All posts by Guest Author

Adapting Command and Control for 21st Century Seapower

By Bryan McGrath

As the United States winds down from two regional land conflicts that have dominated the 21st century, great power competition with China and Russia rightly dominates defense planning and operations. Consequently, American seapower must once again evolve to meet the challenges of sustaining America’s prosperity and security in a multi-polar world. No element of modern seapower is more worthy of evolution than the operational relationship between the Navy and Marine Corps, and this essay asserts that the twentieth century approach to command and control (C2) of these forces must embrace the integrated approach offered by the Joint functional commander concept and its maritime instantiation, the Joint Forces Maritime Component Commander (JFMCC).  

The Department of the Navy includes two Armed Services, the Navy and Marine Corps, which together deliver American power and influence from the sea. This power and influence spans the range of military operations—from peacetime presence through great power war—accomplished by controlling the seas and projecting power therefrom. No other element of American military power is as flexible, useful, persistent, and ready as the seapower delivered by the Department of the Navy.

How the Navy and Marine Corps operate to deliver integrated American seapower has evolved over time, but for much of the twentieth century, naval doctrine for amphibious operations (an important subset of American seapower) featured two co-equal commanders whose authority was tied to the phase of a specified amphibious operation, while other naval task forces operated under the Combined Warfare Concept (CWC).

The Commander, Amphibious Task Force (CATF) was a Navy officer whose overall command of an amphibious operation existed when the force was primarily a seaward force, and the Commander, Landing Force (CLF) was a Marine Corps officer whose overall command of an amphibious operation existed during the landward phase of the operation. Each supported the other during the phase in which the other predominated. This approach to amphibious warfare was developed at the Naval War College in the 1920s and has existed with minor variation ever since.

Interestingly, the amphibious force (AF) existed mostly outside of larger naval command and control constructs. Because of the uniqueness and complexity of amphibious operations, the CATF-CLF relationship not only endured, but did so even as larger command and control constructs governing naval forces (the Navy’s Composite Warfare Commander (CWC) and the Joint Force Maritime Component Commander (JFMCC) construct) grew in importance. Organizational tension existed when attempting to integrate amphibious operations into either the Navy’s CWC or the Joint functional command relationship, mostly due to the degree to which amphibious forces had been operating independently from larger Navy formations. What developed as a temporary, mission specific C2 structure (CATF/CLF), morphed over the decades into the prevailing approach to amphibious force operations, whether an amphibious objective had been assigned or not, and when those operations bumped up against larger naval operations, amphibious forces were inelegantly integrated. For example, the capabilities of the embarked Marine Expeditionary Unit (including attack helicopters and fixed wing aircraft) were available for maritime use only in emergency conditions under a concept known as “Emergency Defense of the Amphibious Task Force.”

The Navy and Marine Corps experimented in the first part of this century on a blended C2 structure within the Expeditionary Strike Group (ESG) concept in which traditional amphibious forces (an Amphibious Ready Group (ARG) of three ships and an embarked Marine Expeditionary Unit (MEU)) were supplemented by a few surface combatants to create a strike group optimized for littoral power-projection. A traditional CWC was implemented with a Navy flag officer or Marine Corps general officer (and staff) acting as the Officer in Tactical Command (OTC). The CATF-CLF arrangement continued within this broader C2 structure as the defining command arrangement of amphibious operations, which by the nature of the ESG concept was to be only one of many missions undertaken. That said, the CATF-CLF approach continued to dominate the arrangement of forces, as the embarked U.S. Marine Corps forces remained under the control of the CLF and could be called upon for maritime missions only under emergency circumstances.

The ESG concept was largely abandoned in the past few years, as a paucity of escort combatants stressed the force in trying to meet the growing objectives asked of it. Navy and Marine Corps forces deploy today similarly to how they did in the 1990s, with the ARG/MEU training and certifying separately from aircraft carrier strike forces, and combined operations occurring infrequently and inelegantly. Additionally, once the ARG/MEU deploys overseas, it is common for the formation to be split and disaggregated in order to meet myriad combatant commander objectives concurrently.

Renewed great power competition calls for a closer look at the Navy and Marine Corps team’s operational approach, one that stresses the integrated nature of American seapower and leverages a tried and tested command and control (C2) structure. To that end, the services should begin to more closely embrace the Joint functional control approach to C2, one in which a Joint Forces Maritime Component Commander of appropriate rank and staffing exercises operational control (OPCON) and tactical control (TACON) of all forces within the ARG/MEU (as well as all other naval forces assigned), until such time as those forces are re-allocated in a campaign to another functional commander (Joint Forces Land Component Commander—JFLCC, or Joint Forces Air Component Commander—JFACC).

Under this arrangement, a Navy flag officer or Marine general officer would exercise authority over all the assets of the formation, irrespective of the service contributing them. The basic approach of the Navy’s CWC could convey with the ground force assigned to a Marine Corps commander and the air wing parceled out to other commanders (Surface, Air, Information) as the need arises. When an actual amphibious objective is designated, the CATF/CLF arrangement would apply, although these would be administrative titles rather than implying C2 authorities. The JFMCC would have a variety of capabilities to apply to the battlespace, including ground forces, surface and subsurface forces, and air forces. In essence, the JFMCC would be a “Joint Task Force” commander. Should the ground objective be part of a larger land campaign, Marine forces would “chop” to the JFLCC, but for amphibious operations of more limited duration, the JFMCC would be the functional commander exercising OPCON of those forces.

Embracing the Joint functional approach to C2 of naval forces offers several advantages over the current approach. First, it would drive integration at the operational level that does not currently exist. Most of the nation’s critical peacetime presence missions around the world can be more than adequately serviced by the forces of the Department of the Navy and integrating those forces under a single commander aligns with the principles of war and makes for more efficient operations.

Next, by integrating these forces under the JFMCC, pressure will grow to integrate operational architectures and concepts of operation, which would influence the acquisition community to provide weapons, networks, and sensors that serve a more coherent architecture, rather than the more separated service approaches that characterize the present. Communications and networks will necessarily benefit from co-development, but another benefit would be to highlight the lack of offensive power resident in ships of the amphibious force. An empowered JFMCC would look with interest upon the maritime real estate provided by the capacious decks of modern amphibious ships and wonder why there were not over-the-horizon missiles capable of land-attack and anti-ship engagements.

A third advantage is related to the second. Currently, the (Navy purchased and operated) ships of the amphibious force are thought of as transportation for and support to U.S. Marines ashore. It is axiomatic that the Commandant of the Marine Corps spends more time thinking about amphibious ship numbers than the Chief of Naval Operations does. Were these ships and their capabilities seen to be the province of the maritime commander—rather than simply support for land operations—more attention would be paid to their numbers, their capabilities, their readiness, and their place in the broader naval force architecture.

Conclusion

The Navy and Marine Corps provide the nation with the world’s most powerful and mobile air forces, the world’s most feared middleweight land force, and the world’s most lethal surface and submarine forces. Thought of as an integrated whole and operated under a coherent C2 arrangement, these forces offer the prospect of servicing most of the nation’s security needs forward, even as they protect and sustain America’s prosperity by commanding the maritime commons. Embracing the JFMCC functional approach to command and control of Department of the Navy forces offers the best option to accomplish this operational integration, which will then serve to drive bureaucratic, technical, and intellectual integration within the Department.

Bryan McGrath is the Managing Director of The FerryBridge Group LLC, and the Deputy Director of the Hudson Institute’s Center for American Seapower.

Featured Image: EAST CHINA SEA: The forward-deployed amphibious transport dock ship USS Green Bay (LPD 20), front, the forward-deployed amphibious assault ship USS Wasp (LHD 1), middle, and the Japan Maritime Self Defense Force Osumi-class amphibious transport dock ship JS Shimokita (LST 4002) manuever together as part of a coordinated formation. (U.S. Navy photo by Mass Communication Specialist 3rd Class Taylor King/Released)

The Navy’s Newest Nemesis: Hypersonic Weapons

By Jon Isaac

Introduction

In January 2019, Chinese Communist Party leaders announced that the newest iteration of their DF-17 missile system was being designed to overwhelm and sink U.S. aircraft carriers and surface combatants stationed in the West Pacific. According to official statements from the People’s Liberation Army Rocket Force (PLARF), a targeted salvo of eight hypersonic glide vehicles (HGVs) set aloft by DF-17s would swamp a surface vessel’s close-in point defenses and annihilate it through incredible transfers of kinetic energy. This type of inflammatory language is not new and Chinese officials have been known to exaggerate the capabilities of their military. However, discussion of the DF-17 and similar weapon systems as conventional, theater-level assets, rather than the strategic nuclear capabilities generally associated with hypersonic missiles, poses a set of very serious and immediate threats to decision-makers in Washington.

Rather than continue the popular trend of treating hypersonic weapons primarily as delivery mechanisms for nuclear warheads aimed at strategic targets, China has been quick to utilize the technology to augment its theater-level Anti-Access/Area Denial (A2AD) capabilities. Such developments suggest that the most critical threat posed by hypersonic weapons is not strategic, but tactical, operational, and conventional. A focus on hypersonic weapons as operational threats is not a novel concept, though it merits further review as near-peer adversaries continue to develop hypersonic capabilities. Michael Griffin, Under Secretary of Defense for Research and Engineering, argued recently that the “tactical capability that these sorts of weapons bring to theater conflicts or regional conflicts” is at the core of the hypersonic threat.

Most service branches seem to have adopted a view similar to Griffin’s, with the Army, Air Force, and Navy all independently developing hypersonic platforms intended for a myriad of tactical and operational purposes. For the Navy, however, hypersonics could represent a tectonic shift in weapons technology on par with the decline of battleships and the rise of the aircraft carrier during the Second World War. Indeed, Russia and China’s development and deployment of hypersonic weapons could challenge the decades-long assumption that U.S. naval assets can operate with complete freedom of movement and comparatively little legitimate threat to their survivability. While anti-ship cruise missiles or attack aircraft can be countered through point defense batteries, electronic countermeasures, or even directed energy systems, conventionally armed hypersonic weapons could likely render existing defenses ineffective. As such, with the focus on conventional hypersonics on the rise, the operational impacts of hypersonic weapons systems on the US Navy merit analysis and could prompt a series of doctrinal shifts which could then enhance surface survivability in the hypersonic era. Before engaging in any such analysis, however, one must first grapple with the concept of hypersonics as a whole.

What is a Hypersonic Weapon?

Hypersonic missiles and glide projectiles are those which travel at least Mach 5, or five times faster than the speed of sound. In round numbers, this equates to a speed of about a mile a second. For comparison, even the quickest modern fighters generally top out around Mach 2, with only specialized aircraft capable of reaching Mach 3. Once an airframe reaches Mach 4, 5, and beyond, specialized technologies like supersonic combustion ramjets, or SCRAMJETs, must be used to carve through the air. Unlike traditional jet engines, SCRAMJETs use no moving parts or machinery to direct and combust air, thereby making them incredibly efficient at plowing an airframe through the sky at incredibly high speeds.

Though manned hypersonic flight has occurred in the past, most notably with USAF Major Robert White’s 1961 flight in the NASA X-15, today the technology is most promising when used to propel unmanned vehicles and missiles. Presently, most high-profile hypersonic weapons utilize either SCRAMJET propulsion, as is the case with hypersonic cruise missiles, or are unpowered glide vehicles which are propelled to extreme altitudes by ballistic missile systems, only to turn back towards the surface and glide at extreme speeds towards their targets on a non-ballistic trajectory. This distinction is important, as both hypersonic cruise missiles (HCM) and hypersonic glide vehicles (HGV) are being touted as globally destabilizing weapons systems.

Put simply, hypersonic missiles are dangerously fast. So fast, in fact, that they are relatively impervious to currently fielded missile defense technology. Theater level missile defense systems like Terminal High Altitude Area Defense (THAAD) batteries and the Patriot point-defense missile systems are designed to counter ballistic weapons which fly on relatively predictable speeds and flight trajectories. Conversely, hypersonic cruise missiles and glide vehicles can move erratically and at such incredible speeds so as to render existing defenses mostly irrelevant.

The value of such capability has not gone unnoticed by adversaries. Russia, for example, successfully tested a hypersonic glide vehicle known as Avangard just this past December. The weapon, they claim, is capable of reaching terminal glide speeds of almost 27 times the speed of sound. The validity of that speed claim has been disputed by a number of experts and defense media outlets, but one thing is known for sure – the weapon exists and the weapon works. Meanwhile, China spent most of 2018 conducting more hypersonic weapons tests than the United States has conducted in the past decade. America’s adversaries have funneled enough resources and manpower into developing hypersonic weapons to raise some eyebrows in Washington, not the least of which include the United States Navy. 

What Does This Mean for the Navy?

Since the end of the Second World War, the U.S. Navy has been able to operate with relative impunity throughout the world’s oceans. At the center of American postwar maritime dominance is the aircraft carrier. While hulking battleships of old held the status of capital ships in U.S. fleets, aircraft carriers rose to prominence as the crown jewel of American power projection. As a result, aircraft carrier battle groups have stood at the cornerstone of American power projection strategy in the late 20th and early 21st centuries and have been able to impose their will (and firepower) upon almost any target on the globe. Much in line with the Mahanian fleet doctrines which helped to drive America to victory in the Pacific, modern surface warfare strategies have seen the Navy organize its fleets and surface action groups around a prime directive, protect the aircraft carrier. To date, this strategy has proven successful (albeit with no serious tests in actual combat), with submarine screens, active electronic warfare measures, air defense umbrellas, and AEGIS-equipped surface assets acting as an impenetrable wall behind which America’s flattops are safe from any potential foe.

What happens, then, when new technologies render virtually all existing missile defense and point defense assets ineffective? What happens when the very foundation of modern American maritime dominance, the aircraft carrier battle group, is held at risk by missiles and high-trajectory, high-speed kinetic glide vehicles which are, as admitted by the Pentagon, extremely challenging to existing missile defenses?

This is the fundamental problem with which the Navy must now address. It must be noted, however, that this type of threat against the carrier battle group is not entirely new to the surface warfare community. For example, China’s decades-long development efforts and eventual deployment of Anti-Ship Cruise Missiles (ASCM) and Anti-Ship Ballistic Missiles (ASBM) as core to its A2/AD network brought into question the viability of the carrier battle group and questioned whether the hulking warships had a future in a modern battlespace. For the past decade, analysts debated the ramifications of Chinese anti-ship missile capabilities, with increased debate on the topic springing about within the Obama-era Air-Sea Battle concept. A primary feature of the Chinese threat is the reality that increased ASCM and ASBM capabilities may force American carrier battlegroups further out to sea to avoid closing range between themselves and anti-ship missile batteries on shore. In response, analysts have prescribed everything from increased escort vessels to the newly-awarded MQ-25 Stingray Carrier-Based Aerial-Refueling System (CBARS) as ways to increase carrier survivability. These prescriptions have offered a diverse set of solutions, with the former hoping to deny ASCM/ASMB strikes through conventional air defense and the latter ensuring carrier battle group effectiveness by increasing the reach of conventional strike fighters. In short, threats to the carrier battle group are not new. What makes hypersonics different?

Unlike conventional ASCMs, ASBMs, and other A2/AD threats, there is currently no technological counter to the hypersonic threat. Existing joint efforts between the service branches and DARPA, like the recently announced Glide Breaker program, have endeavored to come up with a viable defense to stop hypersonic weapons from bypassing existing missile defense networks. Unfortunately, no immediately viable kinetic counter-hypersonic technologies have been identified or developed. To make matters worse, top defense officials in the Pentagon’s technology development offices have diagnosed that even existing radar systems would be unable to adequately track and identify a hypersonic threat, to say nothing of prosecuting or defeating such a threat.

The news is not all bad, however. For example, space based sensor arrays have been touted by DOD officials as viable means for “warning, launch detection, surveillance, acquisition, [and] tracking” of hypersonic threats. Similarly, despite the technological challenges, offices like the DOD’s Missile Defense Agency and DARPA have charged ahead at examining high-saturation kinetic projectiles and even directed energy weapons as potential means for destroying hypersonics on a strategic level. While these efforts are all well and good, however, their technological immaturity and prohibitive cost betray the lack of capability to protect American naval assets from hypersonics in the next few years.

Clearly, then, to address the hypersonic threat in the immediate short-term, the Navy cannot rely on technological development and the traditional edge offered by American technological dominance. Instead of looking to laboratories and development houses for hardware tools to counter the threat of hypersonic weapons, the Navy must look to its own assets and shift traditional surface warfare doctrines to ensure survivability. Three doctrinal shifts stand out as potential options for responding to the theater-based use of conventional hypersonics, each with varying levels of plausibility and effectiveness.

Potential Fleet Options

First, a decreased reliance on the concentrated “porcupine” structure of a carrier battle group in favor of distributed use of destroyers, cruisers, smaller LHD flattops, and even LPD transport docks could provide adversaries with such a widely spread set of targets so as to make concentrated hypersonic attack, like the “eight salvo” mission as described by Chinese authorities, unfeasible. By disaggregating targets around carrier battle groups, the Navy could deny its adversaries the ability to reach the concentration levels of hypersonic firepower needed to effectively eliminate the target. This shift is not without its faults. The notion of networked and distributed surface operations is not a new one and blunders in attempting to implement this type of fleet structure in the past have been the bane of the surface Navy. Moreover, the act of distributing and decreasing the density of American warships in a surface action group or carrier battle group could limit the power projection capabilities of such a force, thereby hindering one of the Navy’s core missions.

A second option posits that further utilization of unmanned undersea assets and existing nuclear-powered submarines may prove to be an effective way to address some of the shortcomings brought about by a more vulnerable carrier battle group. For example, increased development and deployment of guided missile submarines, be they conventional boats like the Navy’s modified Ohio-class SSGNs or emerging unmanned options like Boeing’s Orca/Echo Voyager XLUUV platform, would provide the Navy with several far-forward domain capabilities. Such assets would allow the Navy to field missile strike and reconnaissance assets closer to adversary coastlines without bringing surface assets into the effective reach of hypersonic weapons. While submarines will never be able to field their own independent combat air wing or project visible American power in the same way a carrier can, they could engage in some of the maritime patrol and missile strike projection operations previously led by carrier battle groups. Again, this is not an impervious solution since many of the key operations shouldered by aircraft carriers are unique to their incredible deterrence and firepower projection capabilities.

Finally, DARPA and the Department of the Navy have highlighted increased conventional missile deterrence and conventional disruption operations as potential routes for driving adversaries to “think twice” in the use of their hypersonic missiles in the first place. As argued by Robert Farley, a professor at the Army War College in Carlisle, PA, there are an incredibly complex series of decisions and steps which must go off without a hitch for an adversary to successfully conduct a strike against a carrier battle group. “Disrupting any single one,” Farley writes, “can slow or entirely avoid the attack.” As such, the Navy could structure its fleet doctrines and operational focuses to counter the myriad of technologies which support a hypersonic strike, rather than attempt to counter the hypersonic weapon itself. For example, targeted jamming of missile guidance nodes around the region or destruction of the aircraft and satellites which are required to guide such a weapon to its target. This notion spreads beyond merely Navy-commanded operations, with cyber-attacks on networked hypersonic systems standing as a possible counter to their launch and targeting.

Like with previous suggestions, this “full spectrum” approach to preventing hypersonic targeting or strike of a traditional surface group is not without its flaws. For example, preemptively engaging in any such attacks or jamming operations could escalate a tactical or immediate political situation. Though it could decrease the likelihood of a successful hypersonic strike, thereby freeing up American carrier battle groups to do what they do best, it could just as easily prove pyrrhic should the situation escalate out of control.

Still, there is no single doctrinal answer to the hypersonic threat. Instead, the Navy must be willing to evolve from the sacred and historically effective Mahanian capital-ship doctrine which it has adhered to in the past and adopt surface organization tactics which decrease the likelihood of a hypersonic attack in the first place and minimize the potential effectiveness of such an attack should it take place.

Conclusion

For the past few months, press sources have been flooding the internet with stories about impervious hypersonic weapons which could deliver nuclear warheads onto targets in the American homeland quickly and with no warning. While the hypersonic nuclear threat is a valid one, focusing on it betrays the real threat posed by conventional hypersonic systems which are not subject to the deterrent effects of the American nuclear triad. Conventional operational use of hypersonic weapons could render existing naval surface asset structures ineffective. Rather than rely on the historically dominant American tech sector, however, the Navy must address the short-term threats posed by hypersonics through evolution of warfighting doctrine, tactics, and fleet organization. Just as aviation development brought a close to the age of the battleship, hypersonic weapons could bring to end the age of the traditional carrier battle group.

Jon Isaac is a pseudonym for a developing security analyst.

Featured Image: Ground crew members make the final checks to the X-51A Waverider scramjet, which is affixed to an Edwards B-52H Stratofortress before being flown over the Pacific Ocean and launched June 13, 2011. (Photo by Bob Ferguson/Boeing)

How Combined Navies and Coast Guards Coalesce: A Maritime Forces Learning Model

By Daniel T. Murphy

Walk into a bar in any country and ask a bunch of naval officers, coast guard officers and merchant mariners (Yes, I have done this), “Why is it that maritime forces are able to come together so quickly and effectively when the maritime domain is under duress?” You will hear answers such as . . . “We just know how to work together.” A Spanish admiral told me, “We speak the same language,” and an Indian naval officer told me, “We’re cut from the same cloth.” Examining some historical examples of how maritime security organizations have successfully come together in times of crisis will shed light on this fascinating phenomenon.

Historical Perspectives

Between June 1940 and December 1941, German submarines were sinking, on average, between 200,000 and 300,000 tons of allied shipping per month. Losses increased to 500,000 tons per month through mid-1943. Similar to their strategy in the First World War, Germany had a specific tonnage target they estimated would starve the allies to a negotiated peace. Beginning in late 1943 and onward, navy and coast guard forces from the U.S., U.K. and Canada combined to organize convoys, increase air coverage over shipping lanes, and introduce new radar and sonar technologies that reduced the loss rate to a manageable 100,000 per month. While still a lot of lost shipping, convoy losses no longer posed a threat to the allies’ ability to supply the war effort.

Fast forward to the 1980s, when the majority of illicit drugs entered the United States through the Caribbean basin. In the early 1990s, combined maritime security forces and agencies from the United States, and Caribbean, Latin American and UK allies (15-plus countries) coalesced to significantly reduce the flow of illicit drugs through the Caribbean maritime routes, forcing traffickers to shift more of their operations to overland routes through Mexico. The successful maritime security effort was largely centered around the development of the new Joint Interagency Task Force (JIATF) South that was established in 1994. While Caribbean traffic routes have again become popular with the cartels in recent years, few would argue that the aggressive, multinational effort of the 1990s did not produce results.

The Indian Ocean is an area with multiple fragile, failing, and failed states and large populations of desperate young male inhabitants who often have few life opportunities. Piracy has already been a cultural norm in this area for hundreds of years. The Somali Ministry of Fisheries and the Coastal Development Agency (CDA) established agricultural and fishery cooperatives, and permitted foreign fishing in Somalia’s Exclusive Economic Zone (EEZ) through official licensing or joint venture agreements. When the Somali government fell in 1991, local fishermen began enforcing the fisheries zones themselves, eventually evolving into piracy. By 2009 and 2010, Somali pirates were working more than a thousand miles offshore, using large “mothership” dhows as base stations for swarms of skiff attacks. As the situation worsened, and as shipping companies started paying large ransoms, piracy began spreading to other littoral states in the Indian Ocean.

Similar to the U-boat challenges of the First and Second World Wars, and similar to the drug war in the Caribbean theatre, maritime forces from the United States, multiple European countries, and Asian countries such as Japan, Indonesia, Malaysia and Singapore came together in relatively short order to address the problem of piracy in the Indian Ocean and Gulf of Aden. For example, twenty-five countries joined together in Combined Task Force 150 (CTF-150), a multi-national naval organization dedicated to counter-piracy operations. The European Union established the EU Force (EUNAVFOR) to help organize European naval operations around the Horn of Africa. The United Kingdom Maritime Trade Operations (UKMTO) organization took on primary responsibility for coordinating merchant vessels protection and defense in the region. As a result, the number of merchant vessels attacked and captured gradually decreased through 2011 and 2012, and became nearly nonexistent by 2017.

Organizational Learning (OL) as an Enabler

So what makes navies, coast guards and maritime security organizations of all countries quickly coalesce to become effective regional maritime security partners? A rich body of research suggests that military and security organizations are highly adept at what Peter Senge and other scholars call organizational learning (OL). Senge (1990) argued that a learning organization continuously expands its capabilities to create its future through five disciplines: personal mastery, mental models, building shared vision, team learning, and systems thinking. Senge’s work has been extended across many industries, including the military services by scholars such as Nevis, DiBella and Gould (1995), Goh and Richards (1997), Marsick and Watkins (1999), Chiva, Alegre and Lapiedra (2007), and Marquardt (2011).

Other scholars have specifically studied OL in the military services. Here are just a few examples: Baird, Holland and Deacon (1999), and Darling and Parry (2001) studied how the U.S. Army uses a four-step After-Action Review (AAR) process at the end of a ground operation. Daddis (2013) studied how the U.S. Army behaved as a learning organization during the Vietnam conflict. Etzioni (2015) studied OL by U.S. forces in Operations Iraqi Freedom (OIF) and Enduring Freedom (OEF). Gode and Barbaroux (2012) studied OL in the French Air Force. Marcus (2014) studied OL in the Israeli Defense Forces (IDF).

To specifically study how OL enables maritime security cooperation between partner countries, I conducted a qualitative study using Marsick’s and Watkins’ (1999) framework. I conducted interviews with 11 U.S. Navy and Coast Guard officers between the ranks of Lieutenant (O-2) through Captain (O-6). Collectively the participants were experienced across all U.S. geographic combatant commands. All interviewees had operational fleet experience working alongside officers from foreign navies and coast guards. Interviewees included surface warfare officers (SWOs), aviation officers, and intelligence officers. All participation was voluntary. Interviews averaged 40 minutes and were recorded, transcribed, and codified.

The interviews yielded 448 keyword and phrase artifacts. The artifacts were aggregated into 25 artifact groups, and then aggregated again into eight overall findings. What follows is an abbreviated summary of the findings.

Finding 1: OL Enables Maritime Security Cooperation Between Partner Countries

As an overall finding, interviewees described work examples which supported all seven of Marsick’s and Watkins’ (1999) imperatives. In other words, interviewees validated that OL does enable maritime security cooperation between partner countries.

As an overall finding, interviewees described work examples which supported all seven of Marsick’s and Watkins’ (1999) imperatives. The seven imperatives are:

1.  Create continuous learning opportunities (CL): Learning is embedded within work so people can learn on the job; opportunities are provided for ongoing education and growth. 

2.  Promote inquiry and dialogue (ID): People express their views, listen to, and inquire into the views of others; questioning, feedback, and experimentation are supported.

3.  Encourage collaboration and team learning (CT): Work is designed to encourage groups to access different modes of thinking, groups learn and work together, and collaboration is valued and rewarded.

4.  Establish systems to capture and share learning (LS): Both high- and low-technology systems to share learning are created and integrated with work, access is provided, and systems are maintained.

5.  Empower people toward a collective vision (EM): People are involved in setting, owning, and implementing joint visions; responsibility is distributed close to decision-making so people are motivated to learn what they are held accountable for.

6.  Connect the organization to its environment (EN): People are encouraged to see the impact of their work on the entire enterprise, to think systemically; people scan the environment and use information to adjust work practices; and the organization is linked to its community.

7.  Provide strategic leadership for learning (SL): Leaders model, champion, and support learning; leadership uses learning strategically for business results (Marsick and Watkins, 1999).

In other words, interviewees validated that OL does enable maritime security cooperation between partner countries.

Finding 2: OL is Enabled Through Collaborative Activities

Interviewees described a rich array of examples of how partner country maritime services coalesce through structured after-action reporting, briefings, exercises, and combined operations. For example, regarding briefings, one interviewee said, “It’s built into the way we work every day. At the end of a mission we do a hot wash. Figure out what we did well and what we didn’t. And if we are operating with a partner navy or air force, they take part in the conversation. I know they also do their own hot wash too.”

Finding 3: OL is Enabled Through Communicative Activities

Interviewees emphasized the importance of certain communicative variables, including: face-to-face communications, common language, information-sharing based on agreed “need-to-know,” common nomenclatures, and radio communications. For example, one interviewee emphasized the value of having the U.S. landing signals officers (LSOs) from his squadron travel to Brazil to work face-to-face with the Brazilian pilots who would eventually be landing on the U.S. aircraft carrier.

Finding 4: OL is Enabled Through Organizational Elements and Concepts

Interviewees emphasized the importance of both horizontal and vertical organizational structures, and structures of unified commands. For example, one interviewee explained how a naval special warfare training organization was “stood up” to help a developing country build its special warfare operations capability. The organization emulated the U.S. Army’s CALL (Center for Army Lessons Learned) model to establish a continuous learning environment. Another interviewee pointed to the Dhow Project which was co-developed by the NATO Shipping Centre, the EU Maritime Security Centre (MSC-HOA), the U.S. Maritime Liaison Office (MARLO), and the merchant shipping community. The Dhow Project helped identify and track threats to merchant shipping in the Horn of Africa and the Gulf of Aden.  

Finding 5: OL is Enabled Through Human Relationships

Interviewees talked about having common interest with partner countries, and the importance of building personal relationships and trust. For example, when discussing combined operations with an Asian partner country navy, one interviewee said specifically, “I think more important is that personal level. It’s almost that friendship that you start to develop and you actually can see how you’re going to get there with that person or that group of guys, or gals, or what have you.” Nearly every interviewee made clear that, while conference calls and video conferences with partner country officers and staff were helpful, what mattered most was when personnel had opportunities to develop close personal trust-building relationships with one another.

Finding 6: OL is Enabled Through Technology

Interviewees recognized the importance of supporting technologies, including having a common operating picture, common networks, and common platforms. Specifically, in reference to the Global Command and Control System (GCCS) common operating picture and CENTRIXS networks, one interviewee said, “We use a variety of web-based platforms to share knowledge with all of our country partners. What we share depends on who they are. And there’s probably an incentive there for partner countries to get closer to us, because the closer they get, the more we share.” In other words, when information technology platforms and content are shared between countries, it underscores that those countries are in a relationship with one another. When countries are not granted access to those technologies and content, it underscores that the relationship with those countries is more distant.  

Finding 7: OL is Enabled Through Formal and Informal Training and Education

Interviewees emphasized the importance of combined military education (e.g., the U.S. Naval War College), formal training (e.g., SEAL training), and on-the-job training. One interviewee explained, “We have quite a good percentage of our, I guess, our partner countries that send their officers, both their senior officers and some of their junior officers to Newport. They learn to strategize the way we strategize, and they learn the content of our strategy as well. But I would say that we also have non-operational venues where we collaborate. For example, the International Maritime Symposium at the War College and in similar events we have out in the fleets on a regular basis.”

Finding 8: OL is Enabled Through Work Practices

Finally, interviewees emphasized the importance of everyday work practices, including directives, intelligence, and tactics, techniques, and procedures (TTPs). According to one interviewee, “I assume that in previous exercises, our partners in NATO started acquiring each other’s TTPs and we have them written down. We have TTPs for VBSS (visit, board search and seizure operations) and I assume that through years of sharing TTPs, our TTPs became similar at some point.” In other words, a large body of directives and TTPs “order” partner country navies and coast guards to work with one another toward specific operational ends.

Insight for the Fleet

These findings provide a rich list of elements that navy and coast guard officers have deemed “valuable” for building relationships with partner countries. In other words, according to the tactical operators in the fleet, this study describes the things that “work,” and that should be supported, and funded. Here are just four examples.

First, the data shows conclusively that navy and coast guard officers that participate in formal exercises do believe that exercises help partner country maritime forces coalesce and collaborate. What is important is that navy and coast guard leaders from all countries can look their respective congresspersons and parliamentarians in the eye and state emphatically, “Our officers do believe that these exercises matter. The more we exercise together, the more collaborative we become.” This study provides dozens of anecdotes to that effect. U.S. policymakers and military leaders should continue to support and fund naval exercises with partner countries. Policymakers and military leadership should similarly continue to support and fund inter-country training and education programs, and find ways for partner-country navy and coast guard officers to have more numerous face-to-face learning opportunities.

Second, the data shows that structured communications vehicles such as briefings are key enablers of security cooperation. Briefings specifically are the primary vehicle by which tactical and operational information is communicated between partner country navies and coast guards. Military leaders should step back and reflect on whether the briefing process can be made even more valuable through structuralization or even ritualization. Senge (1999) and other OL scholars would suggest that military briefings could become even more valuable if they evolved from being predominantly single-looped (e.g., What did we learn in the exercise?) to become ritually double-looped (e.g., How did we learn in the exercise?).

Third, multiple interviewees discussed how access to the GCCS and CENTRIXS systems, and access to U.S. national intelligence, should be used as incentives for closer relationships. In other words, Pentagon and fleet-level leadership should actively promote access to systems and intelligence as an incentive for closer collaboration with the U.S. and western allies. After a partner country “subscribes” to intelligence-sharing with the U.S. and allies, and after they prove their ability to protect sensitive and classified information, they can earn access to more sensitive and higher classifications of content thereby reinforcing the relationship in a positive feedback loop.

Fourth, OL between partner countries and security success seems to increase exponentially when combined OL-dedicated organizational structures are stood up, either temporarily or permanently. The creation of CTF-150 and other dedicated organizational structures had a significant impact on accelerating learning between partner navies and coast guards, which resulted in a significant reduction in piracy in the Indian Ocean. The creation of JITF South had a similar positive effect on the drug war in the Caribbean. In other words, joint and combined task forces work. Policymakers and maritime security leadership across all countries should work to make such structures easier and faster to stand up and establish a battle rhythm. To be specific, the U.S. and other leading nations in maritime security should continue, and perhaps increase, emphasis and funding on prepositioning programs and rapid deployment of adaptable expeditionary force packages. Such packages could provide an even faster response and return to normalcy when piracy inevitably springs up again in the Indian Ocean or elsewhere, or when new waves of refugees seek to escape from North Africa (highly likely), South America (also likely), or elsewhere in the world.

Introducing a Maritime Forces Learning Model

Most importantly, the study resulted in the development of a Maritime Forces Learning Model – a mental model for practitioners to learn and reflect on how OL-related activities, when practiced and improved in the fleet, can have a positive upward ripple effect. For example, improving the frequency and quality of operational briefings in the fleet can help improve OL between partner country navies and coast guards. Improving OL can help improve regional maritime security and regional security overall. If the regions of the world can be made safer, the world itself can be made safer.

A maritime forces learning model. (Daniel Murphy image – Click to Expand)

Final Thoughts

For good reason, there is a vast body of literature exploring military and security failures and partial failures in history – Waterloo, Pearl Harbor, Vietnam, the 9/11 attacks, Iraq, and others. In the spirit of Santayana, as military and national security professionals, we absolutely must understand our historical failures so that we can reduce the likelihood of such failures in the future. I believe that it is good news for humanity, that we (in Western society, at least) rigorously reflect on things done wrong. However, military historians and other social scientists should spend more time studying things “done right.” That was the intention of this study.

Navies, coast guards, and maritime security agencies around the world have an uncanny ability to come together in relatively short order, to protect and defend the maritime domain when threats arise. I believe it is important to understand the how of that phenomenon. To understand the how, one must dig deep – to what the anthropologist Geertz (1973) would call a “thick description” of culture. When we understand the details of the how – in this case how partner navies and coast guards coalesce – we can support, emulate, and appropriately resource the how. While this study was not intended to uncover any great “aha” on what makes maritime security cooperation tick, it was intended to provide some thicker description on how fleets coalesce, and ultimately underscore some of the practices that leaders should continue to emphasize and support.

Daniel T. Murphy is a full-time faculty member in Massachusetts Maritime Academy’s Emergency Management and Homeland Security department. He is also an adjunct faculty member in the Homeland Security and Strategic Intelligence department at Northeastern University, and a Lieutenant Commander in the U.S. Navy Reserve, currently assigned to the US European Command (EUCOM) Staff. Dr. Murphy received his Bachelor of Arts degree from the University of Massachusetts, Master of Arts degree from Georgetown University, Master of Science degree from the National Intelligence University, and Doctorate degree from Northeastern University. He is also a graduate of the American Academy in Rome and the Naval War College. 

References

Baird, L., Holland, P., & Deacon, S. (1999). Learning from action: Embedding more learning into the performance fast enough to make a difference. Organizational Dynamics, 27(4), 19-22. doi: 10.1177/1046878114549426

Chiva, R., Alegre, J., & Lapiedra, R. (2007). Measuring organisational learning capability among the workforce. International Journal of Manpower, 28(3/4), 224-242.

Daddis, G. A. (2013). Eating soup with a spoon: The U.S. Army as a “learning organization” in the Vietnam War. Journal of Military History, 77(1), 229-254.

Darling, M.J., & Parry, C.S. (2001). After-action reviews: linking reflection and planning in a learning practice. Reflections, 3(2), 64-72. doi: 10.1162/15241730152695252

Do, Q.T., Ma, L., and Ruiz, C. (2016). Pirates of Somalia: Crime and deterrence on the high seas. Development Research Group Poverty and Inequality Team. Retrieved from http://pubdocs.worldbank.org/en/689501484733836996/pirates-of-Somalia-on-the-high-seas.pdf.

Etzioni, A. (2015). COIN: A study of strategic illusion, Small Wars & Insurgencies, 26(3), 345-376, doi: 10.1080/09592318.2014.982882

Geertz, C. (1973). The interpretation of cultures: Selected essays. New York, NY: Basic Books.

Godé, C., & Barbaroux, P. (2012). Towards an architecture of organizational learning: Insights from French military aircrews. VINE, 42(3), 321-334. doi: 10.1108/03055721211267468

Goh, S., & Richards, G. (1997). Benchmarking the learning capability of organizations. European Management Journal, 15(5), 575-583.

Marcus, R. D. (2014). Military innovation and tactical adaptation in the Israel–Hizballah conflict: The institutionalization of lesson-learning in the IDF. Journal of Strategic Studies, 38(4), 500-528. doi.org.ezproxy.neu.edu/10.1080/01402390.2014.923767

Marquardt, M. (2011). Building the learning organization: Achieving strategic advantage through a commitment to learning (3rd ed.). Boston: Nicholas Brealey Publishing.

Marsick, V. J., & Watkins, K. E. (1999). Facilitating learning organizations: Making learning count. Brookfield, VT: Gower.

Nevis, E. C., DiBella, A. J., & Gould, J. M. (1995). Understanding organizations as learning Systems. Sloan Management Review, 36(2), 73-73.

Seelke, C.R., Wyler, L.S., Beittel, J.S., and Sullivan, M.P. (2012). Latin America and the Caribbean: Illicit drug trafficking and U.S. counterdrug programs. Congressional Research Service (CRS) Report for Congress. Retrieved from https://www.hsdl.org/?view&did=705052.

Senge, P. M. (1990). The fifth discipline: the art and practice of the learning organization. New York, NY: Doubleday.

U.S. State Department. (2006). United States report to the Organization of American States on the application of confidence and security building measures for 2005 and 2006. AG/RES. 2113 (XXXV-O/05) and AG/RES. 2246 (XXXVI-O/06). Retrieved from http://scm.oas.org/IDMS/Redirectpage.aspx?class=CP/CSH&classNum=780&addendum=3&lang=e.

White, D. (2008). Bitter ocean: The battle of the Atlantic, 1939–1945. New York, NY: Simon & Schuster.

Featured Image: PHUKET, THAILAND (Jan. 25, 2019) – U.S. Navy Capt. Brian Mutty, commanding officer of Wasp-class amphibious assault ship USS Essex (LHD 2), right, speaks with officers of the Royal Thai navy aboard Essex in Phuket, Thailand. (U.S. Navy photo by Mass Communication Specialist 3rd Molly DiServio) 190125-N-NI420-1062

Operation Eminent Shield: The Advent of Unmanned Distributed Maritime Operations

Read Part One on the Battle of Locust Point. Read Part Two on the Nanxun Jiao Crisis.

By David Strachan


TOP SECRET/NOFORN

The following classified interview is being conducted per the joint NHHC/USNI Oral History Project on Autonomous Warfare.

Admiral Jeremy B. Lacy, USN (Ret.)

December 3, 2033

Annapolis, Maryland

Interviewer: Lt. Cmdr. Hailey J. Dowd, USN

Good morning.

We are joined again today by Admiral Jeremy B. Lacy, widely considered the father of autonomous undersea conflict, or what has come to be known as micronaval warfare. Admiral Lacy spearheaded the Atom-class microsubmarine program, eventually going on to establish Strikepod Group 1 (COMPODGRU 1), and serving as Commander, Strikepod Forces, Atlantic (COMPODLANT), as well as Commander, Strikepod Command (SPODCOM). He is currently the Corbin A. McNeill Endowed Chair in Naval Engineering at the U.S. Naval Academy.

This is the third installment of a planned eight-part classified oral history focusing on Admiral Lacy’s distinguished naval career, and his profound impact on modern naval warfare. In Part II, we learned of the aftermath of the Battle of Locust Point, and how continued Russian micronaval advances, most notably the nuclear-armed Poseidon UUV, led to the development of AUDEN, the Atlantic Undersea Defense Network. We also learned of CYAN, a “walk-in” CIA agent who revealed Chinese penetration of the AUDEN program, and the resulting emplacement of numerous AUDEN-like Shāyú microsubmarine turrets throughout the South China Sea. One of these turrets, at Gaven Reefs, known to the Chinese as Nanxun Jiao, was directly involved in engaging the USS Decatur, and was subsequently the target of an undersea strike which resulted in the deaths of four Chinese nationals, including CYAN himself.

The Nanxun Jiao Crisis was a wakeup call for the United States. With Chinese militarization of the South China Sea expanding to the seabed, a new sense of urgency now permeated the U.S. national security establishment. Pressure was mounting to counter China’s increasing belligerence and expansionist agenda, but doing so risked igniting a regional conflict, or a confrontation between nuclear-armed adversaries.

We joined Admiral Lacy again at his home in Annapolis, Maryland.


 

Let’s begin with the immediate aftermath of Operation Roundhouse. How impacted was Strikepod Command by the events of that day?

It was devastating. Unimaginable, really. That we’d had a hand, however unwittingly, in the murder of four people, and watched it unfold in real time right before our eyes – you can’t prepare for something like that. They brought in counselors from Langley [Air Force Base] – chaplains, experienced drone pilots who’d been through this kind of thing. But for a lot of talented people it just wasn’t enough, and they had to call it a day.

For those who remained the trauma eventually gave way to anger, and then determination. But the feeling of betrayal, of vulnerability, was difficult to overcome. All we could do was move on as best we could.

The CYAN investigation would eventually yield a single spy – Charles Alan Ordway , a FathomWorks contractor motivated apparently by personal financial gain. But you weren’t convinced that was the end of it.

Ordway worked on AUDEN, but he didn’t have code word clearance, so while it was true that he had passed sensitive information to the Chinese, there was really no way for him to have known of Roundhouse or CYAN. From a counterintelligence perspective, he was low hanging fruit, and I believed – and continue to believe to this day – that there was someone else.

The intelligence provided by CYAN led to the discovery of several operational Shāyú installations in addition to Nanxun Jiao. What was the reaction in policy circles?

Alarm bells were going off throughout Washington, and we were under extraordinary pressure not only to process the raw intelligence, but to understand the broader implications of China’s growing micronaval capability, particularly as it applied to gray zone operations. It was quite clear now that strategic ambiguity was no longer appropriate, and if policymakers were waiting for a reason to act, it seemed Nanxun Jiao was it.

And yet, apparently it still wasn’t.

No. The president felt that while the Shāyú emplacements represented a concerning development in the South China Sea, there was little difference between seabed microsubmarine turrets and onshore ASCM batteries. Keep in mind, it was also an election year, a time when politicians generally avoid starting wars. And there was additional concern that any escalation in the South China Sea would have an adverse impact on the restarted negotiations with North Korea.

So we were in a holding pattern, a period of strategic paralysis, really. No additional strikes were authorized, or even under consideration. We’d sent a message with Roundhouse, and the Chinese answer was continued harassment and militarization. They were dug in and practically daring us to escalate. And with neither side willing or able to consider a diplomatic solution, the tension was left to fester.

Let’s come back to that, if we could, and talk a bit about developments at FathomWorks. The Atom-class was proving to be a phenomenally successful platform, and you were now being called upon to replicate that success in another domain.

Once the dust had settled I got a call from Chandra [Reddy, the ONR Atom-class liaison] who wanted to chat about Falken [the Atom-class artificial intelligence], and specifically whether I thought it could be adapted to an unmanned surface vehicle. We got to talking, and he says you know what, Jay, there’s someone you should meet. Next day, I’m off to Olney [Maryland] with Max [Keller, Director of AI for the Atom-class] to meet with Talia Nassi.

Was that name familiar to you?

She was three years behind me at the Academy, and our paths had crossed a couple times over the years at conferences and training sessions. She was pretty outspoken and wasn’t afraid of ruffling a few feathers, especially when it came to unmanned systems and what was then being called DMO, or distributed maritime operations. Like everyone else, though, I knew her as the maverick commander who’d taken early retirement to start Nassi Marine.

But you had no idea she was behind the Esquire-class?

I had no idea that such a program even existed. It was highly compartmentalized, as these things tend to be. Very need to know. But there’d been rumors that something was under development, that [DARPA/ONR] Sea Hunter was really a prototype for a deep black program, something highly advanced and combat-oriented.

And so you arrive at Nassi Marine…

And Talia greets us in the lobby. Then it’s off to the conference room for small talk, sandwiches, and coffee. Then onto Falken and its potential for USVs. And then after about fifteen minutes Talia politely asks Max if he wouldn’t mind waiting outside. He leaves, and she reaches down, plucks a folder from her briefcase and slides it across the table. I open it up, and I’m looking down at a something straight out of Star Trek.

The Esquire-class?

It was honestly more spaceship than warship, at least on paper. Trimaran hull, nacelle-like outriggers, angular, stealth features. And for the next half hour or so, Talia briefs me on this revolutionary unmanned surface combatant, and I’m thinking, wow, this is some really impressive design work, not really imagining that it’s moved beyond the drawing board.

Did you wonder why you were being brought into the fold?

As far as I knew, I was there to talk about Falken, so it did strike me as odd that I’d be briefed on a deep black surface platform. But it wasn’t long before I understood why. One of the main features of the Esquire was its integrated microsubmarine bay. Talia had originally envisioned something that could accommodate a range of micro UUVs, but ultimately decided to focus on the Atom given its established AI and the seamless integration it offered.

Nassi Marine headquarters is sometimes referred to as “Lake Talia” for its enormous wave pool and micronaval testing facility. Did it live up to its name?

Absolutely!

When Talia finishes her briefing, I follow her down the hall and through a set of doors, and suddenly I’m staring at the largest indoor pool I’ve ever seen. It’s basically her own private Carderock, but nearly four times the size and twice as deep. When she founded Nassi Marine, Talia wanted somewhere she could put classified systems through their paces in a controlled, secure environment that was free from prying eyes. Dahlgren [Maryland] and Bayview [Idaho] were far too visible for her, so she acquired some surplus government land in rural Maryland and nestled a cutting edge R&D facility between a country club and an alpaca farm.

Was there a working prototype of the Esquire?

Talia walks me over to the dry dock, and there it is.

What was your impression?

I was struck by how small it was. At only fifty feet long, it was less than half the length of Sea Hunter. But it looked fierce, and according to Talia, packed a mean punch. Fifty caliber deck gun, VLS for shooting nanomissiles and Foxhawks, a newly developed swarming drone. It also featured a hangar and landing pad for quadrotor drones, as well as two directed energy turrets and countermeasure launchers. And of course, the integrated well deck-like feature for the launch and recovery of microsubmarines. And these were just the kinetics. It also packed a range of advanced sensors and non-kinetic effectors as well.

So, between the engineering and AI integration, you had your work cut out.

Indeed we did. Talia put me on the spot for an ETA, and after giving it some thought, I estimated six to nine months for the full deal. That’s when she hits me with the punch line: “You’ve got three.”

Three months?

Three! I was like look, we might be magicians at FathomWorks, but we’re not miracle workers. And anyway what’s the hurry? Talia looks me right in the eye and says, “Because in about 18 months it’s headed to the South China Sea.”

Did that come as a shock?

The timetable was certainly a shock, but it was also the first I’d heard that any plans for escalation had moved beyond the gaming table. The handwriting had been on the wall for years, of course, so I wasn’t surprised, and honestly it came as a relief knowing that a tangible response was finally in the offing.

So you embark on the Atom integration, and at the same time you’re overseeing Eminent Shadow . . .

Which has now been greatly expanded in the wake of Nanxun Jiao. At its peak I think there were no less than forty Strikepods – about two hundred fifty Atoms – dotting the Spratlys and Paracels, providing FONOP escort and monitoring PLAN and militia activities both on and below the surface.

And the Shāyú was proving itself to be an ideal tool for the gray zone.

Indeed. After Nanxun Jiao, the Chinese were utterly emboldened and were becoming ever more ballsy. Nearly every FONOP was met with Shāyú harassment, and even though we’d stepped up Atom production and significantly increased our operational footprint, it was challenging to keep up. And PLAN engineers were becoming ever more creative.

How so?

They’d been working on a micro towed array for the Shāyú, similar to what we’d been developing for the Block II Atom. From what we could tell, they weren’t having much success, but they did find that it could be effective for gray zone effects. Shāyús would make runs at our DDGs with arrays extended, and once in a while penetrate the Strikepod perimeter and foul the screws pretty good. Even if publically the Chinese didn’t take credit, there was significant propaganda value in disabled U.S. warships.

Were you also monitoring for new indications of seabed construction?

Our main concern was the northeastern Spratlys and southern Paracels near the shipping lanes. With a foothold in either of those locations, the Chinese would have near complete maritime domain awareness over the South China Sea. So our mission was to closely monitor those areas, and report back anything anomalous. It wasn’t long before we found something.

The emplacements at Bombay Reef and Scarborough Shoal?

We’d been monitoring inbound surface traffic when satellites spotted some unusual cargo being loaded onto a couple fishing trawlers up in Sanya. We vectored Strikepods as they departed, and trailed them to Bombay and Scarborough where we snapped some surface imagery of divers and equipment being lowered over the side. We monitored for about five days, keeping our distance, and picking up all manner of construction noise. We’re itching to take a look, but wait patiently for crew changes and quickly order the imagery. The Strikepods are in and out in under five minutes, and two Relay burst transmissions later we’re looking at the beginnings of Shāyú turrets at both locations.

What was your analysis?

It indicated that the Chinese were planning for future confrontations in the region – gray zone or conventional, most likely due to their planned militarization of Bombay and Scarborough.

The implications were grave. Vietnam had a history of taking on great powers and winning, and had pushed back hard on China in the past. And while Duterte had been cozying up to Beijing and drifting away from the U.S., Scarborough Shoal would be a red line. A provocation like this could be just the excuse Hanoi and Manila needed to act.

Did the United States share the intelligence?

Not initially, no. First and foremost we needed to safeguard sources and methods, and sharing anything would reveal our micronaval capabilities which were still highly classified and largely unknown. The Shāyú was also still a mystery, and divulging what we knew to Hanoi or Manila would risk exposure to Beijing. And we couldn’t be sure that they wouldn’t act unilaterally, igniting a conflict that could draw us into a war with China.

You were obviously busy at SPODCOM overseeing Eminent Shadow, but FathomWorks was also working intensively now with Nassi Marine.

Once we discovered Bombay and Scarborough, the sense of urgency was high, and we were working around the clock to get the Esquire combat ready. We ran through countless simulated missions in the Lake, and eventually at sea off North Carolina. Talia handed it off for production on time and under budget, and we joined the operational planning underway at Seventh Fleet.

Eminent Shadow was about to become Eminent Shield?

Yes. Of course planning for a South China Sea incursion had been underway for several years, and it was only after Locust Point that I’d been asked to join, to integrate micronaval elements into the wargaming framework.

But during those games, there was no mention of the Esquire?

Not initially, no. All we were told was that, in addition to being deployed from Virginias and surface ships, Strikepods could also be launched and recovered from a hypothetical USV with fairly abstract capabilities. But once the Esquire moved beyond the design phase, and there was a working prototype, it was folded into the games going forward.

And those games formed the basis for Eminent Shield?

Eventually they did, yes, but initially we were running scenario after scenario of high-end warfighting. There were some smaller skirmishes and limited conflicts where we intervened on behalf of regional states, but in general the primary objective was always either stopping or rolling back Chinese expansion, with the Esquires called upon as a force multiplier to augment ISR and EW, act as decoys, deploy Strikepods for ASW and counter-microsubmarine ops, and take out small aerial threats. Plausible to be sure, but at some point it occurred to me that the Esquire might enable us to project power in a less conventional, but no less effective manner. To essentially meet the Chinese where they were.

So we gamed some scenarios where the U.S. assumed a greater presence in the South China Sea using unmanned systems. Something beyond FONOPS and undersea reconnaissance. Something visible and formidable enough to send a strong signal to Beijing without provoking a shooting war. A kind of gray zone gunboat diplomacy, if you will, pushing things to the edge while gambling that the Chinese wouldn’t resort to a kinetic response.

Turnabout is fair play.

That it is.

How was it received?

Well, people appreciated that it was bold and imaginative, I suppose, but ultimately felt it was fraught with uncertainty, that it would only serve to antagonize the Chinese, and quickly escalate to high-end conflict anyway.

So it went to the back burner?

Yes, but I continued to refine it, along with input from Talia, who eventually came on board as strategic advisor, as well as some folks at the Pentagon and Intelligence. Once the discoveries at Bombay and Scarborough happened, though, the administration was looking for options . . .

And you got the call-up.

Yes, ma’am.

What was the plan?

The overarching objective of Eminent Shield was to signal that the United States would no longer sit idly by as the South China Sea was transformed into a Chinese lake. And we would do this by establishing a permanent distributed maritime presence in the region using a network of unmanned surface combatants.

The plan itself involved four sorties of LSDs out of Sasebo to essentially seed the region with Esquires. At fifty feet long, with a beam of seventeen, we determined that a dozen would fit into the well deck of a Whidbey Island. After some practice with the Carter Hall and Oak Hill down at [Joint Expeditionary Base] Little Creek, we airlifted forty-eight to Sasebo, where they were loaded onto the Ashland, Germantown, Rushmore and Comstock. Separated by about thirty-six hours, they sailed on a benign southwesterly heading between the Spratlys and the Paracels, escorted by an SSN and two or three Strikepods to monitor for PLAN submarines and Shāyús. At a predetermined waypoint, and under cover of darkness, the Esquires would deploy, then sail to their preprogrammed op zone – two squadrons to the Paracels, two to the Spratlys, and one to Scarborough Shoal – and await further orders.

Was there concern that the Chinese would view such a rapid deployment as some kind of invasion? A prelude to war?

 We considered a more incremental approach, something less sudden. But we needed to act quickly, to avoid any kind of coordinated PLAN response – a blockade or other high profile encounter that could escalate. A rapid deployment would also underscore that the United States Navy had acted at a time and place of our choosing, and that we could operate in the South China Sea with impunity. At the end of the day, the Esquires were really nothing more than lightly armed ISR nodes, and were far less ominous than a surge of CVNs or DDGs.

Did it proceed as planned?

For the most part, yes. There were some technical hiccups, with three Esquires ultimately refusing to cooperate, so the final package was forty-five – nine vessels per squadron. The pilots and squadron commanders were based out of SPODCOM in Norfolk, but the Esquires were fully integrated into the regional tactical grid, and, if necessary, could be readily controlled by manned assets operating in theater.

And you were able to avoid PLAN or PAFMM harassment?

By sortie number four we’d gotten their attention – probably alerted by a nearby submarine – and three CCG cutters were vectored onto the egressing LSDs. But the deployment went off without incident, and in a few days all four ships were safely back in Sasebo.

And then we waited.

How long was it before the PLAN became aware?

It was about thirty-six hours before we began to see some activity near Subi Reef. The Esquire is small, and has a very low cross section, so it was unlikely they’d been tagged by radar. More likely they’d been spotted by an alert fishing boat, or passing aircraft, or possibly the heat signatures of the LENRs lit up a satellite.

At around 0300 I wake up to an “urgent” from the watch that about a dozen fishing boats were converging on Subi. So here we go. By the time I get to the office they’ve got the live feed up, and I watch the maritime militia descending in real-time. We order the Equire to deploy a six-ship Strikepod to enhance our visual, and pretty soon we’ve got a wide angle on the whole scene – lots of little blue men with binoculars, clearly perplexed, but no indications of imminent hostilities. This goes on for nearly three hours, until we notice some activity on one of trawlers. They’re prepping a dinghy with some tow rope and a four-man boarding party.

They’re going to grab it?

Certainly looks that way. They lower the dinghy and make their way over, inching to within ten meters or so, and that’s when we hit them with the LRAD [Long Range Acoustic Device], blasting a warning in Chinese – do not approach, this is the sovereign property of the United States operating in international waters. Things along those lines.

They turn tail and beat it back to the ship, but they’re not giving up. Next thing we see guys tossing headphones down to the dinghy. Needless to say, we weren’t about to give them a second chance, so we quickly order the Strikepod recovered and hit the gas.

Did they pursue?

They tried. But the Esquire can do about forty knots, and by the time they knew what was happening, we already had about 500 yards on them, so they gave up fairly quickly.

I imagine it wasn’t much longer before the other Esquires were discovered?

Word spread quickly of that encounter, and no, it wasn’t long before Esquires were being engaged by militia at multiple locations. In some cases they would try to board, in others they would attempt to blockade or ram. But the Esquires were too maneuverable, and between Falken and the pilots, we managed to stay a step or two ahead.

Had you anticipated this?

We’d anticipated the initial confusion and fits of arbitrary aggression. We also anticipated the political backlash, of course.

Which did manifest itself.

Yes, but not entirely how we’d envisioned. We knew that Beijing would be furious that the United States had mounted such an aggressive op in their own backyard. But at the same time, would they really want to draw that much attention to it? Wouldn’t that be underscoring the U.S. Navy’s ability to operate anywhere, anytime?

And the PLAN’s inability to prevent it.

Sure enough, state television reports that a U.S. Navy unmanned surface vehicle – singular – had violated Chinese sovereignty and was engaged by PLAN forces. Video footage flashed from a PLAN destroyer to a rigid hull speeding toward an Esquire, to a couple of hovering [Harbin] Z-9s. The implication was that the Esquire had been captured or otherwise neutralized, yet all forty-five were fully functional and responding. It was a clever propaganda stroke, but by going public, the Chinese had opened a Pandora’s box.

Because now the Western media was all over it?

And with the Esquire out in the open, we’d have a lot of explaining to do. There would be questions about capabilities, deployment numbers …

To which the answer was?

That we don’t comment on ongoing operations, of course. But, through calculated leaks and relentless investigative reporting, the Chinese would quickly realize what they were dealing with, and what it signaled in terms of U.S. intentions and resolve.

And meanwhile Eminent Shield continued. With unmanned FONOPS?

To start with, yes. The Esquires initially had taken up position outside twelve miles, but we soon began moving them intermittently inside territorial limits to deploy and recover a drone. By this point militia boats were always shadowing, and would move quickly to harass the Esquires as best they could.

But then we upped the ante a bit. We’d use onboard EW effectors to spoof their GPS and AIS. We’d lure their destroyers to one location while a DDG ran a FONOP just over the horizon, unmolested. We’d form ASW dragnets using smaller squadrons of three or four Esquires with their towed arrays and Strikepods deployed, sonar banging away.

And, yeah, we also installed dead wire in the towed arrays of some of the Atoms, so we were able to return the favor and foul some screws of our own.

What about the Shāyús?

The Shāyús were the greatest source of trouble for the Esquire, and we’d anticipated this. We couldn’t be certain whether or how the Chinese might engage the Esquires on the surface or in the air, but we were absolutely certain that there would be attacks from below.

But with the Esquire’s waterjets there were no screws to foul. And a six-ship Strikepod was deployed as an escort at all times, and there were also Firesquids [anti-torpedo torpedoes] for additional defense. But even so, the Esquires were quite vulnerable, and the Shāyús quickly moved to exploit this.

In what way?

The Esquires were defending well, but the Shāyú’s tactics were evolving. Initially they would engage the Atoms ship-to-ship and attempt to defeat them before moving on to the objective. But soon they learned to avoid the Atoms altogether and engage in hit and run attacks from below, targeting the Esquire’s stern in an attempt to ram and disable the microsubmarine bay and propulsion. Living up to their namesake, I suppose. [Shāyú is Mandarin for shark.]

Did Falken adapt accordingly?

Falken quickly recognized the need to deploy its full complement of Atoms to defend against the volume of attacking Shāyús, and actually began to form smaller squadrons of two or three Esquires to offset the numerical disadvantage. Falken also ordered escorting Strikepods to assume a tighter, closer formation, one that emphasized protecting the Esquire’s belly and backside, and began using Firesquids as decoys to great effect, something we hadn’t even considered.

Atom attrition was high then?

For a time, yes, and resupply was challenging. The payload modules on nearby Virginias were filled to capacity, but that was only around forty or fifty units. At the rate we were losing them, we’d be critical in a matter of weeks.

So the Shāyús adapt, Falken counters, but the attacks continue until one day the Shāyús succeed in disabling an Esquire within twelve miles of Mischief Reef.

And now it’s a race to recover.

The [USS] Mustin [DDG 89] was about forty kilometers away, and was immediately ordered to the area. The PLAN had also been alerted, and vectored the destroyer Haikou, which was only five kilometers away. So Mustin puts a Seahawk up, but even at full throttle Haikou is still going to win that race.

Haikou arrives, and they immediately put a boarding party in the water. ETA on the Seahawk is two minutes, and the Mustin is still thirty minutes away at flank. We blast the LRAD, but they’re wearing headphones now, so we fire a warning from the 50 cal, and light off a small swarm of Foxhawks. This gets their attention, and manages to buy us the few minutes we need.

The Seahawk arrives, loaded with Hellfires, and five minutes later, Mustin appears on the horizon. Now we’ve got ourselves a standoff. The Chinese are making threats, and we’re making counter-threats. And then the militia shows up – fishing boats, CCG, wrapping cabbage to cut off Mustin and the Esquire. And so we’re eyeball to eyeball, now, fingers on the trigger.

An hour goes by. Two. Eight. “Stand by” is the order. Twelve hours. Darkness falls, and we keep vigil through the night. By now, the media has it, and talk of war is everywhere. A new day dawns on the South China Sea, and around 1930 Eastern, I’m summoned to the vault for a telepresence with the Sit Room.

To brief?

Not exactly.

First they asked me to confirm the conclusions of my earlier analysis, that the Shāyú emplacements were likely a gray zone prelude to a Chinese land grab at Bombay Reef and Scarborough Shoal.

Then they asked whether I believed the Chinese would willingly dismantle Bombay and Scarborough in return for withdrawal of the Esquires.

And did you?

The Chinese would want the Esquires gone ASAP for political reasons, but they also were well aware of their capabilities, and how they would dramatically augment U.S. firepower in the event of regional hostilities. It seemed to me that Beijing would be willing to forfeit those locations if it meant a reduced U.S. military presence, and also the ability to save face by appearing to expel the U.S. Navy from the South China Sea.

And then I offered a pretty candid, if unsolicited, opinion on the deal.

Which was?

That the Chinese would be getting much more than they were giving up. That dismantling the emplacements, while a short-term loss for the Chinese and a gain for us, would do little to deter future militarization. The U.S. would also be giving up significant strategic leverage, and potentially damaging our credibility in the process.

So you were against it?

You’re damn right I was. Call me a hawk, but we’d gone round after round with Beijing for over a decade, and then took one on the chin at Nanxun Jiao. We’d finally taken decisive action, and now we’re just going to let it slip away?

But ultimately it did.

Unfortunately, yes.

Around 2200 the Chinese suddenly back off, and Mustin is allowed to move in and recover the Esquire. The next day news breaks of emergency multilateral talks in Tallinn, Estonia involving the U.S., China, Vietnam, Brunei, Malaysia, and the Philippines.

There was great optimism leading up to Tallinn, that this could be the diplomatic breakthrough that would empower regional states to push back on Beijing knowing that the U.S. had their back. But ultimately it was not to be. The Chinese dismantled the Shāyú emplacements at Bombay and Scarborough, and in return the United States withdrew every last Esquire. Beijing also pledged to work toward “greater understanding” with its neighbors and other ambiguous words to that effect. The Tallinn Communiqué was hailed as a success by all, but for entirely different reasons. The U.S. and our allies believed this was a significant step toward regional stability by checking Chinese expansionism. The Chinese, meanwhile, declared victory in having expelled the United States from its backyard while strengthening its role as regional hegemon.

Were you disappointed with the outcome? 

Disappointed? Perhaps. The Navy exists to ensure peace and protect U.S. interests through strength, and so when policy seems at odds with that mandate, yes, I guess it makes me bristle. But I wasn’t surprised. Tallinn wasn’t the first toothless resolution in the history of international diplomacy, and it certainly wouldn’t be the last.

And all I could think, sitting there in SPODCOM, watching the last of the Esquires being recovered under the watchful eye of PLAN warships, was that it wouldn’t be long before we’d be back there again.

Only next time, things might not end so cleanly.

[End Part III]

David R. Strachan is a naval analyst and writer living in Silver Spring, MD. His website, Strikepod Systems, explores the emergence of unmanned undersea warfare via real-time speculative fiction. Contact him at [email protected].

Featured Image: “The Middle of Nowhere” by hunterkiller via DeviantArt