Tag Archives: VP

Close the Gaps! Airborne ASW Yesterday and Tomorrow

By Jason Lancaster, LCDR, USN

Introduction

Anti-submarine warfare (ASW) is about putting sensors and weapons in place to detect and destroy submarines. The types of sensors have changed based on technological improvements and types of submarines, but the main principle is minimizing the sensor coverage gaps and engaging the submarine before it is within its weapons engagement zone (WEZ). Speed, endurance, and flexibility make aircraft excellent ASW platforms. It enables them to conduct wide-area searches and engage submarines before a submarine can attack.

Airpower is vital to protecting the center of gravity. In the Second World War, the European naval war’s center of gravity was the trans-Atlantic convoys that supplied the Allies’ war effort. The Allied struggle was to reduce air coverage gaps in the Atlantic to effectively protect convoys. In order to convoy ships across the Atlantic, the Allies had to close the gaps in air coverage. During the Cold War Era, the center of gravity was the power projection capability of the carrier. The challenge was to protect the carrier both for convoy protection and force projection. Today, the challenge to protect the carrier remains, and a dangerous new gap needs to be closed.

The Russian and Chinese navies have invested heavily in building quiet submarines capable of firing Anti-Ship Cruise Missiles (ASCMs) in excess of 200 nm. These missiles threaten our Carrier Strike Groups (CSGs) because the CSG lacks an organic capability to detect and engage these submarines outside of the submarines’ WEZ. This is not the first time that we have dealt with an increasingly dangerous submarine threat. Today, the U.S. center of gravity for naval combat remains the CVN. To defend the CVN or any high value vessels from submarines, we may find the answer to be similar to what it was in World War II and the Cold War. We can explore the U.S. Navy’s historical use of air power and technology to overcome submarine advantages and then explore future improvements to close the gaps using unmanned aircraft.  

The Second World War

The Battle of the Atlantic tested the Allies’ ability to defend trans-Atlantic convoys at points throughout the European Theater of Operations, from Archangel to Cape Town and the Panama Canal to the Suez Canal; convoys had to be protected from submarines. Allied victory in the Battle of the Atlantic was the result of the Allies’ ability to eliminate gaps in air coverage with long range air and carrier-based convoy escorts. The challenge for the Allies was to extend air coverage to cover the entire convoy route. The Allies closed air coverage gaps in three ways: they expanded the number of air stations, developed longer-range aircraft, and integrated the escort carrier (CVE).

In August 1942, aircraft were limited to proximity from the U.S., Canada, Iceland, Northern Ireland, Gibraltar, and the African coast. Air coverage decreased the number of attacks in the western approaches to the English Channel. However, the German U-boats continued their depredations farther to sea into an area where aircraft could not reach. The Navy had to continue to close coverage gaps.

In order to close gaps, the Navy went to work opening air bases around the Atlantic rim to expand air coverage. From Greenland to Brazil, the U.S. worked with host nations to build and develop airfields. Unfortunately, gaining permission to operate an airfield did not mean planes could start flying right away. For example, the Danish government in exile gave the United States permission to operate aircraft out of Narsarsuaq, Greenland in April 1941; VP-6 aircraft did not operate from there until October 1943. In Natal, Brazil, the Navy took over facilities that Pan Am had been developing in 1940, but the facilities did not officially become active until 1943. In the Caribbean, planes flew convoy routes from Coco Solo, Panama to Trinidad and on to San Juan, Puerto Rico.

Extent of Allied Air Coverage (Author Graphic)

The Navy acquired the bases to operate from, but to close the gaps, aircraft were required to patrol from those bases. The Navy began the war with long-range aircraft, but not the vast numbers required for the massive amount of ocean requiring protection. Thousands of hours of patrol time were required to detect a submarine, creating a massive demand for aircraft. Congress passed the Two Ocean Navy Act in 1940, but aircraft production and aviation training had to catch up to wartime demand. 49 fixed-wing patrol (VP) squadrons were formed in 1943 alone. The influx of new planes and aircrews allowed the Allies to swarm the Atlantic.

This influx of planes enabled the Navy to cover the Atlantic in aircraft and force the U-boats to change tactics. In 1940, U-boats had submerged at the first sight of an aircraft. Many of those aircraft lacked effective weapons to sink a U-boat. Improvements to depth charges, radar, and searchlights increased the kill count. By 1943, U-boats had been re-armed with quadruple 20 mm anti-aircraft guns and traveled the Bay of Biscay surfaced in packs for mutual defense against aircraft. Submarines shooting it out with aircraft resulted in the sinking of 34 submarines in the Atlantic in July 1943. Between August and December of 1943, the Allies flew 7,000 hours of patrols in the Bay of Biscay alone. 7,000 hours translated to 36 sightings, 18 attacks, and 3 kills. Although the number of sightings was low, the U-boats had implemented a policy of maximum submergence, reducing their ability to travel rapidly on the surface during daylight.

Despite increased bases and more aircraft, the center of the Atlantic remained out of reach to land-based aircraft. This gap was closed by escort carriers (CVEs). These aircraft carriers were converted from merchant ships and equipped with a flight deck and a composite squadron of approximately 20 carrier aircraft; typically F4F Wildcats and TBF Avengers. Escort carriers operated in two main modes; direct support to convoys flying patrols around the convoy searching for U-boats, or as the flagship of a hunter-killer squadron. Initially, the aircraft only flew daytime missions, but submarines would surface to recharge their batteries at night. The aircraft flying off escort carriers became the first to regularly fly night missions. Escort carrier groups sank 53 U-boats during the war, including 60 percent of all U-boats sank between April and September of 1944.

A torpedo plane approaches for a landing while USS Guadalcanal tows U-505 astern. (U.S. Navy photo)

By June 1944, U-boats operated primarily submerged utilizing snorkels. The Allies’ ability to build airbases, manufacture planes, and convert aircraft carriers from merchant ships had enabled them to patrol the entirety of the Atlantic, giving the U-boats nowhere to escape.  Staying submerged dramatically reduced submarine range and speed, and there were more U-boat losses than merchant ship losses by the end of 1944. Closing the air coverage gaps in the Atlantic enabled the United States to transport armies across the ocean, maintain the supply lines to the Soviet Union and Great Britain, and win victory in Europe.     

The Cold War

During the Cold War, the Navy focused resources into the ability to project power ashore by building carrier battle groups and operating them in the eastern Mediterranean and the high north. The Cold War carrier battle group had to contend with Soviet long-range naval aviation, as well as nuclear and diesel submarines. Protecting the carrier against nuclear and diesel-electric submarines required defense-in-depth to prevent coverage gaps where submarines could freely target the carrier.

In the early years of the Cold War, World War II-era aircraft carriers were converted to ASW carriers (CVS) and operated 20 S-2 Trackers and 16-18 ASW helicopters and their escorts. During the 1950s, the U.S. maintained 20 ASW battle groups composed of a CVS and escorts. Budget constraints, a focus on the Vietnam War, and the increasing maintenance costs of aging ships resulted in the decommissioning of CVSs through the late 1960s. To maintain carrier-based airborne ASW, the CV replaced an attack squadron (VA) with an air ASW squadron (VS).

Exercises such as Ocean Venture ’81 had demonstrated the Navy’s global reach and ability to place strike aircraft on the Soviet border undetected. The Soviets wanted to deny the eastern Mediterranean and the high north to carrier battle groups to protect the Soviet Union from these attacks. The Soviets’ primary means of denial were their massive submarine fleet and long-range aviation assets. The U.S. expected the Soviets to attack the convoy routes that would bring additional U.S. troops, equipment, and stores to Europe, as well as target the carrier battle groups.  

The U.S. developed an ASW system to protect both convoys and battle groups. Submarines and maritime patrol reconnaissance aircraft (MPRA) could patrol independently, but also received cueing from the Sound Surveillance System (SOSUS). SOSUS arrays stretched across the gaps that Soviet submarines would travel to reach the north Atlantic Ocean; from Bear Island to the Norwegian coast, and across the Greenland-Iceland-UK gaps (GIUK). These arrays were monitored by acoustic technicians and able to vector submarines and MPRA to pounce on Soviet submarines as they transited into the north Atlantic. These barriers formed the outer submarine defensive zones that would enable the U.S. to kill Soviet submarines in chokepoints. The role of these submarines and MPRA was sea denial.

A U.S. Navy Lockheed P-3C Orion from Patrol Squadron Eight (VP-8) “Fighting Tigers” flying over a Soviet Victor III-class submarine in 1985.(U.S. Navy photo)

Convoys would be supported by helicopter-equipped ASW frigates and destroyers and MPRA operating from bases in Canada, Iceland, the Azores, and the United Kingdom. The mission of these escorts was not to create permanent sea control, but to create a bubble of temporary local sea control that would enable the convoyed merchant ships to reach Europe without losses. Carrier battle groups would support these convoys, as required, to protect against air attacks, or would head to the Norwegian coast to conduct offensive operations against the Soviet Union.  

The purpose of the carrier battle group was sea control. The typical carrier battle group was composed of an aircraft carrier, 8-10 escorting cruisers, destroyers, and frigates, and the air wing. The carrier battle group utilized defense-in-depth to defend the carrier. The most distant ring was the inorganic theater ASW (TASW) fight utilizing the SOSUS network, MPRA, and submarines. The battle group did not lead this fight, but paid attention to it.  

Submarines that transited past the MPRA, submarine, and SOSUS barriers required the battle group’s anti-submarine warfare commander (ASWC) to defend the carrier. The 1980s battle group’s ASW plan was composed of three zones: the outer zone (100-300NM), the middle zone (30-70NM), and the inner zone (0-30NM). The battle group’s organic outer defense was composed of ASW helicopter-equipped frigates or destroyers with towed acoustic arrays. The VS squadron and helicopter anti-submarine squadron (HS) were to patrol the inner and middle zones, but maintained the ability to pounce in the outer zone, as required. The inner screen was composed of 3-4 destroyers or frigates utilizing active sonar. Active sonar was required because the carrier and its inner screen utilized speed and maneuver to minimize the ability of a submarine to target the carrier. The noise of speed negated passive tracking.

September 9, 1989 – A starboard quarter view of a Soviet Akula Class nuclear-powered attack submarine underway. (Photo via U.S. National Archives)

Victory for the TASW MPRA, submarine, and SOSUS team was the number of submarines destroyed. The battle group’s victory was defined avoiding an attack, whether that was from killing submarines, utilizing limiting lines of approach and maneuver, or defense-in-depth deterrence to prevent submarines from closing on the carrier. The Navy utilized multiple assets with different capabilities and limitations to prevent gaps in the carrier’s screen. TASW, multiple surface ships, CV, DD, and FF-based helicopters and ASW aircraft all contributed to the successful defense of the carrier. The skilled ASWC was able to balance the strengths and weaknesses of each part of the screen and keep the Soviet submarine away from the carrier.

ASW Today and Tomorrow

The threat of Soviet submarines seemingly disappeared with the collapse of the Soviet Union. Without the threat of Soviet submarines, U.S. interest in ASW withered. The nation’s peace dividend included the cancellation of the P-3 replacement aircraft, and the reduction of MPRA squadrons from 24 to 12 between 1989 and 1996. The remaining P-3s found their sensors optimized for detecting surfaced submarines and were useful to the Joint Force flying ISR missions over the Balkans and the Middle East. These missions sustained the reduced MPRA force through the budget cuts of the 1990s and the land combat-centric days of the War on Terror. The S-3B Vikings left their ASW role behind and performed mission tanking duties for F/A-18s before being prematurely retired, many with almost 10,000 flying hours left in them.  

In the 2010s, a new generation of ASW aircraft was flying. The P-8A Poseidon replaced the P-3C Orion and the MH-60R replaced the SH-60B and SH-60F. As witnessed during multiple ASW exercises, the combination of P-8As and MH-60Rs is nearly unstoppable. However, there is a clear capability gap at the strike group level. As a theater asset, the P-8s are limited in number, and fly missions across the fleet. The MH-60R has tremendous capability, but a limited range. It is not designed for area searching, but localizing a contact or conducting datum searches.

Full Spectrum ASW’s 9th thread is, “defeat the submarine in close battle.” With modern ASCMs and over-the-horizon targeting, the close battle is at least 200 nm from the strike group. The strike group must rely on the theater ASW commander to prosecute any modern submarines. While the strike group is important for the TASW commander to protect, TASW has a limited number of available submarines and P-8s and a multitude of submarines to prosecute. An organic aircraft capable of long-range ASW would enable the strike group commander to defend a larger strike group operating area, freeing TASW assets for threads 5 (Defeat submarines in choke points), 6 (Defeat submarines in open ocean), and 7 (Draw the enemy into ASW “kill boxes”).

Today, the CSG is composed of an aircraft carrier and three to five escorting cruisers or destroyers, which is half the ships of a Cold War-era Carrier Battle Group, and an air wing. The main organic ASW aircraft are MH-60Rs, helicopters with outstanding capabilities, but limited range. There are no organic ASW aircraft in the carrier air wing capable of searching, localizing, tracking, and engaging submarines beyond the submarine’s WEZ.  

MH-60Rs were not designed for area ASW searches and lack the endurance to search 200 nm from their ship. E-2 and EA-18G aircraft support the ASW fight with their capable radar and electronic warfare suites when the submarine is surfaced, or utilizing a periscope or radar. F-18s, C-2s, and MH-60Ss support primarily through visual search for submarines as they fly around the carrier. But searching for submarines visually or when surfaced are hardly ideal tactics.

Reducing the inner screen in order to get a ship out far enough to conduct a search in the outer zone is incredibly risky. A compelling solution is to establish an unmanned sea control squadron (VUS) squadron. These squadrons would provide Sea Combat Commanders with a dedicated medium-range ASW aircraft that would allow commanders to detect, classify, track, target, and engage submarines outside their WEZ. Everything the aircraft needs already exists. Equip a carrier-capable UAV with Forward Looking Infrared cameras (FLIR), AN/APS 153 radar, and ALQ-210 Electronic Support Measures systems from the MH-60R, LINK-16, active, passive, and Multi-Static Active Coherent (MAC) sonar buoys, and arm it with Mk 54 torpedoes and air-launched ASCMs.

This capable aircraft would directly support the Carrier Strike Group and enable it to engage submarines outside their WEZ. The technology exists. In order to protect the carrier today, the Navy needs to continue to close the gaps.

LCDR Jason Lancaster is a U.S. Navy Surface Warfare Officer. He has served aboard amphibious ships, destroyers, and as operations officer of a destroyer squadron. He is an alumnus of Mary Washington College and holds a Master’s Degree in History from the University of Tulsa. His views are his alone and do not represent the stance of any U.S. government department or agency.

Bibliography

Atkins, R.W. “ASW: Where is the Inner Screen?” Naval War College Review, January-February 1982: 48-49.

Barlow, Jeffrey. “The Navy’s Escort Carrier Offensive.” Naval History Magazine, November 2013.

Bernard, Colin. “Nobody Asked Me… But Bring Back the S-3 Viking.” Proceedings, January 2018.

Byron, John. “The Victim’s View of ASW.” Proceedings, April 1982.

Cote, Owen. The Third Battle of the Atlantic: Innovation in the U.S. Navy’s Silent Cold War Struggle with Soviet Submarines. Newport, Rhode Island: Naval War College Press, 2012.

Foggo, James, and Alarik Fritz. “The Fourth Battle of the Atlantic.” Proceedings, June 2016.

Friedman, Norman. “World Naval Developments: More Than a Tanker?” Proceedings, October 2018.

Frigge, William. “Winning Battle Group ASW.” Proceedings, October 1987.

Metrick, Andrew. “(Un)Mind the Gap.” Proceedings, October 2019.

Middleton, Drew. “U.S. AND ALLIED NAVIES STARTING MAJOR TEST TODAY.” New York Times, August 1, 1981: 1.

Naval History and Heritage Command. “Dictionary of American Naval Aviation Squadrons Volume 2.” The History of VP, VPB, VP(H) and VP(AM) Squadrons. Edited by Naval History and Heritage Command. Naval History and Heritage Command. n.d. https://www.history.navy.mil/research/histories/naval-aviation-history/dictionary-of-american-naval-aviation-squadrons-volume-2.html (accessed May 28, 2020).

Shugart, Thomas. “Build All-UAV Carriers.” Proceedings, September 207.

Stavridis, James. “Creating ASW Killing Zones.” Proceedings, October 1987.

Sternhell, Charles, and Alan Thorndike. OEG Report No 51: Anti-Submarine Warfare in World War II. Washington DC: Navy Department, 1946.

Toti, William J. “The Hunt for Full Spectrum ASW.” Proceedings, June 2014.

Voss, Philip. “Battle Force ASW: M3.” Proceedings, January 1989.

Wedewer, Harry. “Scout from the Sea.” Proceedings, September 1999.

Featured Image: An S-3 Viking and A-6 Intruder from the USS John F. Kennedy (CV-67) fly over a Soviet Foxtrot class diesel submarine. (U.S. Navy photo)

Finding New Ways to Fight, Pt. 1

How the Mad Foxes of Patrol Squadron FIVE are harnessing their most powerful resource – their people – in an effort to cut inefficiencies and improve productivity.

By Kenneth Flannery with Jared Wilhelm

The U.S. Military Academy’s Modern War Institute recently published a thorough primer by ML Cavanaugh on what it means to drive innovation in the military. The most important takeaway was the large difference between the simple buzzword “innovation,” and the people who actually do the dirty work of driving positive change – oft-cited as “innovation”– within the force: “defense entrepreneurs.” This series focuses on an operational U.S. Navy Maritime Patrol Squadron that is full of defense entrepreneurs, and how their unit is taking the “innovation imperative” from on high and translating it to the deckplate level. Part 1 focuses on the “Why? Who? And How?”; Part 2 reveals observed institutional barriers, challenges, and a how-to that other units could use to adapt the model to their own units. 

The Innovation Imperative

Today, the U.S. Navy remains the most powerful seafaring force the world has ever known, but there is nothing destined about that position. To maintain this superior posture, we must find leverage that allows us to maintain an edge over our adversaries. One of our most powerful levers in the past has been our economy. We were once able to maintain supremacy simply by outspending our rivals on research, development and sheer production. While the United States still has the largest military budget of any nation, that budget is increasingly stretched to counter threats in a dizzying array of locales to include the South China Sea, Arabian Gulf, or even an increasingly vulnerable Arctic. Additionally, the rest of the world is catching up economically. Some assessments indicate that China will have the largest economy in the world by 2030 and they are already producing their own domestically-built aircraft carriers. It isn’t just China on our economic heels; by 2050 the United States could have slid to third place behind India as well. Finally, our adversaries’ continual embrace of technological theft and espionage involving some of our most expensive proprietary platforms has shrunk the technological gap that the U.S. enjoyed for multiple decades. These realities make it clear that the U.S. must find a new way to counter opponents besides technological advantage.

Much like the Obama administration’s “Pivot to Asia,” the Department of Defense is experiencing what some might call a “Pivot to Innovation.” Former Secretary of Defense Chuck Hagel’s “Defense Innovation Initiative” and Third Offset Strategy both signal a reinvigorated focus on maintaining and advancing our military superiority over both unconventional actors and near-peer competitors alike. 

In alignment with Chief of Naval Operations Admiral John Richardson’s intent, VP-5 is investing time and manpower in the idea that that new counterweight will be the innovative ideas of our Sailors. Just as nuclear weapons and advancements like stealth and Global Positioning Systems kept the U.S. military on top during the conflicts of the Cold War and Post-Cold War eras, it will be our ability to rapidly assess challenges and implement solutions that will guarantee our security in the future. This will require a reimagining of how we currently operate and how we are organized. Our squadron believes the key to this revolution lies with its junior enlisted and junior officer ranks.

Tapping the Innovative Ideas of the Everyday “Doers”

VP-5 is taking a multi-pronged approach to molding an innovation-friendly climate to best tap the ideas of those accomplishing the mission on a daily basis. Patrol Squadron FIVE (VP-5) is currently experimenting with a dedicated Innovation Department in our command structure, but this isn’t the first time that the squadron has embraced change to maintain the technological and fighting advantage over adversaries. The unit is based at the U.S. Navy’s Master Anti-submarine Warfare facility at Naval Air Station Jacksonville, FL, where we became the second squadron Fleet-wide to transition from the P-3C Orion to the P-8A Poseidon aircraft. This successful transition was based on new training and simulation technologies, but also on a rich history that spans from our founding in 1937 to involvement in World War II, Kennedy’s blockade of Cuba during the Cold War, the Balkan Conflict, and our recent involvement in the Middle East. Throughout this time, we have used no less than five different types of Maritime Patrol Aircraft.

VP-5 Mad Foxes
The VP-5 Mad Foxes. Courtesy Ken Flannery

Just as the transition in 1948 from the PBY-5A to the PV-2 brought new tools to the squadron’s warfighting capabilities, today we are augmenting the new technologies of the P-8A with a change to our organizational structure and business practices. A traditional operational naval aviation command administers a standard set of departments including Operations, Training, Safety/NATOPS (Standardization), and Maintenance. By implementing a new Innovation Department led by a warfare-qualified pilot or Naval Flight Officer lieutenant (O-3), VP-5 seeks to elevate the innovation construct to a position alongside the traditional departments required for squadron mission accomplishment. In addition to the lieutenant department head, the Innovation group is staffed by an additional lieutenant and a Senior Chief. Its mission statement reads:

“Lead Naval Aviation in accomplishing our mission by sustaining a culture based on process improvement and disruptive thinking. The force that knows the desired outcome, measures progress in real time, and adapts processes to overcome barriers has a sustainable advantage over adversaries who tolerate their deficiencies. Similarly, the force that can innovate transforms the battlespace to their advantage.”

The establishment of the Innovation Department sends a strong signal to the department heads and the senior enlisted that innovation is a priority, but it may not necessarily trickle down to the average junior enlisted Sailor that VP-5 is a different type of squadron. To ensure the culture reaches everyone, we have implemented large “Innovation Whiteboards” throughout the squadron and encourage all members to post ideas and suggestions. Sailors can see what others have posted and leave reactions of their own. Similar to the “CO’s Sticky Note Board” on the USS Benfold (DDG 65), the ideas written on the whiteboards are then compiled for further action by the Innovation Department.

Whether an idea has been generated via a whiteboard or suggested by means of a more traditional route, the next step in the process is to create a “Swarm Cell.” Swarm Cells are small groups of people that aim to rapidly implement solutions to the problem being addressed. These groups follow a predetermined set of procedures that begin with specifying the desired output. Starting with a clear description of the end result discourages the Cell from veering off course or diluting their product with superfluous features that do little to help the original problem. The Swarm Cells then move to address the actual problem or process for which they were created, all the while making sure that their efforts lead them toward the desired output. Next, the Cells measure their progress to decide if the desired output has been achieved. From there, the members of the group can choose to share their knowledge or revisit their solutions if they have determined that they have not met their output goals.

These Swarm Cells are not on an innovation island. The squadron strives to provide support and guidance for those working to realize their ideas and provides each Swarm Cell with an Innovation Accelerator. This Accelerator may be an official member of the Innovation Department, but is not necessarily so. If the Swarm Cell is like the train conductor, deciding the destination and exactly how fast to get there, the Innovation Accelerator is the train track, allowing room for minor deviations, but keeping the train on course to its final goal. Accelerators need not be intimately involved with the minutiae of their Swarm Cells, and as such may be facilitating two or three different Cells concurrently. By asking simple questions the Accelerator can refocus the team:

1. Has the Cell outlined a clearly defined output?
2. Is the Cell working to achieve that vision, or have they allowed distractions to creep in?
3. Are they continually measuring their progress along the way?

Again, in VP-5 innovation belongs to everyone. Sailors of all ranks and pedigrees are encouraged and expected to turn a critical eye to established procedures in an effort to push our squadron into the twenty-first century. However, change for the sake of change is not one of our objectives. To guard against this, the product or design is subjected to an internal Shark Tank once each Swarm Cell is sufficiently satisfied with their work. These Shark Tank events are open to all hands and are designed to prod for weak spots in the proposal and introduce the idea to the whole team. The Swarm Cell’s program or improvement is critiqued from every angle to determine its overall benefit and structural integrity. These sessions are designed to be thorough in order to weed out underdeveloped initiatives or those that may not provide a quantifiable benefit. If a program passes muster, it continues in whatever form is appropriate, whether that is a new or revised squadron instruction or perhaps a meeting further up the chain of command.

Meaningful Results

Our modest foray into innovation has already begun to bear fruit. One of the most promising results of the innovation process has been the development of a dedicated command smartphone application called Quarterdeck. What started as a search for a better way to communicate has blossomed into a robust “app” which boasts capability far beyond that which was initially envisioned. Currently available on the Droid and Apple App stores, the application meets or exceeds DoD information assurance requirements and includes features like flight schedule postings and peer-to-peer instant messaging, among many others. Thanks to motivated junior officers who attended the 2016 Aviation Mission Support Tactical Advancements for the Next Generation (TANG) at Defense Innovation Unit Experimental (DIUx) in Silicon Valley, the Adobe Company is now conducting market research, has shown interest in acquiring the hosting rights for the app, and is currently developing a professional version based on the VP-5 prototype.

The application developed by the Mad Foxes’ Innovation Department. (Courtesy Ken Flannery)

Another of our most promising innovation programs appeared to be headed toward realization before being dismissed due to concerns about running afoul of the Program Management Aviation (PMA) office. The plan was to implement an Electronic Flight Bag (EFB) to replace the existing system of paper flight publications. This innovation would use tablet computers and digital flight publication subscriptions to save each squadron approximately $17,000 annually. PMA is currently developing a parallel program, but the estimated fleet delivery date was still at least a year away at the time our project was initiated. Our program would be able to deliver tablets within months. Every detail of the program had been meticulously researched, and drew heavily upon long established, similar programs used by the airlines.

The EFB program was widely supported among VP-5 junior officers, Fleet Replacement Squadron instructors, our own CO and XO, reserve unit squadrons manned by commercial airline pilots, and even had the interest of Commander, Patrol and Reconnaissance Group (CPRG). Unfortunately, information security concerns rooted in a risk averse culture combined with the lack of official approval from higher authorities halted the project prior to purchase. Even though our organic EFB proposal was not accepted, our efforts to address the issue sparked broader interest and pressured PMA to move up its timeline. It is a testament to the power of this innovation process that it could conceive and develop a product that rivaled a parallel effort of the standard acquisition pipeline and a regular program office. Tablets are now forecast to be delivered to the fleet by the end of this year.

Other achievements include a redesign of the Petty Officer Indoctrination course, a Command Volunteer Service Day suggested, planned, and led by an E-3, and an “Aircrew Olympics” which pitted two combat aircrews against each other in a variety of mission-related tasks. These ideas were all generated and executed from within the junior enlisted ranks.

Conclusion

We do not intend to suggest that a smartphone application or volunteer service holds the key to dismantling Kim Jong-Un’s nuclear program or China’s grip on the South China Sea. What we are trying to do is develop a framework in which creative solutions can be cultivated. Not every idea is going to be a grand slam, but before you can hit a grand slam you have to get people on base. The most important point we’ve learned is that the ideas are out there, we can cultivate them, and we’ve so far proven that we have “defense entrepreneurs” that can see these innovative ideas through from the white boards to implementation.

Formalizing an innovation process within a squadron is a new way of doing things and this new approach has been met with a variety of challenges. From stubborn, bureaucratic restrictions to “innovation stagnation,” the innovation construct at VP-5 has faced hurdles along the way and been forced to adapt. In the next installment of this series, we will explore some of these obstacles and describe the ways in which the Innovation Department has evolved as a result.

Lieutenant Ken Flannery is a P-8A Poseidon Instructor Tactical Coordinator at Patrol Squadron FIVE (VP-5). He may be contacted at [email protected].

Lieutenant Commander Jared Wilhelm is the Operations Officer at Unmanned Patrol Squadron One Nine (VUP-19), a P-3C Orion Instructor Pilot and a 2014 Department of Defense Olmsted Scholar. Hey may be contacted at [email protected]

Featured Image: A P-8 assigned to VP-5 (U.S. Navy photo)