Tag Archives: Infrastructure

Undersea Cables and the Challenges of Protecting Seabed Lines of Communication

Seabed Warfare Week

By Pete Barker

Introduction

For centuries, the sea has enabled trade between nations. Shipping continues to underpin international commerce today. But there is another unseen contribution that the oceans make to the current global order. Deep below the waters, travelling at millions of miles per hour, flickers of light relay incredible quantities of information across the world, powering the exchange of data that forms the internet. From urgent stock market transactions to endless videos of cats, undersea cables support many aspects of twenty first century life that we take for granted. A moment’s thought is sufficient to appreciate the strategic importance of this fact. As a result, any discussion of future seabed warfare would be incomplete without a consideration of the challenges presented by ensuring the security of this vital infrastructure.

Strategists have neglected submarine cables. Whilst topics such as piracy and cyber attacks on ports frequently arise in discussions on maritime threats, cables have not always been as prominent. Some authors have identified the potential risks (such as this 2009 report for the UN Environment World Conservation Monitoring Centre), but these works have not always received the attention they deserve.

There are signs that this is changing. A recent report for the Policy Exchange by Rishi Sunak, a member of the UK Parliament, gained significant media coverage. It was not ignored by senior military figures. A few weeks later, the United Kingdom Chief of Defence Staff, Air Chief Marshall Sir Stuart Peach, gave a speech to RUSI, where he said “there is a new risk to our way of life that is the vulnerability of the cables that crisscross the seabed.” The same month, Mark Sedwill, the UK National Security Advisor, gave evidence that “you can achieve the same effect as used to be achieved in, say, World War Two by bombing the London docks or taking out a power station by going after the physical infrastructure of cyberspace in the form of internet undersea cables.”

This is a present threat, not just a hypothetical one. In late 2017, the NATO Submarine Commander Rear Admiral Lennon of the United States Navy revealed “We are now seeing Russian underwater activity in the vicinity of undersea cables that I don’t believe we have ever seen. Russia is clearly taking an interest in NATO and NATO nations’ undersea infrastructure.” The challenge is to maintain this focus and turn a passing spotlight into seriously considered policy.

Understanding Submarine Cables

Vast technical expertise is not necessary to understand why submarine cables are so important. A basic awareness of their construction and use is sufficient. The internet is, at its most basic level, a transfer of information. With the advent of cloud computing, the simple act of storing a file means that data travels from a user on one continent to a server halfway around the world. Although popular imagination sees this happening by satellite relay, in over ninety five percent of cases the physical means for moving this information is a series of light pulses, travelling along a fiber optic cable laid over land and under the sea. These cables are thin silica tubes embedded in a protective cladding, approximately the size of a garden hosepipe. The capacity of these cables to transmit data is ever-increasing. Recent experimental cables have been reported as being capable of transmitting up to one petabyte of data per second. To add some perspective, a petabyte of storage would allow you to store enough music that you could play it continuously for two thousand years.

Submarine cables are mainly private assets. Although expensive (an intercontinental cable is cited as costing between $100 million to $500 million), they are significantly cheaper than the satellite alternatives. In addition to the ownership by telecommunications companies, internet companies, including Facebook and Google, now heavily invest in submarine cables. These cables are laid by specialized ships, capable of carrying up to 2000km of cable, which can be laid at a rate of up to 200km per day. In offshore areas, the cable is laid directly onto the seabed. On the continental shelf, a plough is used to bury the cables and provide some protection from accidental damage, usually caused by anchors.

Attacks on Submarine Cables

These cables are vulnerable to deliberate attack in many ways. The most basic method of attack is simply to break the cable. Their construction means that this task presents little difficulty either mechanically or through the use of small explosive charges. Finding these cables is equally simple. The location of the cables is widely promulgated in order to prevent accidental damage but there is little to stop adversaries from exploiting this information for nefarious ends. Whilst there are a network of repair ships around the world, it is obvious that any service denial cannot be instantly fixed. Multiple attacks, particularly on alternative cable routes, would quickly exacerbate problems and could be organized relatively easily. As the Policy Exchange report highlighted, there is no need to actually proceed to sea to attack the cable network. The landing stations, locations where the submarine cables come ashore, are both well-known and lightly protected. This is a potent combination, particularly when cables are located in fragile states and presents additional challenges when assessing the security of the network.

Cables can also be attacked in non-physical ways. Although shrouded in classification, intelligence analysts have openly stated in national newspapers that the U.S. submarine, USS Jimmy Carter, may have the capability to “tap” undersea cables and obtain the data being transferred without breaching the cable. There are concerns that the Russian Yantar vessels share similar capabilities and these are explored in depth in a recent post by Garrett Hinck. Military planners must understand that defending the submarine cable network might not mean simply preventing physical attack but also ensuring the integrity of the data being transmitted.

Legal Protections

Legally, the status of undersea cables have little protection, particularly when they are outside the jurisdiction of any state and lie on the seabed of the high seas. This is certainly the conclusion of the two major legal studies that have addressed the problem. Professor Heintschel von Heinegg considered submarine cyber infrastructure in a chapter of a NATO Cooperative Cyber Defence Centre of Excellence publication in 2013 and concluded that “the current legal regime has gaps and loopholes and that it no longer adequately protects submarine cables.” Similarly in 2015, Tara Davenport of Yale Law School examined the same topic and stated “the present legal regime is deficient in ensuring the security of cables.” The peacetime protection of submarine cables is a grey area in the law and this provides an additional challenge when assessing how cables should be protected.

The legal status of submarine cables in times of war is equally unclear as observed recently in a post for the Cambridge International Law Journal and another post on Lawfare. There is no authoritative work examining the status of submarine cables in armed conflicts, but even a brief overview is sufficient to highlight the problem. The first question is whether an attack on a submarine cable (outside of a state’s jurisdiction) qualifies as an “armed attack” for the purposes of article 51 of the UN Charter, permitting the use of force by a state in self-defense. The Tallinn Manual on the Law Applicable to Cyber Operations takes the position that the effects of a cyber operation must be analogous to those resulting from a “standard” kinetic armed attack. Simultaneously, it acknowledges that the law is unclear as to when a cyber operation qualifies as an armed attack. Would the consequences of a submarine cable breach be sufficiently serious to raise it to the level of an armed attack? It is difficult to provide a definitive answer but if the answer is ‘no’, then states would not be entitled to use military force to defend submarine cables in the absence of an existing armed conflict. With regard to illicit surveillance of cables, the Tallinn Manual clearly concludes that intelligence gathering from submarine cables would not amount to an armed attack.

The ability of States to target submarine cables during times of war is also open to discussion. Objects may be targeted under international humanitarian law if they make an effective contribution to military action due to their nature, location, purpose, or use and if their total or partial destruction, capture or neutralization offers a definite military advantage. The best example of the extent of military reliance on civilian owned and operated undersea cables is contained in a 2010 Belfer Center paper. This records that three of the largest cables between Italy and Egypt were severed in late 2008. As a result, U.S. UAV operations in Iraq were significantly reduced. Submarine cables simultaneously transmit critical military and civilian data. Whilst the presence of the former means that they may be targeted, this is always subject to the principles of proportionality and precautions in attack, designed to minimize the harm to the civilian population. Due to the range of data carried by cables and the number of services that are likely to be affected, these assessments may be very difficult to carry out. An understanding of when cables can be targeted is likely to be highly fact sensitive and it is entirely possible that states will take different views on when this is permissible.

Strategies for the Undersea Cable Problem

Clearly, a protection strategy for undersea cables cannot depend solely on military action. It is impossible to protect the entire cable network given its global expanse. The geographic area requiring protection is simply too large, even for the most powerful of navies. The natural consequence of this conclusion is to focus on identifying and intercepting ships and submarines capable of interfering with the cable network. However, the practicalities of this option are not promising. The technology required to tamper with cables is not overly sophisticated. It can be hosted in a wide range of vessels and easily transferred between them. Submarines present additional challenges in monitoring, tracking and interception, requiring the use of satellites, intelligence, and underwater sensors. For a military commander, the task of protecting seabed submarine cables from attack can seem almost impossible.

Global map of submarine cables [click to expand] (Ben Pollock/Visual Capitalist)
Given this conclusion, national strategies may need to focus on alternative methods of safeguarding the exchange of information. One method would be to increase the level of redundancy within the system by laying additional cables. As cables are expensive and most cables are privately owned, additional routes have to be assured of sufficient funding to make them viable. Somewhat ominously, the International Cable Protection Committee (which represents cable owners) states that “most cable owners feel that there is enough diversity in the international submarine cable network.” This might be true if the only threat is from accidental damage. However, this analysis might change with the realistic prospect of deliberate targeting.

The ideal solution would be the existence of a globally accepted international treaty giving protection to submarine cables by prohibiting interference and clarifying the status and protections of cables. It is a solution advocated by a number of the sources previously cited. Given the shared interests of many, if not all states, in securing the submarine cable network, this may not be unattainable. Regulation of these cables outside the territories of states would not involve any restriction on national territorial sovereignty, increasing the chance of multilateral agreement. Unfortunately this opportunity has not been seized by a distracted international community.

Conclusion

Arguably the most important strategic asset on the seabed is the submarine cable network. They present a unique vulnerability that is challenging to protect and subject to an uncertain legal regime. Any analysis of seabed warfare must concern itself with cable protection. The best way to achieve this is the adoption and acceptance of a treaty regime that acknowledges their importance to the modern world. Until this is achieved, military commanders must factor the exceptional challenges of defending these cables into their plans for seabed warfare.

Lieutenant Commander Peter Barker is a serving Royal Navy officer and barrister. He is currently the Associate Director for the Law of Coalition Warfare at the Stockton Center for the Study of International Law (@StocktonCenter), part of the U.S. Naval War College.  He can be contacted at peter.barker.uk@usnwc.edu.
 

This post is written in a personal capacity and the views expressed are the author’s own and do not necessarily represent those of the UK Ministry of Defence or the UK government.

Featured Image: The submersible Alvin investigates the Cayman Trough, a transform boundary on the floor of the western Caribbean Sea. (Emory Kristof, National Geographic)

Port Automation and Cyber Risk in the Shipping Industry

CIMSEC is committed to keeping our content FREE FOREVER. Please consider donating to our annual campaign now so we can continue to provide free content.

By Philipp Martin Dingeldey 

Introduction

To stay ahead of competing ports and technological developments, automation has been heralded as inevitable. Major transshipment hubs and aspiring ports bet their future on automation, which raises the impact  cyber risks could have in the long-run.

Singapore’s Port Modernization

One example of port modernization is Singapore’s Tuas Port Project. To stay ahead of competing ports in Southeast Asia, PSA International and the city state have bet their future on the fully automated port on the western side of the island. The project is set to almost double the port’s current throughput capacity of twenty-foot equivalent units (TEUs) and consolidate all its container operations by 2040.

Singapore’s port is ranked second, behind Shanghai’s mega port, by total TEUs handled. Nevertheless, Singapore’s port is the world’s busiest transshipment hub, and therefore immensely important to global supply chains. The port’s volume growth of 6.4 percent for the first half of 2017 indicates that its investments in modernized berths and joint ventures with liners paid off.

While this is great news for the short term, container vessels on Asia-Europe trade routes will inevitably increase in size, requiring higher handling efficiency to achieve fast turn-around times. By the end of 2018, ultra large container vessels (ULCVs) are expected to gain a share of 61 percent of total capacity, pushing established hubs like Singapore to automate its terminals to stay relevant.

At the same time, next generation container vessels will not only be bigger, but also increasingly automated and even autonomous. As ports and the shipping industry are integral parts of global and regional supply chains, their automation and technological modernization raises the impact and potential of cyber risk.

How Good is Automation?

For Singapore’s port, automation is seen to not only strengthen its position as a transshipment hub well into the future, but also helps it keep up with technological developments and industry trends.

The shipping industry has generally been slow in adapting new technologies, due to its conservative nature and the large number of players involved. Currently, only a fraction of global container volume is handled by fully automated container terminals. In 2016, it was estimated that only 4-5 percent of container volume will be handled by fully automated terminals once ongoing projects were completed. Nonetheless, industry pressure and competition have heightened the need for ports to invest and automate, indicating that the number of automated terminals will increase.

Automated terminals allow ports to handle containers more efficiently by using operating systems to plan storage in accordance with collection and transshipment times. This reduces unnecessary box moves, shortens cycle times, and enables consistent and predictable throughput numbers.

Fully-automated terminals have the advantage of low operating costs and reliable operations, but require higher upfront costs, longer development, offer only low productivity increases at peak times, and have the general difficulty to fully automate a working terminal. On the other hand, semi-automated terminals offer the possibility for greater productivity increases at peak times, are generally understood to have the best overall productivity with less upfront costs, but require higher operating costs and are inconsistent when it comes to handling ULCVs.

While full automation gives large ports like Singapore’s the advantage of reliable, full-time operations at low operating costs, it requires long development times to fix bugs and offers only gradual productivity increases at peak times. On top of that, full automation also increases their vulnerability to cyber risks. This is due to the use of technologically advanced and networked systems.

The investment threshold to enter automation for ports is high, while not necessarily offering major increases in productivity. What automation does offer major port hubs is better predictability and consistency of container moves per hour. Additionally, automation reduces the room for human error, making operations safer. At the same time, automation reduces the environmental impact since terminals are mostly electrified, giving ports an additional competitive edge in an industry increasingly focused on sustainability.

Cyber Risks

The shipping industry and ports are seen by many insiders as underprepared for cyber threats. Even though major players in the shipping industry have recognized and acted on the risks posed by cyber threats, the majority have been slow to recognize potential business risks. Even though awareness has grown, the need for better information sharing persists. Automation further increases the exposure and impact of cyber threats for ports, highlighting the importance of data and system integrity.

The reality of cyber threats to automated terminals was demonstrated in the “NotPetya” cyber-attack in June 2017. The attack forced Maersk to interrupt operations at multiple terminals worldwide, causing logistical havoc for weeks after the attack. Overall, it cost Maersk roughly US$300 million, even though the attack was not specifically directed at the company. The “lucky hit” against one of the industry leaders showcases that even well-prepared firms can suffer financial losses due to cyber threats.

The difficulty with protecting automated terminals from cyber risks lies with their complexity. These terminals use industrial control systems that translate sensorial data and commands into mechanical actions. The network links between mechanical equipment and sensors are exposed to the same threats as data networks. The complexity is further increased by the months and years it can take to figure out and fix bugs and weaknesses in automated systems. In an automated system, different system components have to effectively work together as one, stretching the time needed to figure out and fix bugs. This involves mainly software issues that have to be fixed while also moving boxes of cargo at the terminal.

While ports have to secure themselves from a broad range of risks, cybercriminals can choose from a number of entry points. For example, external vendors, terminal operating systems, and unaware employees may be vulnerable to phishing attacks. Operational systems and data networks are not always up-to-date or properly secured, allowing criminals to gain comparatively easy access to information. To prevent the ports and shipping industry from most attacks, regular operating system updates, stronger passwords, secure satellite connections, resilience exercises, information sharing, and employee awareness campaigns should be practiced.

On top of that, modern ships bear the risk of spreading viruses onto port systems simply via Wi-Fi or other data networks. Industrial control systems are not designed with cyber risks or active network monitoring in mind. This is especially true for ships’ control systems, but can also affect the system components of ports.

Nevertheless, this is only addressing the technical side. The human factor still plays a major role in mitigating cyber risks. Personal details of ship crews can still be easily accessed, making them more vulnerable to social engineering via phishing or other techniques, unknowingly granting access to systems.

Human factors can take the form of criminals, terrorists, competitors, disgruntled employees, and more. Workers at mostly manual terminals, for example, generally do not like automation because it makes their jobs largely redundant. To reduce the chance for cyber threats stemming from or aided by disgruntled employees, ports can offer training and job guarantees to their workforce to make the transition to automation more incremental.

Port authorities, registries, and all major organizations in the shipping industry are increasingly aware of cyber threats and are responding through raising awareness or offering training courses. These are simple steps to better protect information and navigation systems on board ships. For example, BIMCO, the world’s largest international shipping association, made cyber security an important issue for the shipping industry three years ago via an awareness initiative. The association has further advocated the need for guidelines to evolve with the threats, launching the “Guidelines for Cyber Security Onboard Ships” in July 2017, which was endorsed and supported across the industry.

In addition, the Liberian ship registry started a computer-based two-hour cybersecurity training program in October 2017, offering a comprehensive overview of cybersecurity issues aboard ships. Nevertheless, it is unlikely that these courses and campaigns are enough to protect the industry. While it is a step in the right direction, more needs to be done through regulations.

Conclusion and Policy Recommendations

Since 2016, the International Maritime Organization (IMO) has put forward voluntary guidelines regarding cyber risks. Only after 2021 does the IMO plan to enforce a set of binding regulations on cybersecurity. This might be too late for many companies in the industry. Shipping companies should not wait until 2021, but should begin now to implement simple measures, like using firewalls and stronger passwords, to deter criminals from trying to exploit current weaknesses.

Further, even though the IMO adopted guidelines on maritime cyber risk management into the International Safety Management Code this year, ports and the shipping industry still need to establish a stronger culture on cybersecurity.

Major shipping hubs are part of large and less resilient supply chains, which are essential for regional and international trade. These supply chains depend on a small number of key ports, which are vulnerable to shocks from other ports. To make supply chains and port hubs more resilient to cyber risks, the shipping industry as a whole will have to adjust and prepare.

Companies will have to work together and share information on previous or ongoing attacks, so that experiences and best practices can be shared directly. Unfortunately, this has been difficult to achieve due to worries about how competitors may use the shared information. Singapore has set up the Port Authorities Focal Point Correspondence Network to further the exchange of information on past and current incidents. It remains to be seen if this network has worked to encourage the sharing of information.

Ports are logistical hubs where many companies compete for business, making information sharing naturally difficult. Currently, port security is based on the International Ship and Port Facility Security (ISPS) Code, which is heavily focused on the physical aspects of security. In order to make cyber risks a much more important issue for port security, the whole sector needs to step up and make it a priority.

Cyber risks are not just a technological matter, but require adequate awareness and planning to strengthen a port’s resilience. Training employees actively in security protocols and procedures with information systems is one way of achieving this. At the same time, ports need to engage in contingency and scenario planning to be better prepared should an attack occur. On top of all this, national bodies (e.g. institutes of standards) need to give better guidance on security testing and planning for ports, which should be supplemented by binding guidelines on reporting and information sharing mandated by global bodies like the IMO.

Philipp Martin Dingeldey is a Research Analyst with the Maritime Security Programme at the Institute of Defence and Strategic Studies (IDSS), S. Rajaratnam School of International Studies (RSIS), Nanyang Technological University (NTU), Singapore. For questions and follow-ups he can be reached at research.pmdingeldey@gmail.com.

Featured Image: Port of Singapore (XPacifica/Gettyimages)

Highlighting Catastrophic Threats

 

Catastrophic Threats

Earlier this month the Federation of American Scientists held its annual Symposium on Catastrophic Threats and Awards Ceremony at the National Press Club in Washington, D.C.  The date – November 9th – was chosen to coincide with the November U.S. presidential election and provide a forum for policy recommendations to a newly elected administration.  The symposium provided a wonderful venue for the discussion of the most-pressing threats facing the U.S.  Panelists called for steps to prevent catastrophic events, and increase response planning and preparation to those possible dangers.  These recommendations were published in a booklet, available electronically.

Because science plays such a critical role in underlying U.S. policies, from disaster preparation to farm subsidies, leaders must be armed with a science-based knowledge of the risks and opportunities policy choices present.  To this end, the symposium featured moderated discussions of four-to-five distinguished experts, grouped into related threat-areas: Nuclear Weapons; Biological, Chemical, Conventional, and Cyber Threats; and Energy and Infrastructure.

The session devoted to nuclear threats reiterated the group’s long-held goals of stockpile reduction and eventual total disarmament.  Senior FAS Fellow Charles Blair emphasized that the U.S. must start differentiating violent non-state actors in terms of their ability to pose a bona fide radiological or nuclear (R/N) threat, rather than treating all threats as possessing equal capabilities.  Proper identification of the threat will allow targeted policies and avoid wasteful expenditures of time and resources on groups that do not pose significant R/N threats.  Another FAS Fellow, Dr. Robert Norris, proposed that a fundamental alteration of Cold-War era nuclear doctrine is a prerequisite for arms reduction, with a minimal deterrence mission the only necessary use for the U.S. nuclear arsenal.

Lengthy discussions of biological-, chemical-, and conventional-weapons threats highlighted the need for increased accountability and controls, which are scarcer outside the United States.  Perhaps the most significant threat in the chemical and biological weapons fields stems from the fact that there is a growing dearth of technical experts in the former Soviet Union to handle existing stockpiles of agents. Without the incentives of prestige and financial rewards available during the years of the thriving Soviet weapons programs, even fewer personnel with the requisite training will be available to handle and safeguard stockpiles in the future. 

Those barrels full of chemicals looks safe to me!

The energy and infrastructure panel spoke in favor of nuclear energy with reminders that natural gas does not eliminate greenhouse gas production.  They also reminded attendees that the U.S. will likely import oil from Canada long after it frees itself of overseas imports.  Dr. Steven Koonin, of NYU, called for increased funding for alternative energy research and a reorganization of the Department of Energy to enable better understanding of markets and business policies.  Notably absent from the discussion was an in-depth assessment of the impact that the Fukushima Daiichi incident will generally have on nuclear power endeavors in the future, and in Japan specifically.

One subject that stood out for immediate attention is developing a framework for rules and definitions in cyber security and warfare.  The United States is ill-prepared to respond to a major denial of service attack aimed at critical infrastructure, especially in the cyber realm.  Dr. Kennette Benedict, from the Bulletin of Atomic Scientists, explained that the field lacks clarity on responsibilities and acceptable scope for security.  Increasingly sophisticated attacks on private and public networks demand a robust effort to ensure reliability and freedom from interference.  While the private sector has tremendous incentives to shore up defenses against intrusion and would benefit from federal support in defending network architecture, transparency and trust are in short supply at this time.

As an illustration, were a major electrical grid or other critical infrastructure component attacked, resulting in losses of life and industrial output, how would the United States respond?  Would this be defined an act of terror an act of war?  Would the response be treated like a natural disaster?  No clearly defined roles have been established for preventing and/or prosecuting major acts of cybercrime.  No public forum exists to discuss the norms associated with cyber warfare, define acceptable measures that may be taken against individual or state-sponsored actors, or set limits to intrusion that occurs under the guise of security.

We can’t be hacked if we unplug it from the grid, right?

Not only will clarifying these issues benefit the private sector, but transparency will also pay major dividends in foreign policy negotiations.  As with any new weapon, uncertainty will lead to mistrust and fear, which often precipitate wasteful arms races.  U.S. leaders must come to the table with candor in order to develop policies that promote security with minimal interference for all.  A massive blackout or disruption of services would be devastating for everyone; CIMSEC could be the group that suggests a way forward.

More information about the event can be found at the Federation of American Scientists’ website: www.fas.org

LT Drew Hamblen is a naval aviator in the U.S. Navy and graduate of Georgetown University. The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy.