All posts by Guest Author

The Numbered Fleet: The New Main Supported Force

Fleet Warfare Week

By Major Robert Holmes, USMC

Introduction

As the nature of combat in the maritime domain continues to intensify– in terms of size, scale, complexity, and consequence – the U.S. Navy must seek out and implement numerous structural changes now if it wants to win the next fleet-level fight. Gone are the days of smaller naval formations, such as amphibious readiness groups or specified task units, acting as supporting forces that assist a land force’s limited objectives. The Navy’s numbered fleets must now prepare to assume the role of the primary supported unit in a major theater of operations, one that can integrate effects in all domains in pursuit of large-scale sea control. Significant changes can be made in how fleets integrate with the acquisitions process acquire capabilities and how they leverage non-Defense Department agencies. Purposeful and urgent action is needed now if the Navy is to win the future fleet-level fight. 

Operational-Level Trends

Future great power war will almost certainly feature a requirement for large-scale and continuous sea control. This requirement for sea control stems from the likely objectives of future wars and the need to keep options open. Maritime access will be essential for projecting U.S. power into contested areas, maintaining vital links with allies, and for maintaining options for opening new fronts against adversaries. Adversary objectives will in turn hinge upon the degree of sea control they can secure in support of their critical objectives, such as invading Taiwan or threatening NATO partners from maritime flanks. Sea control will enable the broader fulfillment of the joint force’s objectives across multiple domains and will serve as a major operational-level objective in its own right.

This requirement for sea control is a marked departure from the wars the U.S. has fought since 1945. Vietnam featured practically no fleet combat, nor did the limited campaigns in Grenada and Panama. The U.S. deliberately ceded localized sea control during the initial stages of Desert Storm in order to prevent a premature maritime engagement, but commensurately allowed the Iraqis to mine sea lines of communication in their own coastal waterways.1 This then necessitated a time- and risk- intensive de-mining campaign after the cessation of hostilities with Iraq.2 The Global War on Terror and its two main fronts – Afghanistan and Iraq – likewise did not involve clashes over sea control. Neither country had a functioning navy to contend with and the U.S. Navy was able to provide support to land forces with relative impunity.

As the necessity for massive sea control increases, so too does the complexity of achieving it. The days of the decisive naval battle could be over, and the Navy may need to pursue a more cumulative campaign of gradually eroding the adversary’s combat power, much as how Ukraine has against Russia’s Black Sea Fleet.3 In support of such a campaign, the Navy’s fleets must find a way to mass the effects of their weapons systems and ISR platforms without massing the physical signature of their ships.

China’s approach to warfighting encourages this rethinking at a much larger scope and scale. China likely does not want to meet American fleets head-on in a massed decisive battle. China is currently establishing a defense posture, both on its mainland and throughout its near seas region, that could prevent hostile forces from massing for a decisive engagement while allowing China to fulfill regional objectives.4 In contrast to the prevalence of unmanned vehicles in Ukraine, China’s anti-ship missile arsenal is a powerful asset that is designed to keep American fleets at bay and at risk. By imposing this separation, China can secure sufficient freedom of action within a protected bubble and dictate the terms of potential engagements.

The difficulty of penetrating into China’s A2/AD bubble creates a challenging set of operational requirements for U.S. fleets. Fleets must now reach beyond their organic capabilities if they are to prevail in future fleet-level warfare.5 Other entities throughout the joint force, and even whole of government, will be needed to set conditions in their respective domains to help win future fleet battles. Direct engagement and liaison with numbered fleet commanders and their staffs will be necessary for many parts of government. As the major supported entity, fleets must now fulfill the role of the great integrator. U.S. fleets need to be ready assume the mantle of main effort across the joint force and be prepared for the responsibility of integration.

Deepening Fleet-Level Integration

The Navy can do several things now to manage the aforementioned operational problems, mainly the requirement of achieving sea control and facilitating cross-domain reach at long range. The first is the acquisition of technology. Numbered fleets must be more deeply involved in the acquisition and force development process, from the initial definition of requirements, to subsequent tactical development and training reform, to the actual employment of a specific capability in combat. This process as it stands now is too decoupled from the tactical end user, fleets included. The nature of fleet-level warfare compounds the negative effects of this decoupling, because while fleet warfare is fought at the tactical level, it is won at the operational level.6 This necessity for operational-level victory and the nature of its scope forces fleet commanders to employ a wide variety of capabilities with different spans of influence. This variety of capability difficult to reconcile into an integrated whole, especially when siloed vendors, program offices, and service leaders do not readily involve end-users until well after a capability is established and fielded. Fleet commanders are then put into the position of having to reconcile a wide range of capabilities into an integrated approach at the operational level of war, even if that level was not factored into the original requirements of the capabilities.

Tactical users of emergent capabilities are forced to receive a specific piece of equipment or capability, determine if it meets their needs, then determine how to employ it in combat. Follow-on corrective action and tactical development is often necessary to meet warfighter needs well after a capability has been declared operational. The efficiency and effectiveness of this process can improve substantially if end users, in this case, fleets and their commanders and staffs, are involved from the very beginning of the acquisitions process. Tactical and operational considerations should feature much more prominently alongside the technical and engineering considerations that usually dominate the early acquisition process. The more commanders are involved in the acquisitions of their own equipment and capabilities, the more prepared they will be to integrate them into their broader operational-level constructs.

The inverse of the above point is another benefit to this “early and often” method of acquisitions – the more in tune fleet commanders are with all of their capabilities and their originating requirements, the more prepared they will be when one or more of these capabilities is taken off the battlefield.7 The enemy’s vote can and will force fleets to fight not as they are when they leave port, but as they are when they commence combat operations. Commanders can build branch plans, much as they do now, concerning the removal of specific capabilities and their effects in time and space. Commands should know how to win if their weapons guidance systems are jammed, if they cannot communicate with lower echelons, if the information environment is heavily saturated, if space-based ISR is not available, or any number of possible contingencies. If a fleet commander and their staff has consciously built the requirements for their desired effects early enough in the acquisitions process, then they will likewise have time to build branch plans that use other capabilities to compensate for the loss of desired effects. This is akin to General Eisenhower’s prescient adage – “plans are worthless, but planning is everything.”8 The more involved fleet commanders are in acquisitions, the more prepared they will be to employ capabilities when most needed, and by extension, the more prepared they will be to prevail in combat despite the loss of these very capabilities.

The second focus area is fleet integration across the joint force and whole of government. The demands of long-range influence and cross-domain reach at the fleet level necessitates widespread integration of the fleet across many sectors of government. The Navy’s sister services are a logical starting place. If it is determined that a particular numbered fleet and its campaign for sea control is the main operational objective in a given theater, then other players in that theater should adjust to strengthen the influence of this fleet. U.S. Air Force bomber squadrons should have fleet liaison officers to influence targeting decisions and the joint fires process. Army ground combat formations could ensure their land-objectives explicitly support the fleet’s campaign for sea control, likely through the seizure of land objectives that may influence the fleet’s ability to maneuver, and providing sensor coverage and killchain support in key areas. The Space Force has a plethora of capabilities, both in terms of ISR and targeting that fleets could surely put to use. Finally, the Marine Corps is especially tailored for this integration, as its nascent operational concept, the Stand-in Force, is designed to support fleets by contesting key maritime terrain from concealed land positions, all in an effort to enable the fleet’s success. Many elements of the joint force needs to consciously appraise their ability to support numbered fleets as the primary supported actor in a major theater of operations.

The Navy should not stop at leveraging the support of only the military, as the rest of the government has unique abilities to help fleets fight. All U.S. State Department embassies have political and military staffs that can shape the political environment in which a particular war is fought, both before and during hostilities. The intelligence community and its web of agencies is a major resource when it comes to collection and targeting in all domains. The Department of Transportation can play a critical role in mobilization and surge support. Many other government departments and agencies need to consider how they can contribute to fleet actions and be thoughtfully integrated into the plans of fleet staffs. The net of liaison officers should be cast as widely as possible, with all enablers involved as early and often as possible in the planning process.

Conclusion 

The main mover and doer in the Navy is the numbered fleet, and the time is now to better enable these fleets for successful maritime combat in the near future. The importance of sea control is only increasing as the world becomes more interconnected and America’s potential adversaries become more belligerent in the global maritime commons. China is setting challenging conditions for the future maritime fight, and these conditions are complicating matters for the Navy and its fleets. These complications create the requirement for long-range and cross-domain reach at the theater level. These realities compel the Navy to more fully integrate the fleets into both acquisitions and force development, and with a wider scope of government partners. Through these efforts, the U.S. Navy can prepare to assume a role it has not assumed since World War II, that of the joint force’s main supported force in a major theater of operations.

Major Robert Holmes is a MAGTF Intelligence Officer and Eurasian Foreign Area Officer stationed at the United States Embassy in Riga, Latvia. Before his FAO training, he spent his formative company-grade years at 1st Battalion, 6th Marine Regiment, where he commanded at both the platoon and company level. In addition to CIMSEC, his writings have also appeared in the Marine Corps Gazette and the U.S. Naval Institute’s Proceedings.

References

1. Department of the Navy, Naval Warfare Publication 3: Fleet Warfare (Norfolk, VA: Naval Warfare Development Command, 2021), 31.

2. Department of the Navy, Naval Warfare Publication 3: Fleet Warfare, 31.

3. Department of the Navy, Naval Warfare Publication 3: Fleet Warfare, 33.

4. Robert Holmes, “The Navy–Marine Corps Team Must Prevent an American Moskva in the Pacific,” Proceedings 149, no. 2 (February, 2023): https://www.usni.org/magazines/proceedings/2023/february/navy-marine-corps-team-must-prevent-american-moskva-pacific.

5. Department of the Navy, Naval Warfare Publication 3: Fleet Warfare, 8-10.

6. Department of the Navy, Naval Warfare Publication 3: Fleet Warfare, 27.

7. Department of the Navy, Naval Warfare Publication 3: Fleet Warfare, 54.

8. Angel F. Garcia Contreras, Martine Ceberio, and Vladik Kreinovich, “Plans Are Worthless but Planning Is Everything: A Theoretical Explanation of Eisenhower’s Observation,” in Decision Making Under Constraints, ed. Martine Ceberio and Vladik Kreinovich (Switzerland: Springer Cham, 2020): 93-8.

Featured Image: Nimitz-class aircraft carrier USS Carl Vinson (CVN 70), Arleigh Burke-class guided-missile destroyer USS Kidd (DDG 100), Arleigh Burke-class guided-missile destroyer USS Sterett (DDG 104), Japan Maritime Self-Defense Force (JMSDF) Murasame-class destroyer JS Kirisame (DD 104), and Republic of Korea Navy (ROKN) Sejong the Great-class guided-missile destroyer Sejong the Great (DDG-991) sail together during a trilateral maritime exercise, Nov. 26, 2023. (U.S. Navy photo by Mass Communication Specialist 2nd Class Isaiah M. Williams)

Homeport Strike: A Decisive Tactic in Fleet Warfare

Fleet Warfare Week

By Hee-Cheol Jung

A fleet’s homeport performs vital functions that sustain naval power, including ship repair, resupply, maintenance, and training. The criticality of homeport infrastructure to naval power makes bases an attractive target. Neutralization of a homeport not only stands to neutralize the warships located at the homeport, but can significantly damage the operational longevity of fleets operating at sea.

The most infamous example of homeport strike is the attack on Pearl Harbor, highlighting how the major operational value of this type of attack can make for a critical war-opening move. The U.S. Navy considered similar strikes against its Soviet rival during the Cold War. In 1977, U.S. Navy Admiral Thomas Hayward, then commander of the U.S. Pacific Fleet, devised a strategy of directly attacking the homeport of the Soviet Pacific Fleet in Petropavlovsk on the Kamchatka peninsula by using a fleet of four carrier battle groups. The neutralization of the Soviet Navy’s Pacific Fleet homeport would not only help ensure the security of U.S. allies, it would also set the conditions for projecting power deeper into the Soviet homeland. Homeport strike has also prominently featured in the war in Ukraine, with strikes against Russian warships and naval infrastructure in the Black Sea Fleet’s Crimean homeport of Sevastopol. These strikes have been effective enough to force the relocation of Russian naval forces away from their traditional homeport and into less developed bases that are farther from the battlespace.

The forward magazine of the destroyer USS Shaw (DD-373) explodes during the attack on Pearl Harbor, December 7, 1941. (Photo via U.S. Naval History and Heritage Command)

In a war with China, the U.S. would be able to leverage a much more credible threat of homeport strike compared to China, given how U.S. forces would be operating in an expeditionary nature far from home and in China’s front yard. This asymmetry may weigh heavily upon Chinese naval strategists, who must cope with the constricted geography of the first island chain and the close proximity of multiple U.S. allies to Chinese Navy homeports.

If successful, a homeport strike can neutralize most of the fleet based out of the homeport, but many conditions must be met to succeed. Naval bases can also feature substantial air defenses, extensive sensor coverage, and a sprawling complex of enabling infrastructure that poses more targets. Pierside warships may have sufficient readiness and weapons loadouts to quickly activate defensive capabilities and shoot down missiles even from their static locations. The challenges of homeport strike will be magnified if numerous pierside warships are able to combine their capabilities to thicken the air defenses and sensor coverage protecting the naval base. Naval bases are home to more than just warships, they often include substantial aviation assets as well, who can be more quickly dispersed across alternative infrastructure. Homeports may also be close to air force bases and airfields that allow numerous aircraft to quickly launch in support of defending the homeport, further complicating the challenges of attack.

A satellite image shows smoke billowing from a Russian Black Sea Fleet headquarters building in Sevastopol, Crimea, September 22, 2023. (Photo via Planet Labs PBC/Reuters)

Mass fires may be necessary to break through the dense defenses of a major naval base and inflict damage against its platforms and infrastructure. The carrier strike group in particular can generate a significant volume of fire that could meet the demands of homeport strike. The static nature of the warship targets also widens the extent of firepower that can be leveraged. Land-attack cruise missiles could be used to sink warships at the pier, whereas mobile warship targets would limit the suitable weapons to anti-ship missiles, which can require more complex seekers and killchains compared to land-attack missiles. In the case of the U.S. Navy, which fields thousands of land-attack cruise missiles but only a small number of truly long-range anti-ship missiles, homeport strike may be one of its few good options for sinking an adversary Navy from long range. Focusing on land-attack fires also widens the amount of force structure the U.S. Navy can apply to homeport strike by including numerous surface warships and submarines. Anti-ship missile strikes by comparison would disproportionately involve aircraft carriers and increase risk to the capital ship platforms the Navy can least afford to lose. The carrier-centric design of the U.S. Navy’s anti-ship firepower therefore encourages it to conduct homeport strike, otherwise the U.S. Navy may be required to increase risk to its carriers to pursue more challenging at-sea targets.

For naval forces to carry out a homeport strike, they may have to neutralize or bypass sea denial forces. In the 1980s, the U.S. Navy actively utilized the complex terrain of Norwegian fjords to frustrate the surveillance of the Soviet Union’s aerial maritime patrol force and simulate attacks on the Kola Peninsula, where the Soviet Northern Fleet’s homeport was located. For the attack on Pearl Harbor, the Japanese Navy employed a highly sophisticated deception plan designed to mislead the perceived whereabouts of its naval forces and maximize the element of surprise.

Modern U.S. naval forces should take inspiration from their Cold War predecessors. If a carrier strike group can operate from within allied littoral terrain that is proximate to rival naval bases, then it can leverage a wide variety of land-based force multipliers to improve its survivability, firepower, and detectability in support of homeport strike. Littoral geography and elevated terrain will complicate the adversary’s radar surveillance and the ability of hostile anti-ship missile seekers to close their killchains. Multiple critical Chinese naval bases can be held at risk by U.S. naval forces operating from within the maritime terrain of the Japanese home island of Kyushu. Figure 1 highlights the homeports of China’s three main fleets, allied and U.S. military bases, and the radius of carrier strike group reach when operating from allied littoral terrain.

Figure 1. The strike radius of a carrier strike group operating near the Japanese island of Kyushu and the Philippine island of Luzon, overlayed on the location of key Chinese Navy homeports. (Author graphic overlay)

This figure factors in the deployment of the MQ-25A unmanned aerial refueling tanker, which would extend the range of the air wing to a sufficient degree to carry out homeport strike. Similar support can also be made available by operating close to land and leveraging tanker aircraft operated by U.S. and allied air forces. Submarines can also be especially well-suited to homeport strike, whose proximity to targets may translate into a critical element of surprise that allows them to strike homeports at lower cost than more detectable forces. However, the U.S. Navy must also be mindful that the threat of homeport strike against allied bases may draw it into battles and postures that limit its flexibility.

Aside from cruise missiles, stealth aircraft can also play a valuable role in homeport strike. Stealth aircraft such as the F-35 and B-21 should theoretically be able to gain greater proximity to homeports than non-stealth aircraft, allowing them to deliver a greater volume of fire per platform. Rather than relying on non-stealth aircraft that can only fire a few expensive cruise missiles each from standoff range, stealth aircraft could launch several times more weapons from close range, such as by employing the Small Diameter Bomb or JDAMs. By increasing the available volume of fire, stealth aircraft could better allow forces to meet the difficult challenge of breaking through the dense air defenses that can protect naval bases.

Figure 2. The location and composition of major PLA Navy fleets and their homeports as of January 2021. (Graphic via U.S. Defense Department China Military Power Report 2021)

There are multiple steps the U.S. Navy should take to improve its capability for homeport strike. These include fielding the MQ-25A unmanned aerial refueling tanker to increase the combat radius of the carrier air wing, and increasing the proportion of stealth fighters fielded within air wings, such as the F-35C. The range of missiles fielded by the air wing must be increased. The U.S. carrier air wing has little in the way of long-range land attack cruise missiles, which could be improved by adding more JASSMs to the inventory. The Spear 3 missile in particular will feature a useful combination of small payload size and long range, which will improve the operational flexibility and survivability of stealth aircraft by allowing them to deploy a large volume of fire while operating from standoff distances beyond air defense umbrellas.

Homeport strike should be envisioned as a joint mission that incorporates fires delivered from multiple services. The U.S. Air Force, Army, and Marine Corps are rapidly increasing their cruise missile inventories which will improve options for homeport strikes. Stand-in forces operating across the first island chain can be especially well-suited for holding China’s naval infrastructure at risk. Allies can also contribute to the mission, such as how the Japanese military is set to procure hundreds of Tomahawk missiles. The proliferation of cruise missile weaponry across multiple services and allies should improve options for homeport strike. However, China’s robust missile arsenal is also growing more capable, and its ability to launch homeport strikes of its own should not be underestimated.

Homeport strike has long been a decisive method in naval warfare. But its significant operational utility should be tempered by its highly escalatory implications. Homeport strikes can expand naval conflict from the sea to the shore, and inflict major casualties directly on the territory of targeted states. As nations ponder their options for homeport strike, they should consider whether the potential for escalation outweighs the possible operational gains, which may prove short-lived if a war intensifies into a prolonged conflict.

Hee-Cheol Jung is an undergraduate student of major in Electrical and Computer Engineering, School of Engineering, Rutgers University. From 2016 to 2018, he served in the Republic of Korea Navy, and honorably discharged with the final rank of Petty Officer 2nd Class. He has published in the Naval Engineers Journal.

Featured Image: Battleship Row on December 7, 1941, after the Japanese attack. The sunken and burning USS Arizona (BB-39) is in the center. To the left of her are USS Tennessee (BB-43) and the sunken USS West Virginia (BB-48). (U.S. Navy photograph, from the collections of the Naval History and Heritage Command)

A Fork in the Road: Saving the International Journal of Naval History

By Dave Winkler

With the decommissioning of the Naval Historical Foundation, the online journal International Journal of Naval History (IJNH) (www.ijnhonline.org) continues to exist as an unaffiliated website that last published in early 2023. It is in a transitional period as the current Editor-in-Chief, Dr. Charles Chadbourn with the Naval War College, is planning to step down.

In publication since 2002, IJNH has provided a forum for lengthy academic, peer-reviewed articles to examine various naval issues and histories. This journal has attempted to fill what would have been a gap in maritime/naval academic journals following the departure of the leading journal in the field, and if the journal remains in a state of limbo, will stymie opportunities for the publication of scholarly articles that may offer insights on how to address contemporary maritime challenges. Navalists and academics must explore options for sustaining the future of this journal and in doing so, to generate interest to recruit and shape the composition for a new, potentially multi-institutional management team. 

Background

The last issue in 2002 of American Neptune after 62 years of publication by the Peabody Essex Museum created a void for an academic, peer-reviewed journal that would provide scholars opportunities to publish well-researched articles that could advance the understanding of maritime/naval history. In addition, such a journal also provided an important venue for another academic endeavor – book reviews. Recognizing this void, Dr. Gary Weir, then head of the Contemporary History Branch of the then USN Naval Historical Center (NHC), took on the initiative to create an online journal: the International Journal of Naval History (IJNH). In doing so, he gained the support of well-known overseas naval historians who would be hosted by the Naval History Center (now Naval History and Heritage Command) on the day prior to the commencement of the U.S. Naval Academy’s McMullen Naval History symposium held every two years.

The mission statement drafted by Dr. Weir, included below, emphasizes the research-based, independent ethos of the journal:

“The objective of the International Journal of Naval History is to provide a pre-eminent forum for works of naval history researched and written to demonstrable academic standards. Our hope is to stimulate and promote research into naval history and foster communication among naval historians at an international level.

IJNH will welcome any scholarly historical analysis, focused on any period or geographic region, that explores naval power in its national or cultural context. The journal will remain completely independent of any institution and will operate under the direction of an Editorial Board that represents various regions of the globe as well as various genres of naval history.”

As for the administrative structure, the IJNH webpage called for an all-volunteer effort led by a troika of editors who would work with a board of eighteen scholars “of international reputation.” The objective was to publish the journal in April, August, and December of each year beginning in 2002.  

In reality the “all-volunteer” effort did not occur in practice. The first editor-in-chief, Dr. Weir, obtained permission to work on the journal “on company time.” In addition, the Naval Historical Foundation not only agreed to cover the nominal costs of the establishing and hosting the website, it authorized its content developer to post updated volumes on the IJNHonline.org website. Under this “volunteering on company time” arrangement the IJNH came out on a regular schedule of three times a year for its first eight years. And then it ceased production for three years.

What happened? Dr. Weir, as the Chief Historian, National Geospatial-Intelligence Agency, could not perform editor-in-chief duties on company time. Hence, Dr. Chadbourn took on the Editor-in-Chief duties. Like Dr. Weir previously, he was allowed to work on the journal during his workday hours.

Unfortunately, the challenges of the academic year wreaked havoc on his production schedule and IJNH averaged one edition a year. An additional setback for the journal was that the impressive editorial board Dr. Weir assembled would be underutilized. Finally, the decommissioning of the Naval Historical Foundation deprived the IJNH of its host and content posting support. On a positive note, as an online journal the content is “evergreen” in that articles published two decades ago are being viewed and cited in current maritime publications. 

The posting of the journal on the web sans subscription in essence means IJNH is an open-access publication. As a consequence, the journal does not generate revenue – it is a totally altruistic endeavor. The question at hand is whether IJNH can be sustained utilizing its current business model. To answer that question, it would be worth taking a brief look at similar journals in the military-maritime milieu.

Other Journals Featuring Naval History Scholarship

For openers, publications such as the National Maritime Historical Society’s Sea History and the U.S. Naval Institute’s Naval History offer scholars an opportunity to publish short-to modest-sized articles that have broad appeal. The U.S. Naval Institute is to be especially commended for hosting the Chief of Naval Operations annual naval history essay contest that inspires submissions from well-established historians, up-and-coming historians, and midshipmen and cadets. However, word-count restrictions eliminate consideration of these publications as academic journals of the type that offer book-chapter length articles of 8,000 to 12,000 words in length. With this distinction established, current academic peer review publication opportunities include multiple journals of note.

The Mariner’s Mirror – the international journal of the Society for Nautical Research (SNR). Recognized as a world-leading journal of both naval and maritime history, the journal has been in publication since 1911. Per the SNR website:

The content reflects the aim of the society and publishes ‘research into matters relating to seafaring and shipbuilding in all ages among all nations, into the language and customs of the sea, and into other subjects of nautical interest’. Subject matter ranges from archaeology and ethnography to naval tactics and administration, merchant seafaring, shipbuilding and virtually anything that relates to humankind’s relationship with the sea.

A review of the journal’s editorial board reflects its British origins and the content reflects the regional interests of its subscribers as The Mariner’s Mirror is a subscription journal, a benefit of membership to the society. SNR maintains a partnership with the academic journal publisher Taylor & Francis which makes the journal available to academic institutions. It is published quarterly in print and online through Taylor & Francis. The Mariner’s Mirror staff is compensated.

The International Journal of Maritime History (IJMH) is the journal of the International Maritime History Association established in 1989. Per that organization’s website:

“The IJMH is a fully-refereed, quarterly publication which addresses the maritime dimensions of economic, social, cultural, and environmental history. Truly international in scope, the IJMH publishes studies of a multidisciplinary nature on a broad range of maritime historical themes, including shipping, shipbuilding, seafaring, ports, resorts and other coastal communities, sea-borne trade, fishing, environment and the culture of the sea.”

A review of the editorial board has the Editor-in-Chief and Book Review editor based at the University of Leiden in the Netherlands. As with Mariner’s Mirror, IJMH is a subscription journal. In the case of IJMH, since 2014 there has been a partnership with Sage Journals which bundles IJMH with other journals for sale and distribution to university libraries. The production staff is compensated.

The Journal of Military History (JMH) is the quarterly journal of the Society for Military History. JMH has published scholarly articles on the military history of all eras and geographical areas since 1937. Fully refereed, the JMH publishes articles and book reviews, as well as a list of recent articles dealing with military history published by other journals, an annual list of doctoral dissertations in military history, and an annual index. Though much of the content is land-warfare focused, there have been some notable naval articles featured in this journal. The Society of Military History and JMH are hosted by the Virginia Military Institute. JMH is a subscription journal and an arrangement is in place with Proquest to offer digital content to libraries and other archival institutions. The production staff is compensated.

The Northern Mariner / Le marin du nord is published in Canada by the Canadian Nautical Research Society (CNRS) with the support of the North American Society of Oceanic History (NASOH). Per the CNRS website, The Northern Mariner is

“devoted to the study of maritime affairs and the inland waterways of the nations that touch the seas of the northern hemisphere. The journal’s content spans the fields of naval, political, diplomatic, social, cultural, gender, Indigenous, economic, and environmental history. Specific topics of interest include – but are not limited to – ships, shipbuilding, technology, merchant shipping, trade, labour, seafaring, maritime life, coastal communities, ports and harbours, naval warfare, maritime aviation, fishing, whaling, sealing, underwater archaeology, disasters and emergencies, and maritime biography.”

Though the journal is a subscription benefit of membership in CNRS and NASOH, digital copies are available on the CNRS website making it an open-access publication. The journal does not appear to have an academic institutional affiliation. 

There are other publications as well. The four journals mentioned above are not the only outlets for the publication of scholarly naval history work. For example, The Naval War College Review and the Journal of Advanced Military Studies published by Marine Corps University also offer outlets for publication. The Naval War College Press also publishes selected papers from the McMullen Naval History Symposium. In Germany, the Kiel Seapower Series, produced by the Institute for Security Policy, Kiel University, has produced a number of compilations of scholarly papers presented at various conferences. Depending on the content, opportunities exist in other academic journals, and naval historians should be encouraged to publish to different audiences to foster a broader understanding of the role sea power plays in a variety of fields. This author recently reviewed an article on the naval confrontation with wildlife for Animal History. 

Continuing IJNH

The good news is that outlets exist for the publication of naval history scholarship. However, none of the journals cited above focus solely on naval history. Mariner’s Mirror may be the closest but it is Eurocentric in its coverage. Meanwhile, growing attendance at McMullen Naval History Symposiums in recent years has demonstrated that more scholarship is being generated that is begging for publication in academic journals. A revitalized IJNH can fill that need and serve to facilitate the growth of a community. A study of other maritime/military history journals offers the following options for ways forward.

Publishing – Academic/Non-Profit Partnership: An arrangement with an academic journal publishing house could generate revenue to sustain management expenses. Of course, that would change the nature of the journal away from open access. Unfortunately for a potential journal publishing house, any arrangement could not grant rights for previously published work as authors never transferred those rights to IJNH at the time of publication. Before setting up such an arrangement, IJNH should look to reestablish a partnership with an academic institution or non-profit organization or consider establishing itself as a non-profit. Once IJNH finds an academic/non-profit home, an immediate effort should focus on the recruitment of an Editorial Board. 

Academic/Non-Profit Partnership: An arrangement with just an academic institution and non-profit organization can enable the journal to continue on as an open-access publication. The institution/organization taking IJNH on would need to fundraise to sustain management expenses and/or dedicate staff “company time” to keep the issues coming out on time. Once IJNH finds an academic/non-profit home (or homes – consider a consortium of universities with maritime programs collaborating), an immediate effort should focus on the recruitment of an Editorial Board.

Stay Completely Independent:  Independence is a viable option but would require a dedicated volunteer effort. As part of that volunteer effort, non-profit status for the journal should be sought to facilitate contributions to cover management expenses. As with previous options, recruitment of a new editorial board should be an immediate priority.

Recommendations

The quote “when you come to the fork in the road you should take it” attributed to Yogi Berra is appropriate in that a direction needs to be taken if IJNH is to remain a viable entity for the publication of new naval history scholarship. To facilitate a direction, it is recommended this point paper be shared to gather comments and additional ideas on the three options  that have been presented.

As for the selection of the editorial board, the new management team should aim to recruit individuals who have entered the profession in recent years to encourage submissions from younger scholars. Given the “International” scope of the journal, the board needs to aim for overseas recruitment as well. For the younger board members, serving on the board will assist in furthering personal career objectives and create networking opportunities and lifelong friendships. Additional consideration should be given to establish a smaller advisory panel where diversity and breadth and depth of experience would enhance the quality of the journal and provide mentorship.

Conclusion

The retention and re-invigoration of IJNH serves the interests of the naval historian community as a tool for professional development for both contributors and those associated with the journal. The content published in past editions is finding its way into the footnotes of recent scholarship, and new content can inform the thinking of contemporary leaders engaged in naval/maritime affairs. Comments and constructive ideas will be welcome and considered. Contact the author at the address below.

David F. Winkler is a retired Navy commander having received his commission through Penn State NROTC. Having earned his Ph.D. at American University, he served as staff historian at the Naval Historical Foundation for 25 years, has taught at the U.S. Naval Academy and Naval War College, and held the Charles Lindbergh Chair of Aerospace History at the Smithsonian Air and Space Museum. He has published five books with the Naval Institute Press and writes a monthly historical perspective column for Sea Power Magazine. Contact Dr. David F. Winkler at [email protected].

Featured Image: U.S. Navy carrier USS Franklin (CV-13) afire and listing after she was hit by a Japanese air attack while operating off the coast of Japan, 19 March 1945. (Photo via U.S. Naval History and Heritage Command)

A Concept of Operations for the U.S. Navy’s Hybrid Fleet

By Captain George Galdorisi, U.S. Navy (ret.)

Generational Change for the U.S. Navy

In an address at a military-industry conference, then-Chief of Naval Operations, Admiral Michael Gilday, revealed the Navy’s goal to reach 500 ships by adding approximately 150 unmanned maritime vehicles to the Navy’s inventory. This concept added additional granularity to the Navy’s UNMANNED Campaign Framework and culminated in the issuance of the Chief of Naval Operations NAVPLAN and Force Design 2045, both of which call for 350 manned ships and 150 large unmanned maritime vehicles. 

Most recently, at the annual U.S. Naval Institute/Armed Forces and Communications and Electronic Association “West” Symposium, Chief of Naval Operations, Admiral Lisa Franchetti, reaffirmed the U.S. Navy’s commitment to a future force of 350 manned ships and 150 large unmanned maritime vehicles as an important initiative in the face of a rapidly growing Chinese Navy.1

While the composition of the future U.S. Navy crewed vessels is relatively well understood—based on ships being built and being planned—what those unmanned maritime vehicles will look like, let alone what they will do—remains opaque to most observers. This uncertainty slows progress on the aspirations detailed in the UNMANNED Campaign Framework.

Additionally, Congress demonstrated increasing reluctance to authorize the Navy’s planned investment of billions of dollars on unmanned surface vessels (USVs) until the Naval Service develops a concept-of-operations (CONOPS) for use. Fairly, Congress has a point. The Navy announced plans to procure large numbers of unmanned systems, especially large and medium unmanned surface vehicles without a CONOPS. Until the Navy can develop such a CONOPS, it is unlikely that a 500-ship fleet populated by 150 unmanned surface vehicles will reach fruition.

The Navy’s Commitment to Unmanned Surface Vehicles: A Bridge to the Navy-After-Next

Many, to include U.S. Congress, encouraged the Navy to increase the number of ships it fields but with little to no increase in funding to do so. This is further exacerbated by the increasing cost to build ships, the cost to man these vessels, and the high operational tempo of ship deployments. This issues compound into a sustainability crunch where the Navy is literally wearing these ships out more rapidly than planned to meet the increasing demands of U.S. Combatant Commanders. From the resultant vector of these issues, it is easy to see why the Navy has difficulty growing the number of manned surface vessels.2

However, the rapid growth of the technologies that make unmanned surface vehicles increasingly capable and affordable provide the Navy with a way forward to put more hulls in the water. This led to the Navy’s commitment to field a force comprised of 150 large and medium unmanned surface vehicles.3 That said, some have noted that the Navy’s UNMANNED Campaign Framework is high on aspiration but low on specifics.4 Said another way, this vision is good as far as it goes, but the Navy has endured withering criticism from a skeptical Congress that is not warm to the Service spending billions of dollars on USVs until the Navy can come up with a concept-of-operations for using them.

Congressional Concerns over the Navy’s Plans for Unmanned Surface Vehicles

Few Navy procurement initiatives have been the subject of as much scrutiny—from Congress as well as defense analysts—as the Service’s plans for unmanned surface vehicles. A Jane’s Defense report noted: “U.S. lawmakers have balked at the service’s efforts to shift money from legacy ship programs toward proposed unmanned ones—in part because the USN has yet to develop a track record in the development of unmanned systems.5

Another article in a defense publication reported Congressional concerns that stated, “The Navy has yet to produce a concept of operations or even a coherent public strategy to back up the investments they want to make. Further, Congress is wary of appropriating money for platforms that rely on technologies that haven’t been fully developed yet.”6

As the Navy looks to allay Congressional concerns and accelerate the fielding of unmanned maritime systems, the emphasis should be on no longer thinking of each unmanned maritime system as a “one-of,” but rather, to package these together as multiple-sized and function vehicles designed for specific missions.7

A Concept of Operations for Getting Unmanned Surface Vessels to the Fight

The concept of operations proposed is to marry various size unmanned surface, subsurface and aerial unmanned vehicles to perform missions that the U.S. Navy has—and will continue to have—as the Navy-After-Next evolves. Simply put, the Navy can use the evolving large, unmanned surface vehicle as a “truck” to move smaller USVs, UUVs and UAVs into the battle space in the contested littoral and expeditionary environment.

While there is a plethora of important Navy missions, the proposed integrated unmanned solution combination of unmanned platforms focuses on two aspects: intelligence surveillance and reconnaissance (ISR) and mine countermeasures (MCM). There are many large, medium, small, and ultra-small unmanned systems ready to be adopted for these missions.

Rather than speaking in hypotheticals as to how unmanned vehicles might be employed for these two missions, this article will offer concrete examples, using commercial-off-the-shelf (COTS) unmanned systems that have been employed in recent Navy and Marine Corps events. In each case, these systems not only demonstrated mission accomplishment, but also the hull, mechanical and electrical (HME) attributes and maturity that Congress demands.

While there are a wide range of medium unmanned surface vehicles (MUSVs) that can potentially meet the U.S. Navy’s needs, there are three unmanned surface vehicles that appear to be furthest along in the development cycle and that have been featured in numerous Navy and Marine Corps exercises, experiments and demonstrations.8 These MUSVs cover a wide range of sizes, hull types and capabilities:

  • The Textron Common Unmanned Surface Vessel (CUSV), now used by the Navy as the MCM-USV, features a single hull coupled with a modular and open architecture design.
  • The Maritime Tactical Systems Inc. (MARTAC), unmanned surface vehicles (USV) include the MANTAS T12 and the Devil Ray T18, T24 and T38 craft are catamarans that feature two hulls on both sides of the vessel. These USVs feature a modular and open architecture design.
  • The Leidos Sea Hunter, and its sister ship, Sea Hawk, are the largest of the three. The Sea Hunter is a 132-foot-long trimaran that features a central hull with two outriggers.

All three are viable candidates to be part of an integrated unmanned solution CONOPS. The MANTAS and Devil Ray craft are viable candidates for this CONOPS for several reasons. First, these vessels come in varied sizes with the same HME and command and control attributes. Second, Sea Hunter is too large to fit into the LUSVs the Navy is considering. Third, the CUSV is the MUSV of choice for the Littoral Combat Ship (LCS) Mine-Countermeasures Mission Package, and all CUSVs scheduled to be procured are committed to this program.

The MANTAS and Devil Ray are COTS MUSVs that the Navy has wrung out in exercises, experiments, and demonstrations over the past several years, including operations with Navy Task Force 59.9 These have been married together to show Congress and others that the Navy does, indeed, have an effective way to use these platforms operationally.10

Most recently, and directly supporting the Navy’s “Hybrid Fleet” vision, Task Force 59 created a subordinate command, Task Group 59.1, focused specifically on manned-unmanned teaming operations. The Navy indicated that this means it will focus on the operational deployment of unmanned systems teamed with manned platforms to bolster maritime security across the Middle East region.11 Task Force 59 Commodore, Captain Colin Corridan, explained that in recent months Task Force 59 and Task Group 59.1 have been breaking new ground by evaluating unmanned vehicles for offensive operations. He noted the successful test firing of a Miniature Aerial Missile System weapons off an unmanned MARTAC T38 Devil Ray unmanned surface vehicle with direct hits against a training target each time.12

Kinetic use of USVs like the T38 Devil Ray are gaining traction but are likely some years away from becoming part of the arsenal of worldwide fleets. What is evolving today is the urgent need to shift the burden of performing the ISR and MCM missions from expensive and overdeployed manned platforms to plentiful and attritable unmanned vehicles. Part of an evolving operational concept for employing unmanned surface vehicles involves placing them in the environment where they can perform their missions of ISR and MCM.

If the U.S. Navy wants to sustain its manned capital ships in the lead up to war, the Navy needs to surge unmanned maritime vehicles into the contested battlespace. This paradigm shift ensures risk worthy vessels operate within the range of adversary anti-access/area denial (A2/AD) platforms, systems, sensors, and weapons. Small and medium USVs, UAVs and UUVs need a “truck” to deliver them near or even in the battlespace.13 The Navy envisions that truck to be the LUSV. LUSVs will be 200 feet to 300 feet in length and have full load displacements of 1,000 tons to 2,000 tons.14

Depending on the size that is ultimately procured, the LUSV can carry several T38 Devil Ray unmanned surface vehicles and deliver them, largely covertly, to a point near the intended area of operations. The T38 can then be sent independently to perform the ISR mission, or alternatively, can launch one or more T12 MANTAS USVs to perform the ISR mission. Building on work conducted by the Navy laboratory community and sponsored by the Office of Naval Research, the T38 or T12 will have the ability to launch unmanned aerial vehicles to conduct overhead ISR.15

A T38 Devil Ray operating alongside a U.S. Coast Guard vessel. (Photo via Dave Meron)

For the MCM mission, the LUSV can deliver several T38s equipped with mine-hunting and mine-clearing systems (all of which are COTS platforms tested extensively in Navy exercises). These vessels can then undertake the “dull, dirty and dangerous” work previously conducted by Sailors who had to operate in the minefield. Given the large mine inventory of peer and near-peer adversaries, this methodology may well be the only way to clear mines safely.

This scenario and CONOPS is built around an Expeditionary Strike Group (ESG) that is underway in the Western Pacific. This ESG includes three LUSVs under supervisory control from a large amphibious ship. The then-Chief of Naval Operations, Admiral Michael Gilday, suggested this CONOPS in 2022 when he noted that he: “Wants to begin to deploy large and medium-sized unmanned vessels as part of carrier strike groups and amphibious ready groups in 2027 or 2028, and earlier if I can.”16

Vignette for an Integrated Unmanned Solution Mission:

The ESG in the Western Pacific is on routine patrol five hundred nautical miles from the nearest landfall. An incident occurs in their operating area and the ESG is requested to: (1) obtain reconnaissance of a near-shore littoral area, associated bays and river accesses and (2) determine if the entrance to a specific bay has been mined to prevent ingress. The littoral coastline covers two hundred nautical miles. This area must be reconnoitered within twenty-four hours without the use of air assets.

Command staff dispatches three LUSVs for the request mission. Two LUSVs are each configured with four T38-ISR craft and the third LUSV is configured with four T38-MCM vessels. The three LUSV depart the strike group steaming together in a preset autonomous pattern to a waypoint that is central to the ISR scan area. At this waypoint, the LUSV will stop and dispatch the smaller T38 craft and then wait at this location for their return.

Two T38-ISR craft are launched from each of the two LUSVs carrying the ISR craft. The autonomous mission previously downloaded specifies a waypoint location along the coast for each of the four craft. Each of the four T38 craft will have a geographically confined ISR mission to cover.

Two T38-MCM craft are launched from the third LUSV. The autonomous mission previously downloaded has them transit independently along different routes to two independent waypoints just offshore of the suspected mine presence area where they will commence mine-like object detection operations. In this manner, each of the six craft will be transiting independently and autonomously to their next waypoint which will be the mission execution start point.

The objective is for each of the T38-ISR craft to complete their ISR scan and for the two T38-MCM craft to jointly scan the bottom and the water column for the presence of mine-like objects.

Even with the Expeditionary Strike Group well outside of littoral waters, the ESG Commander will have the results of the ISR and MCM scan of the shoreline littoral area after dispatching the LUSVs. The LUSVs then return to the ESG, ready for the next mission. 

Moving Forward with Effective Unmanned Surface Vehicle Deployment

As noted earlier, the Navy envisions large and medium unmanned vessels as part of carrier strike groups and expeditionary strike groups later this decade. The goal is to take an evolutionary approach and to scale up unmanned surface vessels in order to have large numbers of USVs available to commanders.17 This nested doll approach can accelerate this effort.

This is not a platform-specific solution, but rather a concept. When fleet operators see a capability with different size unmanned COTS platforms in the water working together and successfully performing the missions presented in this article, they will likely press industry to produce even more-capable platforms to perform these missions.

While evolutionary in nature, this disruptive capability delivered using emerging technologies can provide the U.S. Navy with near-term solutions to vexing operational challenges, while demonstrating to a skeptical Congress that the Navy does have a concept-of-operations to employ the unmanned systems it wants to procure.

Captain George Galdorisi is a career naval aviator and national security professional. His 30-year career as a naval aviator culminated in 14 years of consecutive service as executive officer, commanding officer, commodore, and chief of staff. He enjoys writing, especially speculative fiction about the future of warfare. He is the author of 18 books, including four consecutive New York Times bestsellers. His latest book, published by the U.S. Naval Institute, is Algorithms of Armageddon: The Impact of Artificial Intelligence on Future Wars.

References

1. Patrick Tucker and Lauren Williams, “Navy Robot Ships on a 15-year Path to Operating At Speed and Scale,” CNO says,” Defense One, February 13, 2024.

2. Megan Eckstein, “Navy Adds ‘Wholeness Balance Reviews’ to Budget Process to Consider Total Ownership Costs,” USNI News, January 18, 2018.

3. See, for example, Chief of Naval Operations NAVPLAN 2022 (Washington, D.C.: Department of the Navy, July 2022), Sam Lagrone and Mallory Shelbourne, “CNO Gilday: ‘We Need a Naval Force of Over 500 Ships’” USNI News, February 18, 2022, and Sam Lagrone, “Navy’s Force Design 2045 Plans for 373 Ship Fleet, 150 Unmanned Vessels,” USNI News, July 26, 2022.

4. Department of the Navy UNMANNED Campaign Framework (Washington, D.C.: Department of the Navy, March 2021). See, David Larter, “U.S. Navy’s New Unmanned Plan Has ‘Buzzwords and Platitudes’ But Few Answers,” Defense News, March 17, 2021.

5. Michael Fabey, “Unmanned market: U.S. Navy Looks to Tap Existing Technology to Jump Start Autonomous Fleet Plans,” Jane’s Navy International, March 16, 2021.

6. David Larter, “The Pentagon Wants to Forge Ahead with Robot Warships, But Congress Wants To Slow The Train,” Defense News, June 19, 2020.

7. Tim Galladuet, “Three Ways the Navy Can Surge Its Unmanned Surface Force,” Real Clear Defense, February 26, 2022. The author, the former Deputy Administrator of NOAA, emphasizes the importance of multiple vehicle integration, a key attribute behind this concept of operations.

8. Megan Eckstein, “U.S. Navy More Certain of Role for Medium Surface Drones Following Tests,” Defense News, January 12, 2023.

9. Aaron-Matthew Lariosa, “US Navy Highlights TF 59 Contributions to Fleet’s Unmanned Vision,” Naval News, January 23, 2023

10. U.H. “Jack” Rowley, “Integrating Unmanned Surface Vehicles into the Surface Fleet: The Case for a “Nesting Dolls” Approach,” Paper presented at the American Society of Naval Engineers 2021 Virtual Technology, Systems and Ships Symposium, January 26-28, 2021.

11. Agnes Helou, “Commander: Navy’s new Task Group 59.1 to Usher Unmanned Systems into Operational Realm,” Breaking Defense, January 19, 2024.

12. Rich Abott, “5th Fleet Unmanned Unit Starts New Hybrid Task Group,” Defense Daily, January 13, 2024.

13. Some of the Congressional criticism of the Navy’s plans for is unmanned surface vehicles is the fact that the Navy has (honestly) admitted that initially its large unmanned surface vehicles will actually be manned, albeit with a small crew. See, for example, Sam Lagrone, “Navy: Large USV Will Require Small Crews for the Next Several Years,” USNI News, August 3, 2021. Operating large unmanned surface vehicles as part of a carrier or expeditionary strike group could obviate the need for this crew, as sailors could be flown from CSG or ESG ships to the LUSV to perform needed functions, especially emergent repairs, and then return to their parent ship(s).

14. Ronald O’Rourke, Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress – CRS Report 45757.

15. See Vladimir Djapic et al, “Heterogeneous Autonomous Mobile Maritime Expeditionary Robots and Maritime Information Dominance,” Naval Engineers Journal, December 2014 for a description of how an unmanned surface vehicle can launch unmanned underwater vehicles and unmanned aerial vehicles. 

16. Bradley Peniston, “Navy Chief Sees Robot Ships Alongside Aircraft Carriers Within Five Years,” Defense One, February 16, 2022. See also, Sam LaGrone, “CNO Gilday Taking a More ‘Realistic’ Approach to Unmanned Systems in the Fleet,” USNI News, February 16, 2022.

17. Justin Katz, “From 7 Classified ‘Spirals’ to Coming Robotic Ships: Gilday on Navy’s Unmanned Task Force,” Breaking Defense, February 17, 2022. See also, Megan Eckstein, “Unmanned or Minimally Manned Vessels Could Deploy Alongside Strike Groups as Soon as 2027,” Defense News, February 17, 2022.

Featured Image: A T38 Devil Ray unmanned system. (Photo via Dave Meron)