPA’s project, SyNAPSE (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) signals a new level for biomimicry in engineering. The project team included IBM, HRL, and their subcontracted universities.

Biomimicry is not new. The most recent example is the undulating “robojelly” developed by the Universirty of Texas at Dallas and Virginia Tech. This new drone swims through the sea like a jellyfish, collecting energy from the oxygen in the water, as does any breathing organism. There is also the graceful Pesto SmartBird, an aerial drone that mimics the shape and physical flight of birds. A knockoff was found crashed in Pakistan. If not the shape, at least the actions are often mimicked, as shown by UPenn’s quadrotors being programmed to use crane claws like predatory birds rather than construction cranes. However, these examples of biomimicry only cover the external actions of an animal. SyNAPSE goes deeper, building a synthetic version of the mind that develops these actions.

In the quest for autonomous machines, the suggestions have been either-or: machines programmed to be like brains or the integration of biological processors to provide that processing flexibility. DARPA has found the “middle path” in constructing a series of synthetic synapses out of nano-scale wire. This takes the physical form of those biological processors and constructs them from the base material of conventional computers. According to James Gimzewski at UCLA, the device manages information through a method of self-organization, a key trait of autonomous action and learning, “Rather than move information from memory to processor, like conventional computers, this device processes information in a totally new way.” Moving past the surface mimicking of physical shape and function, SyNAPSE will mimic living organisms’ basic way of processing information.

However, as the possibility for real autonomy approaches, the legal challenge becomes more urgent. An article in Defense News summarizes the catalogue of problems quite well, from accidental breaches of airspace/territorial waters, to breaches in navigational rules, to accidental deaths all caused by machines not having a direct operator to hold responsible. However, as the director of naval intelligence Vice Admiral Kendall Card noted, “Unmanned systems are not a luxury; they are absolutely imperative to the future of our Navy.” Like the CIA’s armed predator program, someone will eventually open Pandora’s box and take responsibility for their new machines to gain the operational edge. DARPA’s SyNAPSE project is that next step toward an autonomous reality.

A DARPA scale of the make-up of a neuromorphic circuit and their biological equivalents.
A DARPA scale of the make-up of a neuromorphic circuit and their biological equivalents.

Matt Hipple is a surface warfare officer in the U.S. Navy.  The opinions and views expressed in this post are his alone and are presented in his personal capacity.  They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy.

Lasers: Not So Fast

She blinded me with science: the LaWS installed on the USS DEWEY.

We may not have servant robots or flying cars, but it America is finally ready to deploy functional lasers. Next year, the USS PONCE will receive the military’s first field-ready Laser Weapon System (LaWS).  The navy, and nation, are justifiably excited to finally embrace military laser technology. However, it is important for us to realize the tactical and technological limitations of our new system before rushing too quickly to rely on them too often. Lasers still face great challenges from the weather, ability to detect hits, and power demands.

Red Sky in Morning:  

Lasers are nothing more than light: deadly, deadly light. Like all light, lasers as at the mercy of the atmospheric conditions they encounter. In particular, lasers are at the mercy of refraction and scattering. Refraction changes the angle that occurs as light moves through an atmosphere of varying density and makeup. As lasers are designed for longer ranges, or short range lasers encounter areas of differing conditions, the trajectory will change. This could pose challenges as targets move through areas of varying range and atmospheric density over long ranges.

Fog and house music, LaWS’ greatest enemy.

Laser light weakens over distance. Navigation types know this as “nominal range,” the range at which light can be seen in perfect conditions. A military laser’s effective destructive range is shorter, but the concepts are the same. “Luminous range” is the actual range of light due to atmospheric conditions. That range can be shortened by scattering caused by atmospheric conditions or precipitation. Lasers will be affected by such conditions as well, their effectiveness ranges shrinking in fog, rain, snow, etc… Depending how far the navy is willing to rely on laser technology, this could pose significant challenges to a fleet more beholden to the weather than before.

Eyes on Target:

Unlike kinetic rounds, lasers cannot be tracked en route to their target. An SM-2 explosion can be detected, the 76MM’s MK 98 tracks each splash and can be corrected by operators, and the CIWS system tracks each CIWS round for automatic ballistic correction. The refraction and scattering effects, combined with the time needed for LaWS to be effective, make judging effectiveness particularly important. The laser is not powerful enough to cause immediate destruction of target detectable by radar. If atmospheric interference prevents an IR tracker from detecting the laser heat signature on target, there is no way to verify trajectory and correct. This imposes, at times, a dangerous “wait and see” aspect to the use of LaWS. If a ship is engaging multiple C-802’s, and a LaWS has (hypothetically) range of 6nm, 37 seconds is not a long time for a ship to worry if its measures are effective.

Not Enough Potatoes in the World:

carrier
Enough power for a small city… or an array of space-age weaponry.

Missiles and guns come with the kinetic energy stored either in fuel or a charge; 100% of a laser’s power is drawn from the ship’s power supply. This means greater demands from the ship’s grid, as well as a greater scope of variation on grid demand as a laser powers up and down. This pumping of massive demand could cause problems for EOOW’s trying to maintain plant stability. Lasers will naturally require either vast changes in plant layout to support greater power production, or a collection of either batteries or capacitors to act as a buffer for the fluctuations in power demands. There is also the possibility of adding nuclear-powered defensive laser batteries to our mostly defenseless carriers, especially if they were allowed to increase their power output. What some are starting to call the “most expensive fleet auxiliary” will gain a invaluable punch for self-defense and defense of ships in company. For lasers to be effective, the projected power “magazine depth” under real combat conditions will need to be determined and supported.

Proper Room Clearance:

Pirates: When “arrrr” becomes “ahhhh!”

As Peter A. Morrision, program officer for ONR’s Sold-State Laser Technology Maturation Program has said, “the future is here.” Before calling the, “all clear,” on this future, the navy should properly clear the room. Laser technology has amazing cost savings and lethal possibilities, but still has serious weaknesses in weather susceptibility, verification of hits, and power demands that need solving. Other shadowy possibilities exist, such as enemies employing laser-reflective coatings that would require lasers to change wavelength to increase effectiveness. As the technology stands now, it is a worthy display of American technological supremacy that saves money on CIWS rounds and SM-2’s for limited instances. For the technology to truly carry the battles, it must be far more powerful and far better supported by ship-board systems.

Matt Hipple is a surface warfare officer in the U.S. Navy. The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy.