Category Archives: Cyber War

Threats, risks, and players in the cyber realm.

The Lawless Trons of Cyberspace

 By LT Travis Nicks, USN


Open borders are here. You likely crossed the Rio Grande before breakfast this morning and you’ll sneak into China before you sleep tonight. Trons travel through cyberspace ignoring all manners of political boundaries. Technology doesn’t care where Ukraine ends and Russia begins, or about an air gap between China and Taiwan. The policy of cyber does; it shouldn’t.

Conceptualizing Cyber Borders

 The national policy for cyber borders has been similar to conceptions of airspace: a vertical extension of geopolitical borders into the sky, or in the case of cyber, into the flowing infrastructure of the internet. If a plane is going to travel through the airspace of another country, that country has to agree to it or the flight has to go around. A long-range bomber aircraft might fly over a few countries for a raid on the other side. Packets or “trons” can travel continents’ worth of countries in a path of least resistance taking seconds. Furthermore, while borders stay the same, digital routes are totally dynamic. In order to prevent the unintended escalation of cyber operations, we must divorce the routes trons take from the effects they cause.

A Path Forward

Fortunately, an existing policy framework already exists for an effects-based policy in a new frontier. We need to rise above the airspace mentality, and draw inspiration from satellites. Satellites travel freely over countries and cross borders with impunity. The international community agreed to a borderless framework in space in the Outer Space Treaty of 1967.1 The orbit a satellite is on and its position relative to political borders are irrelevant when it takes an action that causes an effect. The effect is all that matters. The group at the effect’s end may protest or retaliate, but the country under the satellite at the time of the action will have no issue. If, for example, China shot down a Russian satellite while the satellite was over Mexico, Russia would have no issue with Mexico for having allowed the attack above them, because they don’t own that space. Instead, China would be responsible for causing the malign effect.

The Department of Defense (DoD) has addressed this attribution issue. The DoD Law of War Manual specifically addresses “cyber operations that use communications infrastructure in neutral states.”2 This policy allows trons to be routed through neutral nations so long as the cyber infrastructure in that country allows innocuous information to be routed through it as well, if they route trons for the common World Wide Web. It also specifically acknowledges that it is unreasonable to expect other nations to review all cyber traffic for its content. These principles are fundamental to the spirit and design of the internet. Acknowledging those fundamentals will prevent future conflicts that will otherwise arise from misattribution during analysis of tron routes. Imagine Canada sends cyber attack trons to Russia via France, Thailand, and China. It is easy to see Russia determining that China may not have ownership of the trons that attacked them, but—unless we agree otherwise—they were complicit in the attack. A scenario where clumsy confusion leads to aggressive accusation, the likes of which we have not seen since the eve of WW1, is not far-fetched given the cyber domain’s peculiarities.

Many international cyber agreements are being written. One, the International Code of Conduct for Information Security, has already been signed by major players Russia and China. That agreement addresses the intent of cyber warfare and end effects, but leaves a grey area in between. A 2013 NATO report addressed this point indirectly, saying “demilitarized zones are not feasible in the context of cyberspace, due to its global scope.”3 NATO failed to separate the infrastructure itself from the use of the infrastructure. A United Nations report from 2015 (aware of NATO’s 2013 report)  further departs in the wrong direction and declares “states of jurisdiction over the ICT (information and communications technologies) infrastructure located within their territory.”4 This policy direction simply does not pragmatically address the technology involved. The transnational spirit of the internet and the technology itself does not respect borders as the UN does. A failure to acknowledge this fact is dangerous. The focus on infrastructure and not on the transmissions and effects of the technology leaves a dangerous grey area.

The solution is an agreement among the international community to ignore cyber routes. The DoD’s cyber components must press this issue into international agreements. The Department is uniquely equipped to lead this effort. It is the center of our nation’s cyber warfare universe. The NSA, CIA, DIA, and others with less notoriety are led or staffed largely by military officers and enlisted, retired versions of the same, or DoD civilians. No other organization is as integrated into every aspect of offensive and defensive cyber operations. DoD’s outsized operational involvement gives us an equally outsized cyber policy voice, and we should use it to ensure a discussion on cyber routes.

The discussion should acknowledge, first, that attribution is the foundation of cyber warfare. Second, acknowledge that routing technologies use the communications equipment of neutral states to obscure  the origin of cyber-attacks. After establishing those truths, the policy must focus on ensuring the analysis of digital forensic evidence acknowledges the inherent deceptiveness of cyber route analysis and delegitimizes the evidence as international policy. The international community must agree to focus on the information and effects of the trons and not attempt to hold accountable the infrastructure used for transmission. Absolve the owners of the infrastructure and the land on which it sits from responsibility for the trons it transmits, and inversely remove the standing they might have if they dislike the trons.


The publicly available cyber discussions in the international community have so far focused on intent, effects, and physical infrastructure while they ignore any agreement on cyber routes. To avoid a massive international misunderstanding in the fog of attribution we must internationally agree to ignore cyber routes. We have a framework for this. In space we own the object, not the orbit. In cyber we will own the information, not the route.

Travis Nicks is a nuclear submarine officer serving at the Pentagon. He is focused on finding precise fixes to complex problems. LT Nicks is interested in cyber policy and personnel performance issues. The views herein are his alone and do not represent the views of the Department of Defense, the Department of the Navy, or any other organization.


1. Outer Space Treaty, 1967, Article II

2. Department of Defense, Law of War Manual, 2016, Section 16.4.1

3. Dr. Katharina Ziolkowski, NATO Cooperative Cyber Defense Centre of Excellence, Confidence Building Measures for Cyberspace – Legal Implications, 2013, Section 3.2

4. Group of Government Experts, United Nations General Assembly, report on Developments in the Field of Information and Telecommunications in the Context of International Security, 2015, Section VI.28.a.

Featured Image: U.S. Navy Petty Officer 1st Class Joel Melendez, Naval Network Warfare Command information systems analysis, U.S. Air Force Staff Sgt. Rogerick Montgomery, U.S. Cyber Command network analysis, and U.S. Army Staff Sgt. Jacob Harding, 780th Military Intelligence Brigade cyber systems analysis, analyze an exercise scenario during Cyber Flag 13-1, Nov. 8, 2012, at Nellis Air Force Base, Nev. (U.S. Air Force photo by Senior Airman Matthew Lancaster)

Twenty-First Century Information Warfare and the Third Offset Strategy

The following article originally published at National Defense University’s Joint Force Quarterly and is republished with permission. Read it in its original form here

“While the United States and our closest allies fought two lengthy wars over the past 13 years—the rest of the world and our potential adversaries were seeing how we operated. They looked at our advantages. They studied them. They analyzed them. They looked for weaknesses. And then they set about devising ways to counter our technological over-match.”

—Deputy Secretary of Defense Robert Work

By James R. McGrath

It is well established that both state and nonstate adversaries are gaining parity with current U.S. military-technological capabilities, and as a result adversaries are eroding the tremendous asymmetrical conventional warfare advantages once exclusively enjoyed by U.S. forces.1 This leveling of the playing field has been enabled through decreased costs of modern information technology and low barriers of entry to attaining precision weapons; stealth capabilities; sophisticated commercial and military command and control (C2) capabilities; advanced intelligence, surveillance, and reconnaissance (ISR); and relatively cheap access to commercial and government-sponsored space and cyber capabilities.2 As a result, in November 2014, then–Secretary of Defense Chuck Hagel announced the Defense Innovation Initiative to counter adversary technical and tactical progress that, if left unchecked, will ultimately hinder U.S. ability to project power across the globe and permanently challenge its aims of retaining its coveted status as a global hegemon.3 While there are many aspects to this initiative, the Third Offset Strategy, as outlined in policy, does not adequately address the need for advanced information operations (IO), particularly IO wargaming, modeling and simulation (M&S), and training systems. The purpose of this article is to make the case that increasing the investment in joint live, virtual, and constructive (LVC) IO wargaming and simulations will generate lasting asymmetrical advantages for joint force commanders and will significantly contribute to the achievement of the Third Offset Strategy.

U.S. Navy E-2C Hawkeye 2000 aircraft assigned to “Wallbangers” of Carrier Airborne Early Warning Squadron 117 approaches flight deck of USS John C. Stennis while ship is underway in Pacific Ocean, July 13, 2006 (DOD/John Hyde)
U.S. Navy E-2C Hawkeye 2000 aircraft assigned to “Wallbangers” of Carrier Airborne Early Warning Squadron 117 approaches flight deck of USS John C. Stennis while ship is underway in Pacific Ocean, July 13, 2006 (DOD/John Hyde)

Military Problem

The Defense Innovation Initiative is aimed at solving the problem of ensuring that lasting power projection capabilities are available to the U.S. military in pursuit of the Nation’s core and enduring national interests, most notably safeguarding national security, promoting democratic values, maintaining long-term economic prosperity, and preserving the current international order.4 The solution to this problem—one that has yet to be fully articulated and bounded in scope, much less solved—has been named the Third Offset Strategy, meaning that there are a series of strategic capabilities that must be developed to give U.S. forces a decisive military-technological offset that generates lasting asymmetrical advantages over any potential adversary for the next 25 to 50 years. The strategy is so named because there already were two successful offset strategies in the 20th century.5 The first was President Dwight D. Eisenhower’s New Look Strategy during the 1950s, which sought to develop advanced nuclear weapons capabilities to offset the Soviet Union’s overwhelmingly superior conventional forces and nascent nuclear capabilities. The second strategy was Secretary of Defense Harold Brown’s Offset Strategy during the 1970s, which was aimed at countering recent Soviet advances in both numerical and technical parity regarding its nuclear arsenal, coupled with sustained numerically superior conventional forces deployed in Eastern Europe and elsewhere around the globe. Essentially, the U.S. Offset Strategy invested in stealth technologies, precision weapons, sophisticated C2 capabilities, and advanced airborne and space-based ISR that were ultimately revealed to the world during the first Gulf War.

As outlined by Secretary Hagel and currently being championed by Deputy Secretary of Defense Robert Work, the Defense Innovation Initiative emphasizes three key areas for sources of innovation: long-range research and development, new operating concepts, and reenergizing wargaming efforts and techniques.6 Currently, most of the discussion regarding this initiative is overly focused on purely technical, materiel solutions, such as unmanned autonomous systems and sources of new global strike and ISR capabilities. Regrettably, the appeal for the development of new operating concepts and wargaming techniques seems to be overlooked in the media and most defense policy think tanks.

What many analysts fail to realize is that the operating environment, specifically the information environment (IE),has changed, and our adversaries are undermining our asymmetrical advantages through innovative use of the information space, particularly by operating in the informational and cognitive dimensions on a global scale.8 What should be obvious—but unfortunately is not to many military and defense planners—is that IO is precisely the tool set that joint force commanders already have to attack our adversaries’ newly found advancements in C2 warfare, ISR, and precision weapons. Unfortunately, for example, the Russians,9 Chinese,10 and the Islamic State of Iraq and the Levant,11 to name a few, are now also demonstrating advanced forms of information warfare that continually undermine U.S. tactical prowess and enable successful antiaccess/area-denial (A2/AD) strategies that are the root cause of the problem.12 For U.S. forces to achieve the Third Offset Strategy, the joint force must be able to achieve information superiority at the time and place of its choosing. To do that, the joint force must develop innovative operating concepts for IO, wargame them using a variety of computer-based methods, and then train to the newly discovered tactics, techniques, and procedures that are absolutely essential for 21st-century warfare—a type of warfare aimed at breaking the will of the adversary through control of the IE.

Currently, IO is often treated as an ad hoc, additive activity during most joint LVC training events; therefore, IO is routinely ignored or underutilized despite being a major component of every real-world joint operation since Operations Desert Shield and Desert Storm13 and arguably in other forms, such as psychological warfare and deception, throughout all of human history.14 Much of the reason for this routine omission and lack of prominence in major joint LVC exercises is that military information support operations (MISO, formerly known as psychological operations), public affairs, electronic warfare (EW), cyber warfare, military deception (MILDEC), special technical operations, and other information-related capabilities (IRC)15 are difficult to simulate over a relevant exercise time horizon. Even more challenging is the ability to realistically but sufficiently model the physical, technical, and cognitive complexities of the IE as a coherent whole whose sum is greater than its individual parts. If this can be achieved, U.S. joint forces would be able to train in synthetic environments that would ultimately enable them to effectively maneuver within the IE, counter recent adversary military-technological gains and newfound information warfare prowess, and provide the baseline for a newly defined technical, military, and psychological offset.

IO as the Solution

By acknowledging the fact that adversaries are reducing our operational advantages and conventional overmatch through innovative use of the IE, it becomes increasingly imperative that U.S. IO training, wargaming, and operating concepts be improved. It is also important to emphasize that this improvement should not only mirror-image the activities of our adversaries, but also provide joint force commanders with a comprehensive set of tools and concepts that allows them to outmaneuver adversaries within the cognitive, informational, and physical dimensions of the IE. As a starting point, a brief analysis of modern IO reveals at least six interrelated IO lines of effort (LOE), which if truly integrated with each other could facilitate the Third Strategic Offset. These primary LOEs or mission areas are psychological warfare, C2 warfare, denial and deception, cyber warfare, engagement, and IE situational awareness.16

While on the surface some of these IO LOEs appear well-established IRCs, that is not the intent or the case. These highly complementary and interdependent mission areas are IRC agnostic—meaning that no one particular IRC is necessarily required for a particular mission.17 In fact, multiple IRCs applied in a combined arms fashion are a prerequisite to achieving success in any one of these critical mission areas. This idea is consistent with the accepted Department of Defense (DOD) IO definition and is precisely why they are considered germane to any serious discussion of future IO.18 The following discussion briefly highlights the need for further development and implementation of these six mission areas, as well as their relevance to the future joint force.

Generally speaking, psychological warfare is defined as actions against the political will of an adversary, his commanders, and his troops, and includes inform and influence operations directed at any third party capable of providing sympathy or support to both the adversary or friendly forces.19 This mission area directly targets the cognitive dimension of our adversaries’ operations in the IE and ultimately attacks their will to resist. It should be the primary focus of the joint force in order to ensure lasting tactical, operational, and strategic success, especially while state and nonstate actors are simultaneously competing for dominance in this highly contested space. After all, by definition, war as a contest of political wills by other means is the primary basis of most warfighting philosophies.20 Therefore, increasing the effectiveness of joint operations in this mission area would certainly require improved MISO, EW, cyber, and MILDEC capabilities and authorities at all levels of war.

C2 warfare is about controlling the physical and informational dimensions of the IE by cutting off an enemy force from its commander, key decisionmakers, or automated control systems through attacking vulnerable control mechanisms or by simply attacking the commander and removing him or her from the C2 equation, ultimately resulting in the collapse of his or her subordinate forces.21 Applying IRCs for C2 warfare purposes is one of the few ways to overcome the joint operational access and A2/AD problems. Using a combination of physical destruction, EW, cyber, MISO, and MILDEC capabilities would be indispensable to the process of systematically unravelling an adversary’s integrated air and coastal defenses; undermining his ballistic and cruise missile standoff weapons; and blinding his advanced land, sea, air, cyber, and space-based ISR platforms. Furthermore, there is a defensive aspect of C2 warfare that requires advanced electromagnetic spectrum operations, information assurance, and defensive cyberspace operations to ensure assured C2 over friendly forces on a global scale. Without a modern, robust defensive C2 warfare capability, U.S. global power projection is nearly impossible.

Denial and deception operations are a combination of operations security and MILDEC activities, supported by a wide-range of IRCs, to protect critical information, facilitate surprise, and deliberately mislead an adversary to achieve a tactical, operational, or strategic advantage. Denial and deception operations provide force-multiplying advantages by enabling operational access and joint forcible entry operations under A2/AD conditions and contributing to the cognitive demise of an adversary as part of the psychological warfare effort. In addition, counter–denial and deception operations are critical to future conflicts, as demonstrated by our adversaries’ skilled use of deception in Syria, Iraq,22 and the Crimean Peninsula.23

Cyber warfare in the IO context is about controlling the content and flow of information within the information dimension of the IE. It includes the convergence of the cyber and EW IRCs, where cyber is enabled at the tactical level through radio frequency spectrum operations; cyber warfare in support of the other five IO mission areas; and offensive cyberspace operations in support of traditional kinetic operations. For instance, a prime example of this IO mission area in action is the Russia-Georgia war of 2008, during which the Russians executed the world’s first synchronized cyber attack in concert with major combat operations, likely using both state cyber capabilities and nonstate hackers to attack key Georgian communications, finance, and government nodes prior to and during combat operations to control the narrative and pace of the psychological war as well as demonstrate Russian resolve and future deterrence capabilities.24 Furthermore, there is tremendous opportunity for future cyber warfare operations to: 1) support C2 warfare in A2/AD conditions by creating gaps and seams in an adversary’s defensive system of systems from standoff ranges, especially during the early shaping phases of an operation; 2) enable the psychological warfare effort through focused and broad social media messaging; and 3) support both the engagement and IE situational awareness efforts as message delivery and ISR platforms.

Then–Secretary of Defense Chuck Hagel announces Defense Innovation Initiative and Third Offset Strategy during Reagan National Defense Forum at The Ronald Reagan Presidential Library in Simi Valley, California, November 15, 2014 (DOD/Sean Hurt)
Then–Secretary of Defense Chuck Hagel announces Defense Innovation Initiative and Third Offset Strategy during Reagan National Defense Forum at The Ronald Reagan Presidential Library in Simi Valley, California, November 15, 2014 (DOD/Sean Hurt)

The U.S. Army has recently established engagement as a concept for a seventh warfighting function and defines it as influencing people, security forces, and governments across the range of military operations to prevent, shape, and win in the future strategic environment.25 While there are close similarities, in this context, engagement is an IO mission—not a warfighting function focused on the intersection between partnership activities and special warfare activities.26 In this context, engagement is about operating in the cognitive dimension of the IE through informing and influencing partner and adversary nations using a wide range of IRCs, including but not limited to media operations using public affairs and MISO. Engagement as an IO mission also includes public affairs operations to harden the friendly force against adversary psychological warfare. Moreover, for the foreseeable future, engagement will remain a combatant commander’s primary tool for Phase 0, steady-state, and theater security cooperation (TSC) operations, used to send signals to our adversaries and allies that we are committed to the current international order and a stable security environment. For instance, engagement could and should be used to amplify our TSC actions in the U.S. Pacific Command area of responsibility to ensure that Chinese psychological, media, and legal warfare27 are countered with the overarching goal of ensuring that our regional allies are able to observe our actions and interpret them as U.S. commitment to defend our common interests.

Lastly, IE situational awareness is defined as understanding past events within all three dimensions of the IE, tracking ongoing events, and being able to adequately model and reliably predict (or at the very least wargame) a wide variety of possible outcomes in support of the other five IO mission areas. These activities include not only all traditional intelligence disciplines but also the use of a broad range of IRCs operating on the battlefield as sensors, processors, and actors. In addition, IE situational awareness requires advanced M&S to aid IO planners and commanders in the extremely difficult task of understanding the dynamic, nonlinear, and ever-changing IE. Furthermore, IE situational awareness requires a detailed understanding of individuals, social groups, behavior dynamics, communication architectures, exploitation of narratives, and target audience vulnerabilities, as well as the newly emerging techniques of real-time, live big data analytics, social media scraping, and memetic warfare.28

IO M&S Requirements

As discussed, there is a known gap for joint force commanders to exercise their IO cell within the six mission areas outlined above. There is also a gap for exercising both supporting organic and non-organic IRCs and then integrating them with traditional kinetic fires. Closing this gap with computer-based M&S would ensure that joint forces are well trained in a repeatable and expandable synthetic environment prior to employment across the full range of military operations. This is particularly important because IO mission areas and their supporting IRCs are highly sensitive in nature, and live IO training events are nearly impossible to conduct. For instance, certain EW, cyber, and special technical operations capabilities must be well protected to achieve any form of technical surprise, and MISO, EW, cyber, MILDEC, and special technical operations also have uniquely strict political and legal sensitivities.

Achieving repeatable, scalable, and fully integrated simulation of the IE is not an easy task. However, if the Third Offset Strategy is to be realized, the Services and DOD must invest in materiel solutions to enable the joint force to train its IO forces in a synthetic environment. There are several key additional requirements for any useful automated M&S of the IE and IO for advanced wargaming purposes:

  • Must encompass a system-of-systems approach that includes training for individual IO and IRC mission essential tasks through the highest levels of a joint force’s collective-level training events. Examples include a range of immersive virtual environments for individual and small-unit IRC tactical trainers through high-level constructive simulations supporting strategic- and combatant command–level wargaming, capable of seamlessly integrating with each other as well as other kinetic and legacy M&S systems.
  • Must incorporate the full array of possible effects that can be generated by organic and non-organic IRCs from the strategic to the tactical level of warfare.
  • Must be interoperable with other joint and Service-level LVC M&S networks and systems.
  • Must be compatible with all major constructive M&S programs of record in order for IO M&S to be fully integrated into a single common tactical and operating picture.
  • Must be interoperable with current command and control systems and classified intelligence systems up to Top Secret/Sensitive Compartmented Information and other high-level operational security control measures to be integrated into a single common tactical and operating picture.
  • Must incorporate open source media and the replication or emulation of social and traditional media for analysis, using advanced forms of data analytic techniques to simulate actions in the IE.
  • Must incorporate advanced decision support M&S techniques, including but not limited to artificial intelligence–enabled augmented reality, chatbots, and other expert systems to facilitate understanding of actions in the IE.
  • Must leverage state-of-the-art artificial intelligence algorithms, machine-learning software, and advanced M&S paradigms, such as agent-based modeling, systems dynamics, and game-theoretic modeling in a federated architecture, to accurately model complex, adaptive systems with the goal of replicating the behaviors and communications conduits of a vast array of thinking target audiences and their highly automated information systems.

Ultimately, the desired endstate for developing an advanced IO M&S capability is to ensure that there are highly trained forces ready to design, plan, rehearse, execute, and assess operations within the IE, particularly when confronted with a sophisticated, technologically enabled 21st-century adversary. This can and should be implemented via a family of tactical- through strategic-level M&S systems that adequately model and simulate friendly, neutral, and adversary decisionmaking capabilities, behaviors, and information systems as well as the complex feedback loops that comprise all relevant aspects of the physical, informational, and cognitive dimensions of the IE.

IO Considerations

There are five prominent counterarguments that immediately come to mind for not developing advanced IO M&S capabilities. These arguments range from the cost of IO M&S materiel solutions, the presence of other existing solutions, widespread doubts regarding the efficiency and efficacy of IO across the full range and spectrum of military operations, and the complex framework of legal and policy restrictions governing most joint force IRC employment.

The first counterargument is that developing IO M&S systems would be expensive and that the technology for simulating the IE is not mature. However, this is exactly the type of investment that the Defense Innovation Initiative is calling for: an investment that leverages advanced technologies such as artificial intelligence, machine learning, agent-based modeling, and big data analytics that our adversaries would not likely have ready access to exploit. This investment in IO M&S would also lead to new operating concepts that would be tested during high-level joint wargames using the very same systems, which is precisely the intent behind the second and third key areas for innovation outlined by the Defense Innovation Initiative.

The second counterargument is that the Joint Staff and the Office of the Secretary of Defense are already investing in IO M&S through the use of the Joint IO Range and other cyber and EW initiatives. While that is a first step, the Joint IO Range is only a stovepipe capability for cyber warfare effects rather than a capability that truly exercises all relevant IRCs in support of joint operations—that is, something more than cyber and EW operations are required to realize the true potential for full-spectrum IO, specifically how to assemble a relevant array of IRCs aimed at placing an adversary on the horns of a dilemma and then inducing a complete collapse of their will to resist our aims and objectives. Without being able to model and integrate the cognitive, informational, and physical aspects of the IE in a coherent simulation, influencing adversary decisionmakers and their supporting systems would not be achievable to the level of what is required for the Third Strategic Offset.

Soldiers from Britain’s Royal Artillery train in virtual world during Exercise Steel Sabre 2015 (MOD/Si Longworth)
Soldiers from Britain’s Royal Artillery train in virtual world during Exercise Steel Sabre 2015 (MOD/Si Longworth)

The third counterargument is that IO is not suited for major combat operations, and thus many military planners perceive it as a tool only for counterinsurgency or irregular warfare, whereby keeping the violence threshold low or controlling the attitudes and the behavior of the local populace is paramount. This is not the case, however, since IO and IRCs have routinely been employed by U.S. forces throughout all phases of operations and all types of conflict, from World War II through Operations Enduring Freedom and Iraqi Freedom. Additionally, there is considerable evidence that increasing the lethality of operations using information warfare is central to the strategy of our 21st-century adversaries, most notably and recently demonstrated by the Russians operating in Ukraine and Syria.29

The fourth counterargument is that IO is not well suited for the strategic shaping and deterrence missions required by the Third Offset Strategy, or at least not as effectively as the physical advantages that the Second Offset capabilities have provided. However, in some sense, the luxuries that were afforded by the unprecedented freedom of movement, maneuver, and firepower that successfully held our adversaries in check for the past 25 years are also the root cause of our current military problem—namely that U.S. joint forces routinely win tactically and sometimes operationally, but continuously have their victories ultimately overturned at the operational and strategic levels, such as in Iraq and Afghanistan. Ironically, it has been the overdependence on our physical, conventional superiority that has led the U.S. military to neglect the mental and moral aspects of warfighting, a deficiency that IO, by definition and if sufficiently raised to the appropriate level of prominence within U.S. warfighting doctrine, can immediately address.30 In addition, to further discredit the notion that IO is an ineffective strategic shaping and deterrence tool, it is a well-accepted fact that due to international legal, diplomatic, and political constraints, IO and a handful of select influence-oriented IRCs are our military’s only available tools to successfully prevent, deter, initiate, or close a conflict.

The fifth and final counterargument is that there are insurmountable legal and policy restrictions for the joint force to conduct full-spectrum IO. This is simply not the case. However, the two primary supporting counterarguments either revolve around U.S. Code Title 10, Armed Forces, versus Title 50, War and National Defense, arguments, or claim that the current review and approval processes for IRCs are too complicated to achieve timely and relevant effects in the IE. The first supporting argument is false because Title 10 and Title 50 issues have already been solved and are deconflicted on a daily basis using a highly complex but extremely effective ISR and strike network. This network is enabled by intelligence professionals and operators working side by side, both physically and virtually, and allows the lowest tactical formations to receive the benefits of strategic assets and vice versa. There is some truth to the second supporting counterargument that the review and approval processes are overly complex. Many IRCs do, in fact, require DOD- and national-level approvals. This is not true for all IRCs, however, and there are numerous IRC-unique programs already in place for military planners to immediately implement. In addition, all IRCs can be and already are implemented with great effect for those commanders with well-trained IO staffs. Hence, developing an IO M&S and training capability is actually part of the solution to the military problem and not an impediment. Lastly, as joint forces continue to demonstrate their increased proficiency for fighting and winning in the IE—and as our adversaries do the same—it is inevitable that over time, many of the authorities for certain sensitive IRC activities, currently held at the strategic level, will naturally be delegated to operational and tactical commanders.

Soldiers from U.S. Army’s 350th Tactical Psychological Operations, 10th Mountain Division, drop leaflets over village near Hawijah, Iraq, on March 6, 2008, promoting idea of self-government (U.S. Air Force/Samuel Bendet)
Soldiers from U.S. Army’s 350th Tactical Psychological Operations, 10th Mountain Division, drop leaflets over village near Hawijah, Iraq, on March 6, 2008, promoting idea of self-government (U.S. Air Force/Samuel Bendet)

Future Innovation

In the long run, creating the necessary technical innovation in the field of advanced IO M&S and training would no doubt lead to the maturation of capabilities and tactics needed to achieve the goals of the Third Strategic Offset. Furthermore, the gaps that IO M&S could immediately close are also the first steps in the necessary research, design, and development of an integrated global effects network that could and should act as the primary intellectual engine for an advanced, semi-autonomous global strike and ISR network—a network that has been considered the “holy grail” by those who already offer solutions to the Third Strategic Offset problem and that is a solution that is eerily similar to nefarious systems of science fiction literature and movies, such as The Terminator’s self-aware “SkyNet” and “Genisys” programs.31 The flaw in this popularized global strike and ISR network solution—other than the obvious science fiction connotations—is that it is short-sighted and deals only with the current problem within the physical dimension of the operating and information environments. The real solution is something far more complicated and worthy of the forward thinking required by the Third Strategic Offset problem set.

A better solution is an advanced, semi-autonomous hybrid kinetic and nonkinetic weapons system fully enabling the warfighter to, at a moment’s notice, conduct highly integrated, cognitively focused operations that are also simultaneously synchronized with other ongoing joint actions across the globe, as well as concurrently facilitating long- and short-term influence campaigns. Continuously and consistently striking at the will of our adversaries through the use of carefully selected physical, information, and cognitive-related capabilities should be the ultimate goal of this advanced weapons system concept. This system would facilitate maneuver warfare and mission command by integrating, synchronizing, and coordinating many different capabilities by different commanders at all levels directly against an adversary’s physical, moral, and mental critical capabilities. Again, this is something that clearly cannot be accomplished without advanced IO M&S accurately and continuously modeling the complex, nonlinear, and ever-changing IE. While the fusing of kinetic and nonkinetic modeling into a semi-autonomous global effects network might seem like material for science fiction, in the current era of machine-based learning and artificial intelligence–enabled autonomous vehicles, these capabilities are not too far over the horizon and are worthy goals for the ambitions of the Third Offset Strategy.

The military-technological gains of our adversaries over the past several decades are apparent and alarming. To counter this threat and meet the intended objectives of the Defense Innovation Initiative, a robust set of research and development programs, concept development activities, and wargaming efforts has begun to uncover a series of technologies required to achieve the Third Strategic Offset. While an advanced family of IO LVC M&S systems is not the only capability required to achieve this ambitious offset strategy, failing to recognize the prominence of IO in this new era would be a serious mistake. In addition, these IO M&S capabilities should be the foundation and focus of any future advanced, semi-autonomous global effects system. Therefore, advanced IO M&S is an absolutely indispensable capability that will fully enable the joint force to achieve lasting asymmetrical advantages over our newly emerging, emboldened, and technologically savvy 21st-century adversaries. JFQ

Lieutenant Colonel James R. McGrath, USMC, is the Information Warfare Department Head for Expeditionary Warfare Training Group Atlantic.


1 James R. Clapper, Opening Statement to the Worldwide Threat Assessment Hearing, Senate Armed Services Committee, February 9, 2016, available at <>.

2 Robert Martinage, Toward A New Offset Strategy: Exploiting U.S. Long-Term Advantages to Restore U.S. Global Power Projection (Washington, DC: Center for Strategic and Budgetary Assessment, October 2014).

3 Chuck Hagel, “Secretary of Defense Memo: Defense Innovation Initiative,” November 2014.

4 National Security Strategy (Washington, DC: The White House, February 2015), available at>.

5 Martinage.

6 Hagel.

7 The information environment is an environment that is an aggregate of individuals, organizations, and systems that collect, process, disseminate, or act on information as defined by Department of Defense (DOD) Directive 3600.01, Information Operations (Washington, DC: DOD, May 2013), available at <>.

8 The information environment is comprised of three interrelated dimensions: cognitive, information, and physical. See Joint Publication 3-13, Information Operations (Washington, DC: The Joint Staff, November 20, 2014), x.

9 Jolanta Darczewkska, The Anatomy of Russian Information Warfare (Warsaw: Centre for Eastern Studies, May 2014), available at <>.

10 Larry M. Wortzel, The Chinese People’s Liberation Army and Information Warfare (Carlisle, PA: Strategic Studies Institute, March 2014), available at <>.

11 U.S. Army Training and Doctrine Command (TRADOC) G-2 Intelligence Support Activity, Complex Operational Environment and Threat Integration Directorate, Threat Tactics Report: Islamic State of Iraq and the Levant (Fort Leavenworth, KS: TRADOC, November 2014), 1, 13–15, available at <>.

12 Joint Operational Access Concept, Version 1.0 (Washington, DC: DOD, January 17, 2012), available at <>; and Joint Concept for Entry Operations (Washington, DC: The Joint Staff, April 2014), available at <>.

13 John Broder, “Schwarzkopf’s War Plan Based on Deception,” Los Angeles Times, February 28, 1991, available at <>.

14 Jon Latimer, Deception in War (New York: Overlook Press, 2001), 6.

15 Information-related capabilities are tools, techniques, or activities employed within the dimensions of the information environment and can be used to achieve specific ends as defined by DOD Directive 3600.01.

16 Martin C. Libiki, What Is Information Warfare? (Washington, DC: NDU Press, 1995); Darczewkska; Wortzel; TRADOC.

17 Agnostic in this sense is based on the information technology context, where software and other processes are independent of hardware or various platforms. In this case, for example, psychological warfare objectives could be achieved outside the traditional doctrinal military information support operations construct with kinetic effects, maneuver, and other information-related capabilities (IRCs). Similarly, cyber objectives and denial and deception objectives could be achieved or supported outside the current cyber and joint military deception doctrinal framework using a variety of IRC effects—not to circumvent current DOD policy and authority framework but to simply acknowledge that there are other, perhaps more innovative means and ways to achieve the same ends.

18 Information operations are generally defined as the integration, coordination, and synchronization of IRCs to deny, degrade, disrupt, or usurp an adversary’s decisionmaking capabilities, people, and systems in support of a commander’s objectives as defined by DOD Directive 3600.01.

19 Libicki, 34.

20 Carl Von Clausewitz, On War, trans. J.J. Graham (London, 1909), chapter 1, available at <>.

21 Libicki, 9–15.

22 TRADOC, 12.

23 Lucy Ash, “How Russia Outfoxes Its Enemies,”, January 29, 2015, available at <>.

24 David Hollis, “Cyberwar Case Study: Georgia 2008,” Small Wars Journal, January 2011, available at <>.

25 TRADOC Pamphlet 525-8-5, Functional Concept for Engagement (Fort Eustis, VA: TRADOC, February 28, 2014), available at <>.

26 Ibid.

27 Wortzel.

28 Memetics and memetic warfare are used in the context of discrete ideas or units of culture being rapidly transferred to wide audiences, particularly over social media—that is, things “going viral” and their influence on cognition and behavior. See Jeff Giesa, “It’s Time to Embrace Memetic Warfare,” Defense Strategic Communication1, no. 1 (Winter 2015), available at <>.

29 David Stupples, “How Syria Is Becoming a Test Zone for Electronic Warfare,”, October 9, 2015, available at <>.

30 Marine Corps Doctrinal Publication 1, Warfighting (Washington, DC: Headquarters Department of the Navy, June 7, 1997). Mental, moral, and physical aspects of maneuver warfare and the Marine Corps’ warfighting philosophy are discussed throughout the text.

31 Martinage.

Featured Image: MEDITERRANEAN SEA (Aug. 25, 2016) Sailors stand watch in the combat information center aboard USS Ross (DDG 71) Aug. 25, 2016. (U.S. Navy photo by Mass Communication Specialist 1st Class Theron J. Godbold/Released)

Navy Information Warfare — What is it?

By Richard Mosier

Defining a warfare area’s mission and function is the foundation for all activities required to conduct mission area analysis to determine requirements, develop doctrine and tactics, and structure, train, and equip the fleet to accomplish the mission.

Within the U.S. Navy, the terms Information Warfare (IW), Information Operations (IO), and Information Operations Warfare are widely used but not well defined. Nor are they linked to provide coherent definitions from joint and service perspectives that are essential to successful communication regarding IW’s relationship to other warfare areas and supporting activities. The result is confusion and a lack of progress in structuring, training, and equipping the U.S. Navy to perform this emerging predominant warfare area.

The following are examples of how these terms mean different things to different groups:

Reference: Station Hypo, 14 Jul 16, “CWOBC, a Community’s Course“: “The Cryptologic Warfare Officer Basic Course (CWOBC) formerly known as the Information Warfare Basic Course (IWBC) is an entry level course for all officers, regardless of commission source, who are coming into the Cryptologic Warfare Officer (CWO) community. Six weeks in length with an average annual throughput of 154, the course focuses on Signal Intelligence (SIGINT), Electronic Warfare (EW), Cyber Operations, as well as security fundamentals and community history.” Inasmuch as the content of the basic course remained the same, the terms “Information Warfare” and “Cryptologic Warfare” appear to mean the same thing for this group.  

150828-N-PU674-005 PENSACOLA, Fla. (Aug. 28, 2015) Officers attending the Information Professional Basic Course at Center for Information Dominance Unit Corry Station listen to Rear Adm. Daniel J. MacDonnell, commander of Information Dominance Corps Reserve Command (IDCRC) and Reserve deputy commander of Navy Information Dominance Forces (NAVIDFOR). Macdonnell spoke with them about career opportunities in the Information Dominance Corps and active and reserve integration. (U.S. Navy photo by Carla M. McCarthy/Released)
PENSACOLA, Fla. (Aug. 28, 2015) Officers attending the Information Professional Basic Course at Center for Information Dominance Unit Corry Station listen to Rear Adm. Daniel J. MacDonnell, commander of Information Dominance Corps Reserve Command (IDCRC) and Reserve deputy commander of Navy Information Dominance Forces (NAVIDFOR). Macdonnell spoke with them about career opportunities in the Information Dominance Corps and active and reserve integration. (U.S. Navy photo by Carla M. McCarthy/Released)

Reference the BUPERS Information Warfare Community Management web page. It only addresses Information Professionals (1820), Cryptologic Warfare Specialists (1810), Cyber Warfare Engineers (1840), Intelligence Officers (1830), and Oceanography Specialists (1800), implying that together this aggregation of legacy support specialties constitutes Information Warfare. All of these are restricted line designators that by definition exercise command only over organizations that perform these specialties. There are no unrestricted line designators for specializing in and exercising Information Operations Warfare Commander (IWC) functions described in Naval Warfare Publication NWP 3-56 below.

Reference: NAVADMIN 023/16, DTG 021815 Feb 16, Subject: Information Dominance Corps Re-designated Information Warfare Community. The message states Information Warfare’s mission is: “providing sufficient overmatch in command and control, understanding the battlespace and adversaries, and projecting power through and across all domains.” This description of the Information Warfare mission is substantially different from the definition of Information Operations defined by Secretary of Defense, adopted by the JCS, and reflected in Naval Warfare Publications.

The Secretary of Defense defines Information Operations in DOD Directive 3600.1, dated May 2, 2013, as: “The integrated employment, during military operations, of information-related capabilities in concert with other lines of operation to influence, disrupt, corrupt, or usurp the decision making of adversaries and potential adversaries while protecting our own.” This definition was incorporated in Joint Pub 1-02 and Naval Warfare Publications.

Naval Warfare Publication (NWP) 3-13 Information Operations, Feb 2014, defines Information Operations as: “the integrated employment, during military operations, of information-related capabilities in concert with other lines of operation to influence, disrupt, corrupt, or usurp the decision making of adversaries and potential adversaries while protecting our own.” Paragraph 1-3 states: “Evolving joint and Navy doctrine has refined IO as a discrete warfare area, not just a supporting function or enabling capability, and the IE [information environment] as a valuable and contested part of the battlespace.”

160123-N-PU674-018 PENSACOLA, Fla. (Jan. 23, 2016) Information warfare Sailors from the Center for Information Dominance Unit Corry Station mentor high school students during CyberThon, an event designed to develop the future cybersecurity workforce. Hosted by the Blue Angels Chapter of the Armed Forces Communications and Electronics Association, CyberThon challenged the students to play the role of newly hired information technology professionals tasked with defending their company's network. (U.S. Navy photo by Carla M. McCarthy/Released)
PENSACOLA, Fla. (Jan. 23, 2016) Information warfare Sailors from the Center for Information Dominance Unit Corry Station mentor high school students during CyberThon, an event designed to develop the future cybersecurity workforce. Hosted by the Blue Angels Chapter of the Armed Forces Communications and Electronics Association, CyberThon challenged the students to play the role of newly hired information technology professionals tasked with defending their company’s network. (U.S. Navy photo by Carla M. McCarthy/Released)

Naval Warfare Publication (NWP) 3-56, subject: Composite Warfare Commander, Feb 2010, Paragraph 3.7 identifies twenty-three typical functions assigned to the “Information Operations Warfare Commander (IWC)” that are summarized below:

  • Planning IO, EW, Military Deception, Operations Security, PSYOP, and Spectrum Usage.  
  • Developing, coordinating, and practicing preplanned responses for counter-surveillance, counter-influence, and counter-targeting in response to changes in the tactical situation.        
  • Recommending the EMCON profile and coordinating with ASWC to manage acoustic emissions in response to changes in the tactical situation.
  • Controlling ES and EA assets, and coordinating employment of ES and cryptologic sensors.
  • Conducting computer Network Defense (CND) and COMSEC monitoring.
  • Paragraph 4.3.4 states; “The IWC establishes and maintains the tactical picture….” It also states: [T]he IWC ….. achieves and maintains information superiority….and supports other warfare commanders.”

The term Information Operations is officially defined and documented. The term Information Warfare, though used extensively within the Navy, is not clearly defined, nor is it linked to Information Operations, resulting in confusion and limited progress.

VADM Jan Tighe assumed duties as OPNAV N2/N6 and Director of Naval Intelligence in July 2016. Image credit: US Navy
VADM Jan Tighe assumed duties as OPNAV N2/N6 and Director of Naval Intelligence in July 2016. (U.S. Navy photo)

For example, within the OPNAV Staff the N-2/N-6 carries the title Deputy Chief of Naval Operations for Information Warfare. He/she leads the “Navy Information Warfare Community” which so far is composed only of the legacy support specialties of Intelligence, Cryptology, METOC and IT. To date, there is little to suggest that the OPNAV N-2/N-6 has assumed responsibility for mission analysis, requirements definitions, and structuring, training, and equipping the fleet to achieve superiority over an adversary through Information Operations. Moreover, there is little suggesting recognition that Information Operations Warfare Commander (IWC) functions require performance in a command capacity (IWC), specialized training, and substantial systems functionality that has to be integrated with, rather than separate from, the combat systems that support other warfare areas.

CNO NAVADMIN 083/12, DTG 121702ZMAR12, Subject: OPNAV Realignment, lays out that the DCNO for Warfare Systems (N9) “is responsible for the integration of manpower, training, sustainment, modernization, and procurement readiness of the Navy’s warfare systems.” The N9 supplies leadership, guidance, and direction to the directors of Expeditionary Warfare (N95), Surface Warfare (N96), Undersea Warfare (N97), and Air Warfare (N98). The organization also oversees requirements and resource allocation across these warfare areas. Information Operations is not mentioned. From all indications, the N9 is not responsible for integrating IW/IO combat system functionality with the combat systems that support planning and execution in the traditional warfare areas. Given the functions of the IWC summarized above, combat systems integration is essential for mission success. This suggests the need for a well defined relationship between the N-9 and the N-2/N-6.

In order to eliminate confusion and realize the potential contribution of Information Operations to naval warfare, the U.S. Navy needs to formally (1) define the IW mission, (2) specify IW functions to be accomplished by personnel, organizations, and systems, and (3) assign IW organizational responsibilities. The following are proposed definitions.


Per JP 1-02, Information Operations is “the integrated employment, during military operations, of information-related capabilities in concert with other lines of operation to influence, disrupt, corrupt, or usurp the decision making of adversaries and potential adversaries while protecting our own.”  

This definition, focused on “operations” or “employment” would be retained.  However, it does not satisfy the JP 1-02 criteria of “mission”: “The task, together with the purpose, that clearly indicates the action to be taken and the reason therefore.”  The mission statement should be focused not on employment, but on the warfare task, purpose, action to be taken and the reason therefore. This translates to the need for the term “Information Warfare.” The following is offered as a statement of the mission of Naval Information Warfare:

That portion of naval warfare in which operations are conducted to influence, disrupt, corrupt, or usurp the enemy’s human and automated decision making to gain warfighting advantages over the adversary, while protecting our own.


JP 1-02 defines “Function” as: “The broad, general, and enduring role for which an organization is designed, equipped, and trained.” The following is offered as a statement of the functions of Navy Information Warfare:

Naval Information Warfare functions are to achieve superior situation awareness and combat command decisions; influence enemy decisions; deny the enemy information superiority; disrupt enemy decision making; and  protect and defend own force information and information systems from external or internal threats.


JP1-02 defines “Task” as: A clearly defined action or activity specifically assigned to an individual or organization that must be done as it is imposed by an appropriate authority. A discrete event or action that enables a mission or function to be accomplished.”

IW tasks are those tasks considered essential for the accomplishment of assigned or anticipated missions. After defining IW mission and functions, mission area analysis can proceed to identify mission essential tasks, and define required operational capabilities derived therefrom.

In summary, IW is a predominant warfare area that has the unrealized potential to be a major factor in prevailing in naval warfare with a near-peer adversary through the employment of Information Operations. A clear definition of IW missions, functions, and assignment of responsibilities for requirements, resource sponsorship, acquisition, and combat systems integration would serve to place this warfare area on a firm footing and serve a foundation for the realization of its significant potential contribution to combat success.  

Richard Mosier is a former naval aviator, intelligence analyst at ONI, OSD/DIA SES 4, and systems engineer specializing in Information Warfare. The views express herein are solely those of the author.

Featured Image: PENSACOLA, Fla. (Feb. 3, 2011) The Center for Information Dominance (CID) has become the first non-operational shore command approved for the newly created Enlisted Information Dominance Warfare Specialty pin. (U.S. Navy photo by Gary Nichols/Released)

The Strategic Support Force: China’s Information Warfare Service

This piece was originally published by the Jamestown Foundation. It is republished here with permission. Read it in its original form here.

By John Costello

Gao Jin (高津) is the PLASSF’s Commander. Note that he was promoted to major general in June 2006 and to lieutenant general occurred in July 2013. (Xinhua)

On December 31, 2015, Xi Jinping introduced the People’s Liberation Army Rocket Force (PLARF; 火箭军), Strategic Support Force (PLASSF; 战略支援部队), and Army Leadership Organ. The move came just within the Central Military Commission’s deadline to complete the bulk of reforms by the end of the year. Most media coverage has focused on the Rocket Force, whose reorganization amounts to a promotion of the PLA Second Artillery Force (PLASAF) to the status of a service on the same level of the PLA Army, Navy, and Air Force. However, by far the most interesting and unexpected development was the creation of the SSF.

According to official sources, the Strategic Support Force will form the core of China’s information warfare force, which is central to China’s “active defense” strategic concept. This is an evolution, not a departure from, China’s evolving military strategy. It is a culmination of years of technological advancement and institutional change. In the context of ongoing reforms, the creation of the SSF may be one of the most important changes yet. Consolidating and restructuring China’s information forces is a key measure to enable a number of other state goals of reform, including reducing the power of the army, implementing joint operations, and increasing emphasis on high-tech forces.

The Strategic Support Force in Chinese Media

Top Chinese leadership, including President Xi Jinping and Ministry of Defense spokesman Yang Yujun have not provided significant details about the operational characteristics of the SSF. Xi has described the SSF as a “new-type combat force to maintain national security and an important growth point of the PLA’s combat capabilities” (MOD, January 1).

On January 14, the SSF’s newly-appointed commander, Gao Jin (高津) said that the SSF will raise an information umbrella(信息伞) for the military and will act as an important factor in integrating military services and systems, noting that it will provide the entire military with accurate, effective, and reliable information support and strategic support assurance (准确高效可靠的信息支撑和战略支援保障) (CSSN, January 14). [1]

Senior Chinese military experts have been quick to comment on the SSF, and their interviews form some of the best and most authoritative insights into the role the new force will play in the Chinese military. For instance, on January 16th, the Global Times quoted Song Zhongping (宋忠平), a former PLASAF officer and a professor at the PLARF’s Equipment Research Academy, who described SSF as as a “fifth service” and, contrary to official reports, states it is not a “military branch” (兵种) but rather should be seen as an independent military service (军种) in its own right. [2] He continues by stating that it will be composed of three separate forces or force-types: space troops (天军), cyber troops (网军), and electronic warfare forces (电子战部队). The cyber force would be composed of “hackers focusing on attack and defense,” the space forces would “focus on reconnaissance and navigation satellites,” and the electronic warfare force would focus on “jamming and disrupting enemy radar and communications.” According to Song, this would allow the PLA to “meet the challenges of not only traditional warfare but also of new warfare centered on new technology” (Global Times, January 16).

By far the most authoritative description of the Strategic Support Force comes from People’s Liberation Army Navy (PLAN) Rear Admiral Yin Zhuo (尹卓). As a member of both the PLAN Expert Advisory Committee for Cybersecurity and Informatization (海军网络安全和信息化专家委员会) and the All-Military Cybersecurity and Informatization Expert Advisory Committee (全军网络安全和信息化专家委员会, MCIEAC) formed in May 2015, Yin is in the exact sort of position to have first-hand knowledge of the SSF, if not a direct role in its creation.

In an interview published by official media on January 5th, 2016, Yin stated that its main mission will be to enable battlefield operations by ensuring the military can “maintain local advantages in the aerospace, space, cyber, and electromagnetic battlefields.” Specifically, the SSF’s missions will include target tracking and reconnaissance, daily operation of satellite navigation, operating Beidou satellites, managing space-based reconnaissance assets, and attack and defense in the cyber and electromagnetic spaces” and will be “deciding factors in [the PLA’s] ability to attain victory in future wars” (China Military News, January 5).

Yin also foresees the SSF playing a greater role in protecting and defending civilian infrastructure than the PLA has in the past:

“[The SSF] will play an important role in China’s socialist construction. Additionally, China is facing a lot of hackers on the internet which are engaging in illegal activities, for example, conducting cyber attacks against government facilities, military facilities, and major civilian facilities. This requires that we protect them with appropriate defense. The SSF will play an important role in protecting the country’s financial security and the security of people’s daily lives” (China Military News, January 5).

Yang Yujun, MND spokesman, also suggested that civilian-military integration will form a portion of the SSF’s mission, but stopped short of clarifying whether this meant the force will have a heavy civilian component or will be involved in defending civilian infrastructure, or both (CNTV, January 2).

Yin noted that the SSF will embody the PLA’s vision of real joint operations. In Yin’s view, military operations cannot be divorced from “electronic space,” a conceptual fusion of the electromagnetic and cyber domains. The SSF will integrate “reconnaissance, early warning, communications, command, control, navigation, digitalized ocean, digitalized land, etc. and will provide strong support for joint operations for each military service branch.” Indeed, this view was also echoed by Shao Yongling (邵永灵), a PLARF Senior Colonel who is currently a professor at the PLA’s Command College in Wuhan. She suggested that the SSF was created to centralize each branch of the PLA’s combat support units, where previously each service had their own, resulting in “overlapping functions and repeat investment.” Consolidating these responsibilities in a central force would allow the military to “reduce redundancies, better integrate, and improve joint operational capabilities” (China Military News, January 5).

Taken together, these sources suggest that at its most basic, the SSF will comprise forces in the space, cyber, and electromagnetic domains. Specifically, sources indicate the SSF will most likely be responsible for all aspects of information in warfare, including intelligence, technical reconnaissance, cyber attack/defense, electronic warfare, and aspects of information technology and management.

Force Composition

Rear Admiral Yin’s comments in particular suggest that at a minimum the SSF will draw from forces previously under the General Staff Department’s (GSD) subordinate organs, to include portions of the First Department (1PLA, operations department), Second Department (2PLA, intelligence department), Third Department (3PLA, technical reconnaissance department), Fourth Department (4PLA, electronic countermeasure and radar department), and Informatization Department (communications).

The “Joint Staff Headquarters Department” (JSD) under the Central Military Commission will likely incorporate the 1PLA’s command and control, recruitment, planning, and administrative bureaus. Information support organs like the meteorology and hydrology bureau, survey and mapping bureau, and targeting bureau would move to the SSF.

The GSD’s intelligence department, the 2PLA will likely move to the SSF, although there is some question as to whether it will maintain all aspects of its clandestine intelligence mission, or this will be moved to a separate unit. The Aerospace Reconnaissance Bureau (ARB), responsible for the GSD’s overhead intelligence, surveillance, and reconnaissance mission will most likely form the center of the SSF’s space corps. The 2PLA’s second bureau, responsible for tactical reconnaissance, will also move to the SSF. This will include one of its primary missions: operating China’s long-range unmanned aerial vehicles (UAV).[3]

The SSF will unify China’s cyber mission by reducing the institutional barriers separating computer network attack, espionage, and defense, which have been “stove-piped” and developed as three separate disciplines within the PLA. The 3PLA’s technical reconnaissance and cyber espionage units will likely move, including the national network of infamous technical reconnaissance bureau’s (TRB), the most famous of which is Unit 61398. The 4PLA’s electronic countermeasures mission will likely form the core of a future electronic warfare force under the SSF, and the its secondary mission of computer network attack (CNA) will also likely also move under the SSF.

Finally, the entirety of the Informatization Department will likely move to the SSF. This will unify its mission, which has expanding over the years to include near all aspects of the support side of informatization, including communications, information management, network administration, computer network defense (CND), and satellite downlink.

Drawing the bulk of the SSF from former GSD organs and subordinate units is not only remarkably practical, but it is also mutually reinforcing with other reforms. Firstly, it reduces the power and influence of the Army by removing its most strategic capabilities. Previously the PLA Army was split into two echelons, its GSD-level headquarters departments (部门) and units (部队) and Military Region-level (MR; 军区) operational units. GSD units did not serve in combat or traditional operational roles, yet constituted some of China’s most advanced “new-type” capabilities: information management, space forces, cyber espionage, cyber-attack, advanced electronic warfare, and intelligence, reconnaissance, and surveillance. The creation of the Army Leadership Organ effectively split the Army along these lines, with lower-echelon forces forming the PLA Ground Forces and the higher-echelon units forming the Strategic Support Force.

Secondly, separating these capabilities into a separate SSF allows the PLA Army to concentrate on land defense and combat. Nearly all personnel staffing the supposedly joint-force GSD units were Army personnel and by-and-large these units were considered Army units, despite serving as the de facto joint strategic support units for the entire PLA military. Giving the SSF its own administrative organs and personnel allows the PLA Army to concentrate solely on the business of ground combat, land defense, and fulfilling its intended roles in the context of China’s national defense strategy.

Finally and most importantly, separating the second, third, fourth, and “fifth” departments—as the Informatization Department is sometimes called—into their own service branch allows them to be leveraged to a greater degree for Navy Air Force, and Rocket Force missions. More than anything, it allows them to focus on force-building and integrating these capabilities across each service-branch, thereby enabling a long-sought “joint-force” capable of winning wars.

In many ways, taking GSD-level departments, bureaus, and units and centralizing them into the Strategic Support Force is making official what has long been a reality. GSD-level components have nearly always operated independently from regional Group Army units. Separating them into a separate service is less of an institutional change and more of an administrative paper-shuffle.

Integrated Information Warfare

The Strategic Support Force will form the core of China’s information warfare force, which is central to China’s strategy of pre-emptive attack and asymmetric warfare. China’s new military reforms seek to synthesize military preparations into a “combined wartime and peacetime military footing.” These “strategic presets” seek to put China’s military into an advantageous position at the outset of war in order to launch a preemptive attack or quickly respond to aggression. [4] This allows China to offset its disadvantages in technology and equipment through preparation and planning, particularly against a high-tech opponent—generally a by-word for the United States in PLA strategic literature.

These presets require careful selection of targets so that a first salvo of hard-kill and soft-kill measures can completely cripple an enemy’s operational “system of systems,” or his ability to use information technology to conduct operations. Achieving this information dominance is necessary to achieve air and sea dominance, or the “three dominances.” [5] A PLA Textbook, The Science of Military Strategy, (SMS) specifically cites space, cyber, and electronic warfare means working together as strategic weapons to achieve these ends, to “paralyze enemy operational system of systems” and “sabotage enemy’s war command system of systems.” [6] This includes launching space and cyber-attacks against political, economic, and civilian targets as a deterrent. The Strategic Support Force will undoubtedly play a central role as the information warfare component of China’s warfare strategy, and will be the “tip of the spear” in its war-plans and strategic disposition.

Remaining Questions

Despite what can be culled and answered from official sources and expert commentary, significant questions remain regarding the structure of Strategic Support Force and the roles it will play. For one, it is unclear how the Strategic Support Force will incorporate civilian elements into its ranks. Mentioned in 2015’s DWP and the more recent reform guidelines, civilian-military integration is a priority, but Chinese official sources have stopped short in describing how these forces will be incorporated into military in the new order (MOD, May 26, 2015). Previously, the General Staff Department research institutes, known as the “GSD RI’s,” acted as epicenters of civilian technical talent for strategic military capabilities. If the Strategic Support Force is primarily composed of former GSD units, then these research institutes will be ready-made fusion-points for civilian-military integration, and may take on a greater role in both operations and acquisition. Even so, the civilian piece is likely to prove vital, as they will undoubtedly serve as the backbone of China’s cyber capability.

Secondly, it is unknown specifically what forces will compose the Strategic Support Force, or the full extent of its mission. When official sources say “new-type” forces, they could mean a wide range of different things, and the term can include special warfare, intelligence operations, cyber warfare, or space. At a minimum, a consensus has emerged that the force will incorporate space, cyber, and electronic warfare, but the full extent of what this means is unclear. It is also unknown, for instance, if the space mission will include space launch facilities, or whether those will remain under the CMC Equipment Development Department, a rechristened General Armament Department. Where psychological operations will fall in the new order is also up for debate. Some sources have said that it will be incorporated into the SSF while others have left it out entirely.

Finally, although it is clear that the SSF will act as a service, it remains unclear if the CMC will also treat it as an operational entity, or how the CMC will operationalize forces that are under its administrative purview. It is unlikely that the military theaters will have operational authority over strategic-level cyber units, electronic warfare units, or space assets. These capabilities will likely be commanded directly by the CMC. This logic flies in the face of the new system, which requires that services focus on force construction rather than operations and warfare. The solution may be that the SSF, as well as the PLARF, act as both services and “functional” commands for their respective missions.


Ultimately, the strategic support force needs to be understood in the broader context of the reforms responsible for its creation. On one hand, the reforms are practical, intending to usher China’s military forces into the modern era and transform them into a force capable of waging and winning “informatized local wars.” On the other hand, the reforms are politically motivated, intending to reassert party leadership to transform the PLA into a more reliable, effective political instrument.

The Strategic Support Force, if administered correctly, will help solve many of the PLA’s problems that have prevented it from effectively implementing joint operations and information warfare. The creation of an entire military service dedicated to information warfare reaffirms China’s focus on the importance of information in its strategic concepts, but it also reveals the Central Military Commission’s desire to assert more control over these forces as political instruments. With the CMC solidly at the helm, information warfare will likely be leveraged more strategically and will be seen in all aspects of PLA operations both in peace and in war. China is committing itself completely to information warfare, foreign nations should take note and act accordingly.

John Costello is Congressional Innovation Fellow for New American Foundation and a former Research Analyst at Defense Group Inc. He was a member of the U.S. Navy and a DOD Analyst. He specializes in information warfare, electronic warfare and non-kinetic counter-space issues.


1. A Chinese-media report on Gao Jin’s military service assignments can be found at <>. Gao Jin’s role as commander of the SSF is noteworthy in two respects: One, he is a career Second Artillery officer, so his new role muddies the waters a bit in understanding whether the SSF will be a force composed of Army personnel but treated administratively separate from the Army—not unlike the former PLASAF-PLA Army relationship—or will be composed of personnel from various services and treated administratively separate from all forces. Secondly and more important to this discussion, before his new post as SSF commander, Gao Jin was head of the highly-influential Academy of Military Sciences (AMS) which besides being the PLA’s de facto think-tank (along with the National Defense University), is responsible for putting out the Science of Strategy, a wide-reaching consensus document that both captures and guides PLA strategic thinking at the national level. The most recent edition published in 2013 was released under his tenure as commandant of AMS and many of the ideas from that edition have found their way into the 2015 defense white paper, December’s guide on military reforms, and many of the changes made to China’s national defense establishment. His new role could be seen as CMC-endorsement of SMS’s views on China’s strategic thought.

2. Song’s description of the SSF contradicts official-media descriptions of the service, which had suggested that the service will occupy a similar echelon to that of the PLASAF before it was promoted to full military service status equal to the other branches.

3. Ian M. Easton and L.C. Russell Hsiao, “The Chinese People’s Liberation Army’s Unmanned Aerial Vehicle Project: Organizational Capacities and Operational Capabilities,” 2049 Institute, March 11, 2013. p. 14.

4. The Science of Military Strategy [战略学], 3rd ed., Beijing: Military Science Press, 2013. p. 320.

5. Ibid. p. 165.

6. Ibid. p. 164.

Featured Image: Soldiers of the Chinese People’s Liberation Army 1st Amphibious Mechanized Infantry Division prepare to provide Chairman of the Joint Chiefs of Staff Adm. Mike Mullen with a demonstration of their capablities during a visit to the unit in China on July 12, 2011. (DoD photo by Mass Communication Specialist 1st Class Chad J. McNeeley/Released)