All posts by Guest Author

Vote For Authors to Attend the CIMSEC Forum for Authors and Readers on July 16

We need your help determining what authors and issues will be highlighted at CFAR 2019!  The authors of the top vote-getting articles will be invited to speak at the July 16th event on the article topic, so consider what you’d like an update on or what author you’d like to press with questions. All CIMSEC members are eligible to vote at the bottom of the page for:

  • Up to 5 nominees in the CIMSEC category; and,
  • Up to 2 nominees in the CNA category

If you’re not yet a CIMSEC member, it’s free and easy to sign up here for eligibility to vote. And don’t forget to RSVP to the event!

As always, thanks to the generous support of CNA and our contributors for helping us bring you this event, and congratulations to the nominees!

CNA Category Nominees

The Case for Maritime Security in an Era of Great Power Competition – Joshua Tallis

Nuclear Arms Control without a Treaty? Risks and Options After NEW START – Vince Manzo

CIMSEC Category Nominees

Sea Control at the Tactical Level of War – Adam Humayun

The Nanxun Jiao Crisis and the Dawn of Autonomous Undersea Conflict – David Strachan

Chinese Shipbuilding and Seapower: Full Steam Ahead, Destination Uncharted –Andrew Erickson

Then What? Wargaming the Interface Between Strategy and Operations – Barney Rubel

Operationalizing Distributed Maritime Operations –Kevin Eyer and Steve McJessy

Don’t Forget Our Allies! Interoperable Maritime Operations in a Combined Environment – Jason Lancaster

How the Fleet Forgot to Fight – Dmitry Filipoff

The Deep Ocean: Seabed Warfare and the Defense of Undersea Infrastructure – Bill Glenney

Cost and Survivability: Acquiring the Gator Navy LCDR Ryan Hilger, USN

Why Turkish F-35s are a Threat to the United States and NATO – Duncan Kellogg

What do you call it? The Politics and Practicalities of Warship Classification – CAPT James P. McGrath, III, USN

The Navy’s Newest Nemesis: Hypersonic Weapons – Jon Isaac

Chinese Evaluations of the U.S. Navy Submarine Force –Gabriel Collins, Andrew Erickson, Lyle Goldstein, and William Murray

VOTE NOW: 

*As a reminder, only CIMSEC members are eligible to vote, but it’s free and easy to become one.*

Time to Re-Task, Downsize, and Re-Engineer the SSN, Part II

Read Part One here.

By Duane J. Truitt

As discussed in Part I, it is clear that NAVSEA needs to undertake a project now to completely re-engineer the next generation of SSNs. The old bloated SSN(X) (now “New SSN”) concept should be rejected entirely because it is more of the same, but bigger and more expensive. Instead, the Navy should go for a new class of SSN that is far smaller and cheaper than the current Block 5 Virginias. 

The key components of a reimagined, redesigned “compact” SSN include four major changes from existing SSN designs. Namely, it can refocus the SSN and its systems on its original roles of anti-shipping and ISR, eliminating the vertical launch tubes and enhancing the horizontal launch tube systems. It can re-engineer the nuclear power plants to result in power plants that are safer, simpler, more compact, and cheaper to build and operate. It can also re-engineer the rest of the SSN systems to increase automation, optimize crew work processes, and to reduce the total required ship’s complement. Finally, it can modernize and revise the SSN’s weapons system to provide a wider range of weapons capability and increase the number of warshots deployable in a compact hull form

The net result of the proposed changes should be a more effective, more capable, yet smaller and cheaper SSN that the U.S. Navy can afford to build and operate in numbers sufficient to meet existing and growing near-peer naval challenges of the mid-21st century. Such a submarine would be expected to displace well under 5,000 tons.

In recognition that major ship class redesigns with “great leap forward” technology improvements carry additional development risk and incur longer development timeframes, it is good practice for the Navy to pursue these advances in a relatively small block build or in technology insertion increments (as used on the Virginia-class boats).

The proposed Next Gen “New SSN” class should consist of the following minimum of two blocks.

Block I

Set an overall objective for Block I to build a new SSN of not more than 4,500 tons, but less if feasible, and a crew size of not more than 70 officers and sailors, and less if achievable. The design should strive to reduce the volume of operations spaces, engineering spaces, crews’ quarters, storage, and support spaces accordingly. Total construction cost should aim for significantly less than $2 billion each in 2019 dollars. 

The ship should include a new secondary propulsion plant system utilizing hybrid drive – i.e., eliminating the main propulsion turbines and reduction gears, and utilizing only two relatively large turbo-generators with electric drive, as used on the Colombia SSBN class design. This design provides a significant noise reduction and propulsion plant size reduction. It can also consider using a shrouded propulsor with built-in electric motor external to the pressure hull. The new design can include a new reactor plant with next-gen automation and design simplification, as a scaled-down version of the USS Gerald R. Ford A1B plant design.Consider, and develop as available, alternatives to conventional lead acid battery banks for emergency power generation, including use of next-gen hydrogen fuel cells and/or advanced battery technology to increase power availability in event of a prolonged reactor shutdown, and/or to provide enhanced quiet operations for limited periods of time.

The new design should retain the standard 21-inch torpedo tubes for use with heavyweight torpedoes (Mk 48 ADCAP) and submarine launched cruise missiles (i.e., Maritime Tomahawk ASCMs, Naval Strike Missiles, etc.) relevant to surface ship attack. It should also add new 13-inch torpedo tubes to deploy Mk 46/54 lightweight torpedoes relevant to ASW. This will result in an overall increase in the number of warshots that a submarine can carry per unit hull volume. The design should also include next generation torpedo defenses including both towed passive softkill systems and hardkill kinetic weapons with respective launch tubes, as already in use on surface combatants.

Eliminate the vertical launch tubes. For those who say the Navy still cannot afford to give up the deep strike land attack mission (because of now-obsolete fears of naval irrelevance in 21st century warfare), we still have all of the existing Virginia-class boats that already have been delivered, and those that have already been ordered, including those Block 5s with VPM – which still provide a robust deep strike land attack capability in the SSN fleet today and for the next 40 years. If it is really thought necessary that the Navy provide the deep strike land attack capability from submarines, then build new SSGNs to provide that capability starting in the early 2030s as the existing SSGNs retire– that mission, however, does not require SSNs as platforms. If there is any resulting temporary “gap” in needed launchers it may be filled with surface warships and aircraft.

To be ready for unmanned systems and networked warfighting capabilities the new design should account for modularity and open architecture in submarine system interfaces (communications and combat data management systems) to enable effective networking with off-ship platforms including unmanned undersea vessels (UUV), unmanned surface vessels (USV), and aircraft, both manned and unmanned. Submarine systems must be interoperable within the evolving architecture of Naval Integrated Fire Control – Counter Air (NIFC-CA) and Cooperative Engagement Capability (CEC), and be flexible within the Navy’s Distributed Maritime Operations (DMO) doctrine.

Block 2 – Next-Gen Reactor Plant Technology Insertion

While developing and building the Block 1 new SSN, the Navy can launch a new reactor design program to adapt a generation four reactor plant to provide numerous advantages for naval submarine power over current technology pressurized water reactor (PWR) plants. Perhaps the most likely candidate is a molten salt reactor (MSR)2, which is part of the current crop of commercial generation four reactor plants already under development in the U.S. and elsewhere including the People’s Republic of China. Liquid MSR technology, in experimental reactor use since the 1960s, has several advantages over PWR plants. The reactor does not have a solid “core” that requires replacement in order to refuel the reactor, and the reactor can be refueled at will during regular maintenance availabilities. It also does not require cutting open the pressure hull or making other intrusive openings to the plant to “gas up.”  This design still delivers extremely long endurance between refueling operations, and results in a significant reduction in hull lifetime operating cost. It also provides extended hull operating lifetime without enlarging the hull to accommodate a larger reactor plant needed to yield a life-of-ship reactor.

MSR reactors are intrinsically safe unlike PWRs (there is no meltdown risk because the reactor itself, along with its fuel, is already molten), thus significantly reducing the safety requirements and operating limitations necessary with PWRs. MSR reactors also operate at one atmosphere of pressure, eliminating the need for very heavy steel reactor pressure vessels and primary coolant system components, thus significantly reducing the weight and size of the nuclear power plant. This greatly reduces the effects of thermal stress due to rapid cooldown associated with thickly walled steel pressure vessels.

MSR reactors operate at far higher temperatures than PWRs, thus allowing the use of more efficient high temperature steam secondary plants, reducing both the size and weight of the secondary plant. This also yields a much higher overall thermal efficiency for the entire power plant, meaning that a MSR plant of a given capacity in MW thermal power (MWt) produces the same motive power as a much larger PWR plant. 

MSR reactors do not need high speed main coolant pumps as do PWRs, hence are intrinsically quieter than today’s submarine power plants. MSR reactors can use a wide variety of cheaper and more widely available reactor fissionable fuels, including, amazingly enough, spent fuel from conventional PWRs, lower enriched uranium fuel, depleted uranium, and thorium. When the MSR fuel is completely spent and discarded as waste, it is far less radioactive over far shorter decay timeframes than spent fuel from conventional PWRs.

Overall, MSR reactors are significantly safer, smaller, lighter, simpler, more efficient, and cheaper than PWRs – all of which will contribute significantly to reducing the size and cost (both construction, and operating) of next gen SSNs. The end result of a successful integration of MSR technology into SSNs will be a much more compact, simplified, and capable sub in addition to being much less costly to build and operate. 

This investment in a new nuclear propulsion technology approach will undoubtedly generate lots of pushback.  People, including professionals, find comfort with the familiar, and more people than not simply dislike change because it creates uncertainty. However, nuclear propulsion itself was perceived as a big threat to the status quo by many senior leaders in the fleet and at Pentagon in the late 1940s and 1950s when Admiral Rickover upset their apple carts. Rickover managed to keep his program operational and funded by going over the heads of the senior uniforms, and cultivated “protection” from the senior uniforms via senior members of Congress who controlled naval budgets and authorizations for ship construction.

Rickover actually considered several alternative technology approaches before finally settling on a single approach via PWRs. His team developed a liquid sodium cooled reactor plant, or “Liquid Metal Fast Reactor” (LMFR) first as a prototype (S1G) in West Milton, New York, and then installed the reactor (S2G)  in a SSN, the USS Seawolf (SSN-575).  These liquid metal reactor plants enjoyed several but not all of the same advantages listed above for MSR plants, but also suffered significant limitations particular to liquid sodium that are not issues with MSR plants, including a tendency to leak, and the fire hazard presented by such leaks of liquid sodium metal. This reactor design was abandoned in 1956, and the liquid sodium reactor in Seawolf was later replaced with a PWR reactor. But today’s fourth generation MSR technology is both very different from and more advanced than that used in the early liquid sodium plants.

It is clearly time for Naval Reactors to give MSRs a very hard look, including designing, building, and operating a prototype. If it works out well, then design one into the second or a subsequent block of the new SSN submarines, likely by the late 2020s to early 2030s.  It would likely result in a smaller displacement hull with greater capability, quieter, and lower cost to build and operate than those based on traditional PWR propulsion technology. Even if MSRs are not able to deliver all that is expected, there are other fourth generation reactor technologies that may be feasible.  Even a next generation LMFR may be worth reconsideration, given what we know now that Admiral Rickover and his team at Naval Reactors did not know in the mid-1950s.

Conclusion

This block development approach to a new SSN, a next generation of smaller, more capable, and far cheaper to build and operate SSNs, will lead the U.S. Navy to building a numerically larger yet more capable SSN force. Instead of the age old “capacity vs. capability” argument between opposing sects of naval planners and advocates, the result will be both much more capacity and more capability. The proposed smaller, cheaper, yet more capable sea-control focused attack SSNs will help the U.S. cost-effectively meet the immediate and growing threat of peer naval adversary submarine fleets today and for decades to come.

Mr. Truitt is a veteran Cold War era SSN sailor, qualified nuclear reactor operator, and civilian nuclear test engineer as well as a degreed civil engineer, environmental scientist, and civil/environmental project manager with extensive experience at both naval and civilian nuclear facilities as well as military and civilian facilities development.  His interest today as an author is in forward looking military preparedness and improvements in both capacity and capability of U.S. naval forces.

Endnotes

1. A1B Reactor; https://www.globalsecurity.org/military/systems/ship/systems/a1b.htm

2. Albert J. Juhasz, NASA Glenn Research Center, Cleveland, Ohio 44135; Richard A. Rarick and Rajmohan Rangarajan Cleveland State University, Cleveland, Ohio 44115; “High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology; https://ntrs.nasa.gov/search.jsp?R=20090029904 2019-04-02T18:59:43+00:00Z

Featured Image: Virginia-class submarine USS Missouri. (General Dynamics Electric Boat photo courtesy of Edward S. Gray, Secretary, Missouri (SSN-780) Commissioning Committee.)

Why We Will Never See Fully Autonomous Commercial Ships

By Commander David Dubay, USCG

The world will never see fully autonomous transoceanic commercial cargo ships. In fact, autonomous vessels are likely to operate in only very limited situations. In recent years, the prospect of fully autonomous vessels has become a hot topic for commercial shipping. The same fast-paced advances in technology that have led to projects to automate vehicles in every other sector of the transportation industry have also found their way to the shipping industry. Advances in camera technology, sensors, electromechanical actuators, and satellite technology appear to promise a world in which ships will soon traverse the oceans without a human on board. The International Maritime Organization (IMO) and the Comité Maritime International (CMI) are already exploring how autonomous vessels would fit into the existing framework of international maritime law.

Yet, while it is laudable to plan for the future, autonomous vessels operated by computers and remote operators quite simply pose too many vulnerabilities and they likely will prove too expensive to replace today’s manned vessels. The professional merchant mariners who operate ships today are the crucial on-scene decision makers, repairmen, and physical security providers who make commercial shipping secure, efficient, and inexpensive. Once we get past the promises and hyperbole, the risk of collisions, legal liabilities, and environmental calamity will ensure that some critical number of humans will persist onboard ships. Advances in technology will continue to make shipping safer and more efficient, but they will not eventually replace the human masters and crews that serve on today’s commercial vessels.

Despite all the excitement, the benefits of autonomous ships are still very much up for debate. For shipping companies, a switch to autonomous vessels promises cost savings from not having to pay for a master and crew, and perhaps from increased safety. But scores of new operators and technicians would be required to make a system of autonomous vessels work. The equipment to automate a ship will be extremely expensive and would introduce many new potential points of failure into commercial shipping. Autonomous vessels may reduce the number of accidents caused by human negligence, however, the relative safety of autonomous vessels versus manned vessels is pure speculation at this point. Autonomous ships could potentially be more efficient if the space for the crew could be dedicated to additional cargo. But ships will still likely need to have systems and controls in place to allow them to be operated with human master and crew when there are system failures. Autonomous vessels may result in better working conditions overall in the shipping industry as they would eliminate the need to find workers to fill the many difficult and hazardous jobs at sea. But the elimination of merchant mariner jobs would be a tremendous financial blow to those workers in those jobs today.

Recent articles have proclaimed that autonomous vessels are here or just on the horizon and seem to take the adoption of autonomous vessels as a certainty. At an initial glance, the future of autonomous vessels appears very promising. For small vessels the technology that is needed to automate a vessel is here today and is available enough that even a hobbyist can build an autonomous vessel. In 2017, SEA CHARGER, a small solar powered and unmanned home-built boat successfully completed a trip from California to Hawaii using GPS and a satellite modem for guidance and connectivity. And companies in the shipping industry are already using technologies that could eventually be used to automate larger vessels. The newest vessel of the the Red and White Fleet, a San Francisco charter boat company, is a hybrid diesel electric with a 160 kilowatt lithium ion battery pack that provides enough power for the ship to do a one-hour Golden Gate cruise on battery power alone.

One present obstacle for automating larger vessels is battery technology. At the outset, today’s batteries simply do not have the energy density necessary to power larger commercial vessels. Higher capacity and more powerful electric batteries that are powerful enough to move larger ships will likely be developed in the future. However, current battery technology has limitations. Lithium ion batteries, the type used for automated vehicles and aircraft, can explode if overcharged and further, large lithium ion batteries need to be temperature controlled to work properly.

Even more challenging obstacles to the success of autonomous vessels will be the expense and complexity of designing such systems. The technical challenge of operating a large cargo ship autonomously on the open oceans for days or weeks at a time will require a command and control system that does not exist today and may be impractical to build. Seamanship and navigating a ship safely is a challenge with a full complement of crew members on board. Automated ships will require command centers, computers, advanced satellite communications systems, other electronic devices, remote operators, and other technicians. Autonomous vessels would save money by not having a crew, but shipping companies will in many cases be simply replacing merchant mariners with other workers, most likely more expensive technical workers, who will work in offices on land or will be on call to assist autonomous ships across the oceans. Shipping companies will likely need multiple redundant command centers to provide the robust level of connectivity required for the safe and secure operation of these ships.

All of this advanced technology will be very expensive and much of the expense will be the cost of designing and operating a system capable of providing the propulsion, navigation controls, and stopping power necessary to operate a ship continuously in the harsh ocean environment. Weather, wind, waves, fog, obstructions, marine mammals, salt water, weather, birds, other ships, sounds, and almost anything else imaginable is encountered out on the open ocean. An autonomous ship will require incredibly complex technology to withstand the chaos of the ocean environment and enable a ship to respond remotely to any incident or emergency. It is still an open question whether today’s controls and communications technologies are sufficiently robust and capable so as to be relied on for commercial shipping in place of a human crew.

The most serious concern regarding autonomous vessels is the one that will very likely keep them from ever being employed: the risk of exploitation by adversaries, hackers, terrorists, criminals, and other malign actors. Autonomous vessels’ dependence on the electromagnetic spectrum and cyberspace infrastructure coupled with the lack of any human on-scene responders will provide an opportunity for others to interfere with these ships and potentially use them as weapons or for profit. The challenge for system designers is that the characteristics or features that make an automated system feasible for commercial application, such as standardization, continuous communications, and periodic updates, also provide exploitable opportunities for bad actors. Autonomous commercial cargo vessels would provide too easy a target of opportunity for theft, misuse, interference, or worse.

Conclusion

Some reality must be injected into the debate over autonomous ships. It is a truism that electronic and mechanical systems will eventually fail. For vital applications where human lives are at risk such as for aircraft, system engineers design in wide tolerances, safeguards, and multiple levels of redundancy to ensure an adequate margin of safety. The challenge in designing autonomous vessels is building both a safe and secure system that will function effectively in all ocean and maritime conditions without human beings on board and one that is not capable of being exploited by bad actors. Such a system, even if possible to build, would likely be too expensive for companies to build and operate compared to human crew. As a result, autonomous vessels are extremely unlikely to displace the human network of maritime professionals that have always made the maritime transportation system safe and secure.

Commander David Dubay is a Military Professor of International Law and Associate Director for the Law of Maritime Operations, Stockton Center for International Law, U.S. Naval War College, Newport, Rhode Island. The views presented are those of the author and do not necessarily reflect the official policy or position of the U.S. Navy, U.S. Coast Guard, or the U.S. Naval War College.

Featured Image: HMM Dream (Wikimedia Commons)

Dominating the Anti-Ship Missile Threat Through Suppression of Enemy ISR

By Richard Mosier

Introduction

Suppression of enemy air defenses (SEAD)1 is a mission based on recognizing that air defenses have become increasingly lethal, effective, and must be suppressed in order to allow air operations to be conducted with dramatically reduced loss rates. SEAD has evolved since WWII as a direct result of lessons learned in combat. It has established doctrine, established tactics, specialized force structure, specialized weapons, and trained and experienced personnel that plan and execute the mission. The U.S. Navy now faces a similar situation as the result of the dramatic increase in the numbers and sophistication of anti-ship cruise missiles (ASCMs). The situation is summarized in the 2017 Center for Strategic and Budgetary Assessments (CSBA) fleet architecture study as follows:   

“To support deterrence by denial or punishment, American naval forces will need to operate and fight in proximity to the adversary. As described above, U.S. surface forces will face large numbers of enemy anti-ship missiles in these areas and thus require high-capacity air defenses to survive long enough to conduct their offensive missions. Active defenses may, however, be insufficient to win the ‘salvo competition’ between the enemy’s weapons systems and U.S. defenses. To reduce enemy salvos to more manageable levels, U.S. naval forces will also need to deny or degrade the enemy’s ability to find and target ships.”2

The nation that has the offensive capability to suppress an enemy’s intelligence, surveillance, and reconnaissance (ISR) through physical destruction, deception, disruption, and corruption will have the critical edge  – that of superior situational awareness, a significantly reduced threat of attack, and the all-important capability to target and attack enemy ships. While one ASCM hit will severely damage or disable most surface ships, anti-ship missiles are a threat only when an enemy ship has been detected, classified and identified, located and tracked, and targeted (e.g. allocated to a land site or an air, surface or subsurface launch platform). This extended kill chain is dominated by information from ISR systems which can be destroyed or disrupted. 

To prevail in the salvo competition, the U.S. needs a robust offensive capability for Suppression of Enemy Intelligence, Surveillance, and Reconnaissance (SEISR). Like SEAD, this offensive capability has a preplanned and reactive component. The preplanned component achieves the greatest suppressive effect, but it has to be followed by a reactive component focused on suppression of any remaining or reconstituted ISR capacity. This component can be planned in great detail based on comprehensive intelligence analysis of the adversary’s land, air, space, undersea, and maritime surface ISR capabilities. This includes their associated communications, command and control, and intelligence analytical infrastructures. The reactive component requires current intelligence focused on enemy remaining or reconstituted ISR capabilities in order to plan and execute reactive SEISR operations. The complexity of a near-peer nation’s ISR capabilities suggest that SEISR will require a complex joint service response supported by multiple agencies to achieve the objective of reducing the ASCM threat to levels that are manageable for fleet defenses.

Building on the intelligence foundation, the mission will require an additional level of analysis to identify and assess the wide variety of possible kinetic and non-kinetic options for suppressing the wide range of enemy ISR capabilities. This analysis of suppressive options includes not only the effects of operational capabilities, but also, the identification of opportunities and the definition of requirements for new capabilities. The intelligence and effects analytical capabilities required to support the pre-planned and reactive SEISR missions will require the establishment of dedicated analytical cells that have the depth of knowledge of all aspects of enemy ISR systems and of available kinetic and non- kinetic alternatives for achieving the desired suppressive effects.

Suppression has to include a reactive component focused on suppression of enemy efforts to reconstitute or field new capabilities as the conflict evolves. Like SEAD, after the preplanned options are executed, SEISR will have a strong tactical component that drives a new near real-time intelligence and effects analytical focus, and SEISR capabilities that can be applied without delay when opportunities are presented by the enemy. SEISR will have to be animated by a forward-leaning, tactical mindset to keep up with or anticipate changing enemy ISR capabilities and methods throughout the conflict.

If effective, SEISR will reduce the ASCM threat to levels manageable by fleet non-kinetic and kinetic defenses. The non-kinetic component, often referred to as Counter ISR, will be focused on countering enemy ISR platforms and sensors, and countering launch vehicle and ASCM target acquisition systems. These non-kinetic methods range from tactics such as emissions control (EMCON) to deny detection, deception to confuse, and electronic attack against RF systems. Success is heavily dependent on having technical intelligence on enemy ASCM systems; and, the land, air, surface and subsurface ASCM launch complexes or platforms, and their surveillance, reconnaissance, and target acquisition systems, associated communications, and data links.

The key to tactical success in the defense against ASCM attack is directly dependent on the battlegroup tactical commander and his or her subordinate warfare commanders having the situational awareness that enables them to make better tactical decisions faster than the enemy. This situational awareness will be the result of the automated integration of information that is relevant to the specific commander with respect to geography, content, and timeliness.

SEAD has evolved over the past 70 years. The DoD and Navy do not have 70 years to organize and prepare for conflict against a nation with near-peer ISR and target acquisition capabilities. The SEISR mission will require an institutional focus, the rapid evolution of concepts and tactics, focused intelligence and target study support, and the development of personnel with a tailored commitment to the Counter-ISR missions.

Richard Mosier is a retired defense contractor systems engineer; Naval Flight Officer; OPNAV N2 civilian analyst; OSD SES 4 responsible for oversight of tactical intelligence systems and leadership of major defense analyses on UAVs, Signals Intelligence, and C4ISR.

References

[1] Suppression of Enemy Air Defenses — Activity that neutralizes, destroys, or temporarily degrades surface-based enemy air defenses by destructive and/or disruptive means. (JP 1-02)

[2] Center for Strategic & Budgetary Assessments (CSBA) study,  titled Restoring American Seapower: A New Fleet Architecture for the United States Navy ,  Bryan Clark, Peter Haynes, Jesse Sloman, Timothy Walton, dated 9  February 2017.

Featured Image: PHILIPPINE SEA (June 9, 2019) Marines with Marine Medium Tiltrotor Squadron 265 (Reinforced) aboard the USS Wasp (LHD 1) work on an F-35B Lightning II fighter aircraft during night time flight operations. (Official U.S. Marine Corps photo by Lance Cpl. Kenny Nunez Bigay)