Rules of Engagement and Undersea Incursions: Reacting to Foreign Submarines in Territorial Waters

This article is part of a series that will explore the use and legal issues surrounding military zones employed during peace and war to control the entry, exit, and activities of forces operating in these zones. These works build on the previous Maritime Operational Zones Manual published by the Stockton Center for International Law predecessor’s, the International Law Department, of the U.S. Naval War College. A new Maritime Operational Zones Manual is forthcoming.

By LtCol Brent Stricker

“We have attacked, fired upon, and dropped depth charges on a submarine operating in defensive sea area.”–USS Ward (DD-139) December 7, 1941, Pearl Harbor, Hawaii.

Submerged foreign submarines in a nation’s territorial sea pose a unique situation that is inconsistent with the rule of innocent passage. Under certain circumstances, their concealed presence without the consent of the coastal state could be considered a threat to the territorial integrity or political independence of the coastal state. A modern submarine fulfills its peacetime mission and combat role while submerged. If the coastal state detects a submerged submarine in the territorial sea, it is faced with a dilemma on the appropriate measures that can be used to force the submarine to surface or leave the territorial sea. The recent sabotage of the Nord Stream pipeline and the vulnerability of the world’s vast subsea network of electricity and network cables highlights the danger posed by unknown submersibles.

Norway and Sweden have faced this problem for more than 50 years from suspected Soviet and later Russian submarines. Both countries have used warning shots in an attempt to signal the submerged contacts to surface or leave the area. Use of explosives in this manner, however, could be misinterpreted as an attack on the submarine. Balancing the protection of territorial sovereignty with avoiding escalation poses a predicament.

Innocent Passage

All ships, including warships, enjoy the right of innocent passage through the territorial seas of a coastal state without prior notification or consent. This rule was discussed in detail in the Corfu Channel case before becoming codified in the United Nations Convention on the Law of the Sea. The Corfu Channel is a narrow passage between Albania and the Greek island of Corfu. The United Kingdom’s Royal Navy was confronted by Albanian coastal artillery fire when transiting the channel in May 1946. In October 1946, two Royal Navy destroyers transited the channel while at action stations to be prepared to respond to coastal artillery fire or other threat posed by the Albanians. These destroyers struck naval mines laid in the channel. As a result, in November 1946, the Royal Navy conducted minesweeping operations to clear the channel.

The United Kingdom brought a case against Albania in the International Court of Justice seeking reparations for the loss of life and damages to its warships. The ICJ upheld the Royal Navy’s right of innocent passage through Albanian territorial waters, rejecting Albania’s arguments that the ships were not in innocent passage because they were sailing in formation and the sailors on board were at action stations. Rather, the Court found that sailing in formation and running at action stations were appropriate defensive measures. The Court found that the minesweeping operation was inconsistent with innocent passage and a violation of Albanian sovereignty, rejecting the British arguments that this was a measure of “self-protection.” Corfu Channel illustrates how innocent passage may include defensive measures. The case has long presented a conundrum because it determined that states are entitled to innocent passage, yet are restrained from taking defensive action, such as minesweeping, to exercise their right.  

Innocent passage is governed by the United Nations Convention on the Law of the Sea (UNCLOS). Norway and Sweden are signatories to UNCLOS, and the United States, while not a signatory, recognizes much of it as customary international law. UNCLOS codified the right of innocent passage in Articles 17-21. Innocent passage must “not be prejudicial to the peace, good order, or security of the coastal state.” A foreign vessel’s passage is not innocent if its actions constitute “any threat or use of force against the sovereignty, territorial integrity or political independence of the coastal State.” A special provision for submarines, Article 20, requires submarines engaged in innocent passage to “navigate on the surface and to show their flag.”

A coastal state that discovers an unknown submerged contact in its territorial sea is faced with a dilemma. Examples from Norway and Sweden of submerged contacts lingering in their territorial waters are inconsistent with the definitions of both passage and innocent passage. The coastal state, under Article 25 of UNCLOS, may “take the necessary steps in its territorial sea to prevent passage which is not innocent.” There is no agreement on exactly what steps are deemed necessary. Furthermore, these measures are limited when applied to sovereign immune warships. Thus, while an unknown submerged contact is not exercising innocent passage, it is unclear what measures a coastal state can apply to exercise its rights under Article 25. Articles 30 and 31 of UNCLOS allow a coastal state to require the submerged contact to leave its territorial sea and places liability for any damages on the flag state of the submerged contact. Armed force against an unknown submerged contact, however, may only be used in self-defense under Article 51 of the UN Charter. In most cases, use of force would not be justified simply because the submarine is submerged or refuses to surface and the mere presence of the submarine does is not tantamount to an “armed attack.” This determination is complicated when the submerged contact’s intensions cannot be ascertained.

Norway

Norway has been dealing with suspected intrusions by foreign submarines for more than 50 years. These contacts in Norwegian fjords are difficult to track due to the mixing of fresh water runoff and salt water in the fjords which can provide cover for submarines from sonar detection. Acoustic detection is complicated by the fjord’s subsurface structure, currents, and civilian surface traffic. For two weeks in November 1972, Norwegian vessels aided by Norwegian and British aircraft attempted to locate and force to the surface an unknown underwater contact, believed to be of Soviet or Warsaw Pact origin, in the Sogne Fjord using depth charges. Hand grenades and then depth charges were used to signal to the underwater contact to surface. Ultimately, the Ministry of Defense was given permission to sink the contact if it did not surface and identify itself.

For the Norwegians to use force against the unknown submerged contact, they would need to articulate how an otherwise benign submerged vessel posed an imminent threat that would justify the use of force in self-defense. Violating Article 21 of UNCLOS in and of itself does not constitute such a threat of imminent attack, even if the submarine is engaged in an intelligence or reconnaissance mission. Such a mission may be illegal under Norway’s domestic law, but it does not imply an illegal use of force, let alone an armed attack.

In limited situations, the location and duration of the unknown submarine in territorial waters could be considered as a threat, as noted in the radio transmission of the USS Ward when it engaged an unknown submarine in a defensive sea area. The Norwegians would be more concerned by the location of the unknown submersible if it were in such an area or in close proximity to another sensitive military exercise or base. The longer the submarine remained at depth, the greater potential one might consider it laying in wait to attack. Nonetheless, the Norwegians employed an escalating use of force in 1972 with attempts to signal with hand grenades and ultimately culminating with firing anti-submarine missiles at the suspected target. The Norwegians were ultimately unable to force the contact to the surface, identify it, or sink it.

Norwegian experiences with unknown submarine contacts continued over the decades. The official Norwegian policy on the use of force remained somewhat ambiguous. In 1983, Brigadier Asbjorn V. Lerheim stated on the use of force, “It is a tough decision, it is still peacetime, and you can’t really destroy a submarine . . . it is not an attack on Norwegian soil.” Norway seems to have adopted a set of measures to escalate the use of force against these intrusions. The first measure is to signal the submarine to surface. If the submarine complies, it would be taken under escort. If not, depth charges would be dropped within 300 meters from the submarine with a two-minute interval to indicate this was a signaling measure, not an attack. If this failed to surface the submarine, Norwegian captains were authorized to attack with depth charges, but torpedoes were prohibited in the attack because of the potential of catastrophic damage to the boat and loss of the entire crew. It is speculated that the anti-submarine missiles fired in 1972 used homing devices and proximity fuses and were not a real attempt to hit the submarine.

Suspected Soviet incursions into Norwegian territorial waters continued as late as 1990. Norwegian authorities received reports of suspected submarines in the summer of 1990 at Skipton, a Norwegian bay twenty-five miles from the Russian border. The area was put under surveillance when, in November 1990, a mini-submarine was observed briefly on the surface. The sea floor was examined and a series of tracks were found that indicated a submersible crawler had been deployed. Similar tracks were discovered elsewhere in Sweden and Norway near military installations. The Soviet Northern Fleet possessed such miniature submarines at the time. It was speculated that the miniature submarine was launched from a nearby mother ship to conduct a Spetsnaz training or reconnaissance mission.

As late as 2021, Norway was subjected to an undersea intrusion by unknown submersibles. The Norwegian Institute of Marine Research operates a network of undersea sensors in northern Norway to monitor the marine environment. It can also be used to monitor submarines in the area. These sensors are interconnected by a series of fiber optic cables. In April 2021, it was discovered that 2.5 miles of fiber optic cable had been cut and stolen. Several of the sensors had been tampered with and moved. The reason for the intrusion is speculative but includes the potential for reverse engineering.

Sweden

Like Norway, Sweden has been troubled by intrusions of foreign submarines in its territorial waters for a similar period of time. Unlike Norway, Sweden has actually caught one submarine on the surface in the infamous “Whiskey on the Rocks” incident in 1981. This incident noted increased intrusions throughout the 1980s that have continued as late as the 2010s. To date, the Whiskey is the only foreign submarine caught on the surface in Swedish territorial waters.

On October 27, 1981, a Soviet Whiskey class submarine, the U-137, was found grounded on a rock in Swedish territorial waters. The Whiskey was an early Cold War diesel electric submarine, not a nuclear-powered submarine. The Swedish Navy contacted the submarine’s captain, Captain Second Rank A. M. Gushchin, who claimed a navigational error. Captain Gushchin claimed he thought he was 20 miles off the Polish coast when the collision occurred. This claim is rather dubious considering the submarine had transited submerged through a “perilous series of narrow straits infested with rocks and islands” before the grounding. The submarine’s grounding within ten kilometers of the Swedish naval base at Karlskrona while a major naval exercise was being conducted was certainly not just a coincidence brought about by a navigational error. Upon inspection, Swedish officials found no problems with the boat’s navigational equipment and noted its logbook had been altered.

The boat remained grounded for eleven days while the Swedish authorities inspected the submarine and questioned the captain. The Soviet Union responded by sending a flotilla of warships that stayed just outside Swedish waters. The Swedish Prime Minister made a shocking announcement on November 5, 1981, that the submarine was suspected of carrying nuclear weapons. The Swedish government made demands to the Soviets before releasing the submarine. However, weather intervened and Sweden released the submarine before these demands were met. The submarine was exposed to gale force winds and was listing 17 degrees. Swedish authorities were concerned that the boat’s battery acid could spill and cause a fire or release chlorine gas that could kill the crew. Swedish authorities stopped the captain’s interrogation and boat inspection, refloated the boat, and the submarine left on November 6, 1981.

Following this incident, the Swedish government released the Submarine Defense Commission Report in 1983, which detailed the history of foreign submarines intruding into Swedish waters. Prior to the Whiskey incident, and even subsequently, critics had claimed these submarine scares were an excuse to increase the Navy’s budget. The report detailed how foreign submarines entered Swedish waters typically one to two times a year in the 1970s before a dramatic increase during the 1980s. These incursions were concentrated around naval facilities such as coastal defense points, ports, sensor networks, and minefields.

The Report and increased submarine intrusions led to a change in Swedish Rules of Engagement (ROE) applicable to submarine contacts. Prior rules prohibited a commander from firing on an unknown contact without authorization from the civilian leadership. The Swedish Navy was only allowed to make contact with the submarine to identify it and escort it out of Swedish waters. The new ROE allowed the submarine to be fired upon without warning. Initially, warning shots were to be used, either through the employment of depth charges or missiles. The ROE were intended to prevent the damage or destruction of the submarine, but the ROE made a distinction on the location and behavior of the contact. If the submarine was located in Sweden’s outer waters, these are waters beyond the internal archipelago to the 12-mile limit, it would be warned and escorted out. If the submarine was found in internal waters, these are waters of Sweden’s internal archipelago, and refused to leave or proceeded further, it could be treated as hostile and force designed to damage or destroy the submarine could be used.

The Swedish ROE may have contributed to their inability to force submarines to the surface. If they employed depth charges or other devices with an eye toward avoiding damaging the detected submarines, the submarines could simply ignore these attempts. There is evidence that the Swedish ASW may have damaged a submarine. In the summer of 1988, eight pieces of unknown foreign submarine rescue equipment were recovered in the Stockholm archipelago. Similar equipment had been recovered in the 1970s and 80s.

The Swedish Navy continued to deal with foreign submarines intruding into Swedish waters throughout the 1980s. The government stopped providing statistics on these incursions in 1987. Subsequent reports have been vague in their descriptions. This may be to avoid highlighting their inability to stop or deter these incursions.

There is evidence that these incursions did occur. The Swedish Navy noted that these incursions have become more sophisticated with the use of multiple submarines, miniature submarines, and divers. The evidence for these incursions comes from sightings, sonar, and magnetic detection from Swedish sensor networks. There has also been evidence of keel marks and track marks on the sea floor similar to the Norwegian miniature submarine event noted above.

The miniature submarines may have also allowed military forces to surreptitiously land on Swedish territory. Between 3 to 6 March 1984, Swedish forces fired at swimmers on the island of Almo. The island was searched and food caches were located. The Swedes have also noted attacks on their “submarine nets, break-ins ashore, to the disruption and destruction of underwater mine lines.” In one case, they were blamed for the theft of a naval mine. Most shockingly, in 1985 fisherman pulled a drowned swimmer up in their nets. The nets had been placed illegally near a naval mine. It is presumed the diver was scouting the mine when he became entangled and drowned. The fisherman did not recover the body and abandoned their nets. When Swedish authorities investigated, the body had been cut out of the net and removed by unknown persons.

Conclusion

This historic submarine incursions remain relevant today, particularly considering heightened tensions from the Russian invasion of Ukraine and the recent application of Finland and Sweden to join the North Atlantic Treaty Organization. Much like the Norwegian fjords, the Swedish archipelago would be an area for these submarines to operate. The reasons for the incursions remain relevant today for any NATO-Russian conflict whether it be to conduct reconnaissance or the insertion of Special Forces. If there is a repeat of one of these Cold War examples such as a stranded submarine like the Whiskey, or more concerning, NATO forces hunting a submarine contact, the consequences could be manifold. First, NATO forces chasing a submarine contact trying to force it to surface might be viewed as an attack on the submarine. The use of explosives to signal a submarine might accidentally damage it or injure the crew. These signals could be misinterpreted as an attack allowing or even requiring a submarine to respond in self-defense. Second, any hostilities in territorial waters directly implicates the collective self-defense clause of Article 5 of the North Atlantic Treaty.

The conduct of Russian submarine espionage in the territorial seas of its neighbors presents one of the greatest challenges to avoiding conflict in the Baltic Sea. These incidents reveal the gap between the law of the sea and the use of force in self-defense against an armed attack. The Nordic coastal states must walk a fine line between protecting their territorial integrity and avoiding escalation of an incident that might quickly spin out of control.

LtCol Brent Stricker, U.S. Marine Corps, serves as the Director for Expeditionary Operations and as a military professor of international law at the Stockton Center for International Law, U.S. Naval War College. The views presented are those of the author and do not necessarily reflect the policy or position of the U.S. Marine Corps, the U.S. Navy, the Naval War College, or the Department of Defense.

Featured Image: Russian Kilo-class submarine in the English Channel. (UK Ministry of Defence photo via Wikimedia Commons)

Sea Control 410 – “Mutiny and Ice,” The SS Ohio with David Reamer

By Anna McNiel

David Reamer joins Sea Control to discuss his Anchorage Daily News article, “Mutiny and Ice: The 1908 Journey of the S.S. Ohio from Seattle to Nome.” Mr. Reamer is a historian who writes about the city of Anchorage, Alaska. His peer-reviewed articles include topics as diverse as baseball, housing discrimination, Alaska Jewish history, and the English gin craze. You can follow Reamer’s Twitter handle, @ANC_Historian, for daily Alaskan history posts.

Download Sea Control 410- The SS Ohio with David Reamer

Links

1. “Mutiny and Ice: The 1908 Journey of the S. S. Ohio from Seattle to Nome,” by David Reamer, Anchorage Daily News, December 18, 2022.

Anna McNiel is a co-host and producer of the Sea Control podcast. Contact the podcast team at Seacontrol@cimsec.org.

Sea Control 409 – Why UNCLOS Matters to Vietnam with Thu Nguyen Hoang Anh

By Jared Samuelson

Thu Nguyen Hoang Anh joins Sea Control to discuss her contribution to Fulcrum’s series on the significance of UNCLOS for Vietnam. Thu is a graduate student at the European University Institute majoring in Transnational Governance.

Download Sea Control 409 – Why UNCLOS Matters to Vietnam with Thu Nguyen Hoang Anh

Links

1. “After 40 Years, UNCLOS Remains Significant to Vietnam,” by Thu Nguyen Hoang Anh, Fulcrum, September 20, 2022. 

Jared Samuelson is Co-Host and Executive Producer of the Sea Control podcast. Contact him at Seacontrol@cimsec.org.

This episode was edited and produced by Joshua Groover.

Leaning on the Big Switch in the Pacific: Why The United States Dominates Pacific Telecom Infrastructure

By Geoffrey L. Irving

Introduction

A combination of the United States’ nascent modern industrial policy, diplomacy, and aligned governmental and commercial interests have set the conditions for it to pull ahead in the race to control vital telecommunications infrastructure in the Pacific. The race to control telecommunications infrastructure is founded upon a number of small island nations and territories in the Pacific Ocean that last saw global attention during the island-hopping campaigns of the Second World War. This analysis will give particular focus to the nations and territories of Guam and the Solomon Islands and the effect that they have on subsea telecommunications infrastructure. Further, this analysis will review how competing American and Chinese telecommunication infrastructure strategies are affecting these Pacific Island nations and territories and how the convergence of the United States’ regulatory regimes, including “Team Telecom,” and commercial interests are dominating Pacific telecommunications.

The People’s Republic of China’s (hereinafter referred to as “China”) return to great power status is well-covered in national security circles and beyond. From construction of artificial islands in the South China Sea, to continued saber rattling directed at Taiwanese unification, to the infiltration of Chinese technology into the United States’ supply chains and defense industrial base, media and academic coverage of China’s return to global power often include dire warnings that the United States is unknowingly falling behind. However, there is one sector of Sino-American competition that currently bodes well for the United States and its allies, and deserves additional recognition and analysis; namely, the race to control international telecommunications infrastructure, and specifically the subsea fiber-optic cables that serve as the backbone of modern communication. 

Subsea communications infrastructure is the backbone of the modern way of life. More than 95 percent of international internet traffic flows across subsea fiber-optic cables.1 This data traffic includes all types of communications, from consumer phone calls, to streaming entertainment, financial transactions, or secure military or intelligence messaging.2 While high-profile satellite communications like those provided by SpaceX’s Starlink low earth orbit technology receive a lot publicity for their deployment in austere conditions, satellite data capabilities do not come close to matching the data capacity of fiber-optic cables.3

The concept of a subsea cable is relatively simple. Since the first subsea copper telegram cable was laid by the Atlantic Telegraph Company in 1858 between the North America and Ireland, cable technology has progressively matured with advances in materials science and information technology, although the operational concept has remained the same.4 A physical cable is spooled into the hull of a massive ship designed specifically for the task of laying and maintaining subsea cables.5 The ship then steams from one landing site across a body of water to another, laying cables and signal amplification units along the way. The cable, with its periodic amplifiers, sinks to the seafloor where it rests on top of seabed topography and uses relative obscurity and layers of armored sheathing to protect the delicate strands of glass fibers that carry light waves across thousands of miles.6 A tremendous level of complexity is required to execute this task; however, this simple explanation is meant to provide a basic understanding of the operations behind a subsea fiber-optic cable.

As the largest body of water in the world by far, the Pacific Ocean poses a particular challenge when laying subsea cables. Before the first Pacific subsea cable existed, reaching East Asia by electronic communication required either unreliable radio repeaters subject to the vagaries of weather and atmospheric conditions, or through a cable route that travelled across the Atlantic, through Cape Town, South Africa or Russia to a connecting cable to Japan or India.7 However, since the first Pacific cable was laid in 1903, cables across the Pacific have proliferated and now serve as the primary means to connect isolated Pacific Island Nations to the rest of the world.8 Additionally, in a bi-polar geopolitical environment internet connectivity and infrastructure is a key tool in drawing these nations towards alignment with the United States or China.9

Cable infrastructure is such an important piece of the geopolitical chessboard because its ownership and control can influence global data traffic and the contents of that traffic. Of particular note, as an overwhelming majority of financial transactions are negotiated, administered, and settled via electronic communications, if a party controls communications infrastructure, it can control the financial dealings of any client who relies on that infrastructure.10 For small Pacific Islands Countries, having a single cable connecting an island to the world wide web creates a single point of failure that can have extremely dire consequences if there is an unanticipated fault or break in the line – as there often are in subsea infrastructure.11 For example, in January 2022, an underwater volcanic eruption and landslide severed the only subsea cable connecting the island nation of Tonga to the outside world. As a result, it was nearly impossible to contact the island for a number of weeks.12 

China’s return to superpower status on the global stage has been accompanied by its audacious Belt and Road Initiative.13 This program funded massive infrastructure programs around the developing world to expand China’s diplomatic reach and to erode the international institutions of the post-Second World War international order. As a subset of the Belt and Road Initiative, China specifically focused on future technologies and set a goal to create a “Digital Silk Road” that would involve communication infrastructure projects driven by Chinese national champion state owned enterprises like Huawei and China Unicom.14 These projects were intended to include both the provision of 5G-capable network infrastructure for developing nations as well as subsea communications infrastructure to connect partner nations to China’s internet service providers. To this end, Huawei, an electronics hardware conglomerate, established Huawei Marine in 2009 to begin providing marine communications technology hardware and infrastructure services.15 Huawei Marine, as a newcomer to the maritime communications technology industry, had to compete with established Western companies like SubCom and Alcatel Submarine Networks to build and maintain subsea infrastructure.16

While the United States and its allies did not have the appetite to compete with China’s massive spending spree in the developing world, an alignment of government and commercial interests has led it and other western-aligned countries to dominate the communications landscape in the Pacific. As of this writing, no Chinese-owned or operated subsea cable is the sole provider for subsea communications to any Pacific Island.17 Further, networks generally reject any Huawei and other Chinese state-owned-enterprise communications and network hardware.18 This outcome bodes well for American interests in the Pacific, and the expanded provision of network capabilities to Pacific Island countries and territories will have beneficial economic impacts on local economies. In the following section, this paper will analyze case studies of Guam and the Solomon Islands as it relates to the competition of US and Chinese telecommunications providers and the expansion of Pacific telecommunications networks.

Case Study: Guam

Guam is a small Pacific Island that is the southernmost island in the Mariana Island chain and is the largest island in Micronesia.19 Guam has a rich history of indigenous culture and position in contemporary history as a strategic way point in the Pacific Ocean for competing navies. Guam was a protectorate of the United States Navy following the end of the Spanish-American war in 1898 and then received formal recognition as an unincorporated territory with self-rule in 1950.20 Guam is also home to a large American military presence and hosts a U.S. Naval Base, an Air Force Air Field, and a burgeoning Marine Corps Base. Because it is the United States’ westernmost territory, Guam is also a landing point for many trans-Pacific cables, earning it the moniker “The Big Switch in the Pacific.”

The first transpacific cable landed on Guam in 1904 by a private enterprise led by John Mackay. This cable functioned until 1950 when a fault removed it from service leaving decades of inconsistent telecommunications connectivity until the advent and proliferation of fiber-optic cables. Following the advent of fiber-optic cables, there was an explosion of telecommunication activity on Guam evident by the laying of sixteen cables between 1987 and 2022 – roughly one cable every two years.21 See Figure 1.

Cable System Name Year Status
TPC-3 1987 Retired
GPT 1990 Retired
PacRim West 1995 Retired
Mariana-Guam (MICS) 1997 Currently lit
GP 1999 Retired 2011
Australia-Japan 2001 Currently lit
China-US 2001 Retired 2016
Tata TGN Pacific 2002 Currently lit
Asia-America Gateway 2009 Currently lit
PPC-1 2009 Currently lit
HANTRU1 2010 Currently lit
Guam Okinawa Kyushu Incheon 2013 Currently lit
Atisa 2017 Currently lit
SEA-US 2017 Currently lit
Japan-Guam-Australia North 2020 Currently lit
Japan-Guam-Australia South 2020 Currently lit
Echo 2023 Planned, not lit
Apricot 2024 Planned, not lit
Bifrost 2024 Planned, not lit
Asia Connect Cable 1 (ACC-1) 2025 Planned, not lit

Figure 1: A historic list of telecommunication cables landing on Guam

Despite sixteen cables laid on Guam over the past three decades, Guam’s telecommunications market is relatively small. Guam’s population is around 170,000 people, roughly the same as a midsized American city like Springfield, Missouri.22 Despite this small market, three competing internet and communications service providers compete for market share on the island – Docomo, IT&E, and GTA. As of 2017, Guam had an internet penetration rate of eighty-one percent among its population.23 As a US territory that hosts a large military footprint, Guam’s telecommunications network is largely insulated from Chinese intrusion. Measures such as Federal government regulation, import controls, and the Federal Communications Commission (FCC) largely block Chinese or Chinese-funded companies from penetrating the Guamanian telecommunications sector.24

Further, as a result of Guam’s strategic position as a gateway to Asia and wider trends in the telecommunications sector, many large US technology companies are vying to invest in data centers in Guam.25 These data centers will serve as edge storage and computing nodes for internet service providers with retail and commercial customers in the Indo-Pacific theater. This next wave of telecommunications infrastructure poses an additional benefit to Guam’s local economy, as the influx of investment to stand up data centers that rely on consistent power generation and stable climate will likely create increased opportunities for job growth and a local telecommunications expertise.

Because of these reasons, Guam’s role as the “Big Switch in the Pacific” has been a driver of its local economy and will likely continue to yield dividends as the telecommunications industry matures and seeks improved and additional infrastructure projects. Additionally, as the United States focuses its national security posture on the Pacific theater, Guam will likely see increased military investment which has both positive and negative effects on local culture, but inarguably injects additional capital into the small island.

Case Study: The Solomon Islands

A study of the Solomon Islands’ telecommunications infrastructure and geopolitical position is an interesting counterpoint to Guam. Unlike Guam, the Solomon Islands is a sovereign nation state comprised of hundreds of islands off the East coast of Papua New Guinea and Northwest of Australia.26 The Solomon Islands have a population of approximately 700,000, but a gross domestic product of only $1.6 billion.27 Compared to Guam’s population of 170,000 and 2021 GDP of $5.8 billion, an apparent disparity exists as the Solomon Islands trails Guam’s development and productivity in terms of per capita GDP. Additionally, the Solomon Islands had an internet penetration rate of only 12% in 2017, and reportedly around 30% in 2022.28 While Guam serves as a switch for a growing inventory of subsea cables, the Solomon Islands is served by only one cable, the Coral Sea Cable (installed in 2020), which connects four of its major islands to New Guinea and Australia.29

To maintain a neutral position in the Sino-American competition for influence in the South Pacific, the Solomon Islands previously courted foreign investments and partnerships from the party willing to make them. The Coral Sea Cable reveals how the competition between China and US-aligned nations plays out over competition to build telecommunications infrastructure.

In 2018, the Solomon Islands government announced a partnership with China’s Huawei Technology Company to install a maritime fiber-optic cable that would link the islands to its two major neighbors: Papua New Guinea and Australia.30 This infrastructure project was long overdue, as high-speed internet was not available to an overwhelming majority of Solomon islanders. When the Solomon Islands announced the partnership with Huawei, US and Australian diplomats identified the risk that Huawei hardware and software could pose to Australia’s telecommunications network and began pushing the Solomon Islands to reconsider the partnership.31 Ultimately, the Australian government financed construction of the Coral Sea Cable by providing $92 million dollars in funding.32 Australia’s commitment, alongside diplomatic pressure from Japan and the United States, blocked Huawei from installing a new fiber-optic system connecting Pacific Island countries and further pushed the balance of power towards US-aligned nations in the Pacific telecommunications race. Unfortunately, these same pressures did not stop Papua New Guinea from completing its own domestic fiber-optic cable in partnership with Huawei Maritime Tech Co. in 2019.33

Although the Solomon Islands government ultimately partnered with Australia and the Australian firm Vocus to lay the Coral Sea Cable, the Solomon Island government has continued to court Chinese infrastructure investment. In 2019, the Solomon Islands formally ceased diplomatic relations with Taiwan, possibly to ensure future close diplomatic ties to the PRC. Then, in 2022, the Solomon Islands again announced a partnership with Huawei to build 161 mobile transmission towers financed by a $66 million loan from China’s Export Import Bank.34 The project has an expected completion date of November 2023, with the goal of installing most of the towers before Solomon Islands hosts the Pacific Games. Australia and other Pacific partners have again voiced opposition and concern about Huawei’s integration into the Solomon Islands’ local telecommunications infrastructure.35

The Solomon Islands’ diplomatic posturing between both Chinese and Australian/US-aligned investment gives it negotiating power to derive maximum investment from all sides. Its government cannot be criticized for attempting to upgrade the country’s telecommunications infrastructure to connect its population and drive GDP growth. However, negotiators should see the consistent playbook of courting Chinese investment and pressuring Australia and Pacific nations to step in with additional funding. While this means that Huawei and China are still in the race for dominance of Pacific telecommunications infrastructure, the Coral Sea Cable project shows that nations will choose US-aligned nations when given the opportunity. Therefore, it is up to the United States and its allies to create the opportunities to do so.

Undersea cables in the Pacific and proposed projects. (Reuters graphic)

The United States’ Pacific Policy Response

A broad decoupling of American and Chinese industries has been the theme of the early 2020s. For example, equity markets demanded audit transparency of Chinese firms listed in the United States and threatened to delist noncompliant companies.36 Further, the Foreign Investment Risk Review Modernization Act of 2018 strengthened the Committee on Foreign Investment in the United States (CFIUS) and gave the federal government broad power to mitigate or block adversarial investment or ownership in industries sensitive to The United States’ national security.37 With additional authorities, CFIUS has been increasingly aggressive and encouraged by members of Congress to investigate and block specific transactions. In CFIUS’ shadow however, there is a smaller interagency committee that receives less media coverage but is largely responsible for ensuring United States telecommunications resiliency and for winning the telecommunications competition in the South Pacific. That committee is the Committee for the Assessment of Foreign Participation in the United States Telecommunications Services Sector (Team Telecom). This Committee’s name does not have a phonetic acronym and is referred to simply as “Team Telecom.” 

Team Telecom is an interagency committee chaired by the Department of Justice that includes the Departments of Defense and Homeland Security.38 Executive Order 13913 established Team Telecom in April 2020. The Committee provides the Federal Communications Commission (FCC) with recommendations on whether to issue licenses to companies applying to provide telecommunications services or otherwise connect to the domestic US telecommunications network.39 This scope includes licenses to provide cable-based international telecommunications transport services, licenses to provide satellite communications, and multiple other FCC licenses.

When the FCC receives an application for a new cable landing or for the transfer existing assets to a foreign purchaser, the FCC will refer the transaction to Team Telecom for review by the Departments of Justice, Homeland Security, and Defense to ensure that national security interests will not be affected or compromised by the foreign owner. If Team Telecom sees undue risk to domestic consumer data or to secured government data traffic traveling over a particular cable system, the members then recommend that the FCC deny the license or grant the license with specific conditions to mitigate the national security risk.40 In effect, this collaborative effort has succeeded in sealing out adversarial actors from the United States telecommunications sector, and shielded the United States telecommunications industry from Chinese competition and associated risks.

Because the United States controls strategic switching points in the Pacific, namely American Samoa, Guam, and Hawaii, Team Telecom’s rules regarding network hardware manufacturers and cyber security standards apply to any cable that lands in those territories. Because these territories are situated at geographically strategic points in the Pacific, Team Telecom’s rulings have become the de facto standard for the Pacific maritime telecommunications industry. While CFIUS is garnering headlines by protecting American technology and forcing adversary finance from core aspects of the United States’ domestic economy, Team Telecom operates quietly to both preserve the integrity of the United States’ domestic telecommunications network as well as set the conditions for US-aligned telecommunications companies to dominate network infrastructure across the Pacific Ocean.

The proliferation of Pacific subsea telecommunication cables is not a product of government policy alone. Rather, the information technology explosion of the past two decades and the demand for near-instant communication and connectivity to markets around the world created a huge demand for telecommunications capacity. The volume of cables landing on Guam in Figure 1 captures the frenetic pace of construction and expansion of bandwidth connecting North America to Asia. Furthermore, advances in materials science allowed fiber-optic cables to carry increasing volumes of data. The MICS cable, installed in 1997 that connects the Mariana Island chain, provides an estimated bandwidth capacity of 622 Megabytes per second, while Google’s Apricot cable is projected to have the capacity to run 190 Terabytes per second (190,000,000 Megabytes per second), or just over 300,000 times the throughput of the MICS cable.41 Despite exponential increases in data transport capabilities, infrastructure cables have continuously struggled to keep pace with industry demands for transport service. A trend away from consortia construction of fiber-optic lines in the telecommunications industry is one of the results of data transport demand so quickly outstripping supply.

In the early stages of large fiber-optic cable projects, international consortia of telecommunication infrastructure companies, government organizations, and occasionally research organizations primarily funded and planned new cable lines. In 2007, a consortium of 19 different parties funded the Asia American Gateway cable and laid 20,000 kilometers of fiber-optic cable from the United States, through Guam, to South Pacific nations like Singapore, Thailand, and the Philippines.42 The Australia-Japan cable, laid in 2009, was funded through a consortium of five telecommunications companies – Communications Global Network Services Ltd, NTT Ltd, Softbank Corp., Telstra, and MFC Globenet, Inc.43 This trend of consortium ownership was necessary to secure the required licenses and regulatory approvals to run and maintain new cables across multiple jurisdictions, as well as to diversify financial risk across a number of different owners. However, a new trend has emerged. Technology “hyperscalers” like Meta (formerly Facebook), Google, and Amazon are now unilaterally, or bilaterally, building and controlling their own cables.

Over the past few years, technology conglomerate hyperscalers announced projects that will install and operate their own series of subsea fiber-optic cables. These hyperscalers have been overwhelmingly American and are creating the next wave of telecommunications infrastructure that will be primarily influenced by US legislation and governmental policy. Hyperscalers are interested in building and owning their own infrastructure so that they get primary right of transport on the cable, instead of having to negotiate and pay for leases on competitor or legacy cables. Google and Meta plan to run two new cables, Echo and Bifrost, through Guam to diverse landing points in the Pacific.44 Additionally, Google plans to create the Apricot Cable to extend Google Cloud services to markets that complement Echo and Bifrost’s reach.45 These cables will have the net effect of increasing internet connectivity and lowering latency for large swaths of under-connected Pacific populations.46 The ancillary effect is that these hyperscalers are all primarily US corporations, subject to US regulation and therefore prohibited from contracting with or connecting to many Chinese telecommunications providers. While US technology champions are on a building spree, China’s technology champions and state-owned enterprises like HMN Technologies (formerly known as Huawei Maritime Networks) do not have plans to build any comparable trans-Pacific cables. With the United States’ alignment of commercial demand and governmental industrial policy, fiber-optic cables have and will continue to proliferate in the Pacific, creating net benefit to both isolated Pacific Island Countries and the United States.

Conclusion: The United States is Winning the Pacific Telecom Race

The United States is particularly well suited to win the contest to dictate and control operations, standards, and installation of new telecommunications infrastructure in the Pacific. As discussed, the United States’ control of key geographic islands like Hawaii and Guam gives it an upper hand when seeking to run transpacific fiber-optic cables. As “The Big Switch in the Pacific,” Guam is well situated as the landing point of choice for the next generation of transpacific cables that will effectively seal out Chinese telecom competitors from the Pacific subsea infrastructure market. The US Team Telecom’s oversight and regulation, in addition to associated federal industrial policies, has effectively increased critical telecommunications infrastructure resiliency and set a standard for new infrastructure projects in the Pacific. This beneficial status quo is reflected in the relationship between island nations such as the Solomon Islands and the United States and its allies. While Pacific Island Countries like the Solomon Islands will continue to entertain Chinese technology investment, case studies like the Coral Sea Cable show that these nations will elect Western infrastructure programs when given the opportunity. Finally, the geopolitical competition to connect the Pacific is a massive net benefit for Pacific Island Countries’ populations. Competitive and redundant communications infrastructure mean that the number of nations and islands that rely on single points of failure for their communications will diminish over time as future cable projects propagate. On a geopolitical note, the race to build and operate Pacific telecommunications infrastructure is a bright spot for the United States and a valuable case study in how governmental policy and commercial opportunity can interact to protect American interests and extend necessary and beneficial services to the global community.

Geoffrey Irving works with the Office of the Undersecretary of Defense, Acquisition and Sustainment to protect the Defense Industrial Base. Geoff previously served on active duty with the U.S. Marine Corps, and is currently a Major in the United States Marine Corps Reserve. Geoff is a graduate of Tsinghua University College of Law and writes about the national security implications of international economic competition. 

The views expressed in this paper are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government.

References

[1] 2013 Section 43.82 Circuit Status Data, FCC International Bureau Report, Federal Communications Committee (July 2015)

[2] Ibid.

[3] Micah Maidenberg, “Elon Musk’s SpaceX, Pentagon to Deepen Ties Despite Dispute on Starlink Funding in Ukraine,” Wall Street Journal, October 20, 2022, https://www.wsj.com/articles/elon-musks-spacex-pentagon-to-deepen-ties-despite-dispute-on-starlink-funding-in-ukraine-11666270801; Ibid.

[4] Allison Marsh “The First Transatlantic Telegraph Cable was a Bold Beautiful Failure” IEEE Spectrum, (October 31 2019), https://spectrum.ieee.org/the-first-transatlantic-telegraph-cable-was-a-bold-beautiful-failure

[5] Justin Sherman, “Cyber Defense Across the Ocean Floor: The Geopolitics of Submarine Cable Security” Atlantic Council Snowcroft Center for Strategy and Security, Cyber Statecraft Initiative (September 2021)

[6] Ibid.

[7] “Honolulu’s First Cable” Evening Bulletin, December 5, 1902.

[8] Bill Burns “Submarine Cable History” SubmarineCableSystems.com, 2012. https://www.submarinecablesystems.com/history

[9] Justin Sherman, “Cyber Defense Across the Ocean Floor: The Geopolitics of Submarine Cable Security” Atlantic Council Snowcroft Center for Strategy and Security, Cyber Statecraft Initiative (September 2021)

[10] Ibid.

[11] Amanda Watson, “The Limited Communication Cables for Pacific Island Countries,” Asia-Pacific Journal of Ocean Law and Policy, vol 7, 2022

[12] Ibid.

[13] U.S. Library of Congress, CRS, China’s 14th Five-Year Plan: A First Look, by Karen Sutter and Michael Sutherland, CRS Report IFI1684 (Washington, DC: Office of Congressional Information and Publishing, January 5, 2021).

[14] Ibid.

[15] Thomas Blaubach “Connecting Beijing’s Global Infrastructure: The PEACE Cable in the Middle East and North Africa,” MEI Policy Center (March 2022)

[16] “Submarine Fiber Cable Market Size to Grow by USD 3.86 Bn at a CAGR of 11.04%| Investments Source Segment is expected to witness lucrative growth,” Technavio Research (May 27, 2022): https://www.prnewswire.com/news-releases/submarine-fiber-cable-market-size-to-grow-by-usd-3-86-bn-at-a-cagr-of-11-04-investments-source-segment-is-expected-to-witness-lucrative-growth–technavio-301555740.html

[17] “HMN Tech,” Submarine Cable Map, TeleGeography, accessed November 13, 2022; https://www.submarinecablemap.com

[18] Amy Remeikis, “Australia supplants China to build undersea cable for Solomon Islands,” The Guardian, June 13, 2018

[19] “Guam,” The World Factbook, U.S. Central Intelligence Agency, accessed November 13, 2022

[20] Ibid.

[21] “Guam,” Submarine Cable Map, TeleGeography, accessed November 13, 2022; https://www.submarinecablemap.com

[22] “Population, total – Guam” Data, The World Bank, accessed November 13, 2022; https://data.worldbank.org/country/GU

[23] “Individuals using the Internet (% of population) – Guam” Data, The World Bank, accessed November 13, 2022; https://data.worldbank.org/country/GU

[24] Donald Trump, Executive Order 13913, “Establishing the Committee for the Assessment of Foreign Participation in the United States Telecommunications Services Sector.” Federal Register 85, no. 19643 (April 4, 2022): https://www.federalregister.gov/documents/2020/04/08/2020-07530/establishing-the-committee-for-the-assessment-of-foreign-participation-in-the-united-states

[25] David Abecassis, Dio Teo, Goh Wei Jian, Michael Kende, Neil Gandal, “Economic Impact of Google’s APAC Network Infrastructure,” Anlysys Mason (September 2020)

[26] “Solomon Islands,” The World Factbook, U.S. Central Intelligence Agency, accessed November 13, 2022

[27] “Population, total – Solomon Islands” Data, The World Bank, accessed November 13, 2022; https://data.worldbank.org/country/solomon-islands

[28] “Individuals using the Internet (% of population) – Solomon Islands” Data, The World Bank, accessed November 13, 2022; https://data.worldbank.org/country/solomon-islands; Georgina Kekea, “Solomon Islands secures $100m China loan to build Huawei mobile towers in historic step,” The Guardian, (August 18, 2022)

[29] “Solomon Islands,” Submarine Cable Map, TeleGeography, accessed November 13, 2022; https://www.submarinecablemap.com

[30] Amy Remeikis, “Australia supplants China to build undersea cable for Solomon Islands,” The Guardian, June 13, 2018

[31] Colin Packham, “Ousting Huawei, Australia finishes laying undersea internet cable for Pacific allies,” Reuters, (August 27, 2019), https://www.reuters.com/article/us-australia-pacific-cable/ousting-huawei-australia-finishes-laying-undersea-internet-cable-for-pacific-allies-idUSKCN1VI08H

[32] Australian High Commission Papua New Guinea, “Coral Sea Cable System launched”. Accessed November 13, 2022; https://png.embassy.gov.au/pmsb/1148.html#:~:text=Construction%20of%20the%20cable%20system,Guinea%20and%20Solomon%20Islands%20governments.

[33] Corinne Reichert, “PNG sticks with Huawei for subsea cable: Report” ZD Net Magazine, November 26, 2018; https://www.zdnet.com/article/png-sticks-with-huawei-for-subsea-cable-report/

[34] Georgina Kekea, “Solomon Islands secures $100m China loan to build Huawei mobile towers in historic step,” The Guardian, (August 18, 2022)

[35] Ibid.

[36] Matthew P. Goodman, “Unpacking the PCAOB Deal on U.S.-Listed Chinese Companies,” Center for Strategic & International Studies, (September 28, 2022)

[37] Foreign Investment Risk Review Modernization Act of 2018, US Code 50 (2018), § 4565

[38] Donald Trump, Executive Order 13913, “Establishing the Committee for the Assessment of Foreign Participation in the United States Telecommunications Services Sector.” Federal Register 85, no. 19643 (April 4, 2022): https://www.federalregister.gov/documents/2020/04/08/2020-07530/establishing-the-committee-for-the-assessment-of-foreign-participation-in-the-united-states

[39] Ibid.

[40] “The Committee for the Assessment of Foreign Participation in the United States Telecommunications Services Sector – Frequently Asked Questions” National Security Division, United States Department of Justice, accessed November 13, 2022; https://www.justice.gov/nsd/committee-assessment-foreign-participation-united-states-telecommunications-services-sector

[41] Federal Communications Commission. “In the Matter of Micronesian Telecommunications Corporation, Application for a license to land and Operate a High Capacity Digital Submarine Cable System Extending Between the Commonwealth of the Northern Mariana Islands and Guam,” File No. S-C-L-92-003, February 3, 1993. https://transition.fcc.gov/ib/pd/pf/scl_doc/93-91.pdf; Nico Roehrich “Apricot subsea cable will boost internet capacity, speeds in the Asia-Pacific region” Engineering at Meta, August 15, 2021; https://engineering.fb.com/2021/08/15/connectivity/apricot-subsea-cable/

[42] “About Us’ Asia American Gateway, accessed November 13, 2022; https://asia-america-gateway.com/AboutUs.aspx

[43] “Staff & Shareholders” Australia Japan Cable, accessed November 13, 2022; https://ajcable.com/ajc-network/staff-shareholders/

[44] Bikash Koley, “This bears repeating: Introducing the Echo subsea cable,” Google Cloud Blog, March 29,2021, https://cloud.google.com/blog/products/infrastructure/introducing-the-echo-subsea-cable

[45] Ibid.

[46] Bikash Koley, “Announcing Apricot: a new subsea cable connecting Singapore to Japan,” Google Cloud Blog, August 16, 2021; https://cloud.google.com/blog/products/infrastructure/new-apricot-subsea-cable-brings-more-connectivity-to-asia

Featured Image: APRA HARBOR, Guam (March 5, 2016) An aerial view from above U.S. Naval Base Guam (NBG) shows Apra Harbor with several navy vessels in port. (U.S. Navy photo by Mass Communication Specialist 3rd Class Deven Ellis/Released)

Fostering the Discussion on Securing the Seas.