All posts by Tim McGeehan

Unmanned Mission Command, Pt. 2

By Tim McGeehan

The following two-part series discusses the command and control of future autonomous systems. Part 1 describes how we have arrived at the current tendency towards detailed control. Part 2 proposes how to refocus on mission command.

Adjusting Course

Today’s commanders are accustomed to operating in permissive environments and have grown addicted to the connectivity that makes detailed control possible. This is emerging as a major vulnerability. For example, while the surface Navy’s concept of “distributed lethality” will increase the complexity of the detection and targeting problems presented to adversaries, it will also increase the complexity of its own command and control. Even in a relatively uncontested environment, tightly coordinating widely dispersed forces will not be a trivial undertaking. This will tend toward lengthening decision cycles, at a time when the emphasis is on shortening them.1 How will the Navy execute operations in a future Anti-Access/Area-Denial (A2/AD) scenario, where every domain is contested (including the EM spectrum and cyberspace) and every fraction of a second counts? 

The Navy must “rediscover” and fully embrace mission command now, to both address current vulnerabilities as well as unleash the future potential of autonomous systems. These systems offer increased precision, faster reaction times, longer endurance, and greater range, but these advantages may not be realized if the approach to command and control remains unchanged. For starters, to prepare for future environments where data links cannot be taken for granted, commanders must be prepared to give all subordinates, human and machine, wide latitude to operate, which is only afforded by mission command. Many systems will progress from a man “in” the loop (with the person integral to the functioning), to a man “on” the loop (where the person oversees the system and executes command by negation), and then to complete autonomy. In the future, fully autonomous systems may collaborate with one another across a given echelon and solve problems based on the parameters communicated to them as commander’s intent (swarms would fall into this category). However, it may go even further. Mission command calls for adaptable leaders at every level; what if at some level the leaders are no longer people but machines? It is not hard to imagine a forward deployed autonomous system tasking its own subordinates (fellow machines), particularly in scenarios where there is no available bandwidth to allow backhaul communications or enable detailed control from afar. In these cases, mission command will not just be the preferred option, it will be the only option. This reliance on mission command may be seen as a cultural shift, but in reality, it is a return to the Navy’s cultural roots.

Back to Basics

Culturally, the Navy should be well-suited to embrace the mission command model to employ autonomous systems. Traditionally once a ship passed over the horizon there was little if any communication for extended periods of time due to technological limitations. This led to a culture of mission command: captains were given basic orders and an overall intent; the rest was up to them. Indeed, captains might act as ambassadors and conduct diplomacy and other business on behalf of the government in remote areas with little direct guidance.2 John Paul Jones himself stated that “it often happens that sudden emergencies in foreign waters make him [the Naval Officer] the diplomatic as well as the military representative of his country, and in such cases he may have to act without opportunity of consulting his civic or ministerial superiors at home, and such action may easily involve the portentous issue of peace or war between great powers.”3  This is not to advocate that autonomous systems will participate in diplomatic functions, but it does illustrate the longstanding Navy precedent for autonomy of subordinate units.

Another factor in support of the Navy favoring mission command is that the physics of the operating environment may demand it. For example, the physical properties of the undersea domain prohibit direct, routine, high-bandwidth communication with submerged platforms. This is the case with submarines and is being applied to UUVs by extension. This has led to extensive development of autonomous underwater vehicles (AUVs) vice remotely operated ones; AUVs clearly favor mission command.

Finally, the Navy’s culture of decentralized command is the backbone of the Composite Warfare Commander (CWC) construct. CWC is essentially an expression of mission command. Just as technology (the telegraph cable, wireless, and global satellite communication) has afforded the means of detailed control and micromanagement, it has also increased the speed of warfighting, necessitating decentralized execution. Command by negation is the foundation of CWC, and has been ingrained in the Navy’s officer corps for decades. Extending this mindset to autonomous systems will be key to realizing their full capabilities.

Training Commanders

This begs the question: how does one train senior commanders who rose through the ranks during the age of continuous connectivity to thrive in a world of autonomous systems where detailed control is not an option? For a start, they could adopt the mindset of General Norman Schwarzkopf, who described how hard it was to resist interfering with his subordinates:

“I desperately wanted to do something, anything, other than wait, yet the best thing I could do was stay out of the way. If I pestered my generals I’d distract them:  I knew as well as anyone that commanders on the battlefield have more important things to worry about than keeping higher headquarters informed…”4

That said, even while restraining himself, at the height of OPERATION DESERT STORM, his U.S. Central Command used more than 700,000 telephone calls and 152,000 radio messages per day to coordinate the actions of their subordinate forces. In contrast, during the Battle of Trafalgar in 1805, Nelson used only three general tactical flag-hoist signals to maneuver the entire British fleet.5

Commanders must learn to be satisfied with the ambiguity inherent in mission command. They must become comfortable clearly communicating their intent and mission requirements, whether tasking people or autonomous systems. Again, there isn’t a choice; the Navy’s adversaries are investing in A2/AD capabilities that explicitly target the means that make detailed control possible. Furthermore, the ambiguity and complexity of today’s operating environments prohibit “a priori” composition of complete and perfect instructions.

Placing commanders into increasingly complex and ambiguous situations during training will push them toward mission command, where they will have to trust subordinates closer to the edge who will be able to execute based on commander’s intent and their own initiative. General Dempsey, former Chairman of the Joint Chiefs of Staff, stressed training that presented commanders with fleeting opportunities and rewarding those who seized them in order to encourage commanders to act in the face of uncertainty.

Familiarization training with autonomous systems could take place in large part via simulation, where commanders interact with the actual algorithms and rehearse at a fraction of the cost of executing a real-world exercise. In this setting, commanders could practice giving mission type orders and translating them for machine understanding. They could employ their systems to failure, analyze where they went wrong, and learn to adjust their level of supervision via multiple iterations. This training wouldn’t be just a one-way evolution; the algorithms would also learn about their commander’s preferences and thought process by finding patterns in their actions and thresholds for their decisions. Through this process, the autonomous system would understand even more about commander’s intent should it need to act alone in the future. If the autonomous system will be in a position to task its own robotic subordinates, that algorithm would be demonstrated so the commander understands how the system may act (which will have incorporated what it has learned about how its commander commands).

With this in mind, while it may seem trivial, consideration must be made for the fact that future autonomous systems may have a detailed algorithmic model of their commander’s thought process, “understand” his intent, and “know” at least a piece of “the big picture.” As such, in the future these systems cannot simply be considered disposable assets performing the dumb, dirty, dangerous work that exempt a human from having to go in harm’s way. They will require significant anti-tamper capabilities to prevent an adversary from extracting or downloading this valuable information if they are somehow taken or recovered by the enemy. Perhaps they could even be armed with algorithms to “resist” exploitation or give misleading information. 

The Way Ahead

Above all, commanders will need to establish the same trust and confidence in autonomous systems that they have in manned systems and human operators.6 Commanders trust manned systems, even though they are far from infallible. This came to international attention with the airstrike on the Medecins Sans Frontieres hospital operating in Kunduz, Afghanistan. As this event illustrated, commanders must acknowledge the potential for human error, put mitigation measures in place where they can, and then accept a certain amount of risk. In the future, advances in machine learning and artificial intelligence will yield algorithms that far exceed human processing capabilities. Autonomous systems will be able to sense, process, coordinate, and act faster than their human counterparts. However, trust in these systems will only come from time and experience, and the way to secure that is to mainstream autonomous systems into exercises. Initially these opportunities should be carefully planned and executed, not just added in as an afterthought. For example, including autonomous systems in a particular Fleet Battle Experiment solely to check a box that they were used raises the potential for negative training, where the observers see the technology fail due to ill-conceived employment. As there may be limited opportunities to “win over” the officer corps, this must be avoided. Successfully demonstrating the capabilities (and the legitimate limitations) of autonomous systems is critical. Increased use over time will ensure maximum exposure to future commanders, and will be key to widespread adoption and full utilization.  

The Navy must return to its roots and rediscover mission command in order to fully leverage the potential of autonomous systems. While it may make commanders uncomfortable, it has deep roots in historic practice and is a logical extension of existing doctrine. Former General Dempsey wrote that mission command “must pervade the force and drive leader development, organizational design and inform material acquisitions.”Taking this to heart and applying it across the board will have profound and lasting impacts as the Navy sails into the era of autonomous systems.

Tim McGeehan is a U.S. Navy Officer currently serving in Washington. 

The ideas presented are those of the author alone and do not reflect the views of the Department of the Navy or Department of Defense.


[1] Dmitry Filipoff, Distributed Lethality and Concepts of Future War, CIMSEC, January 4, 2016,

[2] Naval Doctrine Publication 6: Naval Command and Control, 1995,, p. 9      

[3] Connell, Royal W. and William P. Mack, Naval Customs, Ceremonies, and Traditions, 1980, p. 355.

[4] Schwartzkopf, Norman, It Doesn’t Take a Hero:  The Autobiography of General Norman Schwartzkopf, 1992, p.523

[5] Ibid 2, p. 4

[6] Greg Smith, Trusting Autonomous Systems: It’s More Than Technology, CIMSEC, September 18, 2015,     

[7] Martin Dempsey, Mission Command White Paper, April 3, 2012,

Featured Image: SOUTH CHINA SEA (April 30, 2017) Sailors assigned to Helicopter Sea Combat Squadron 23 run tests on the the MQ-8B Firescout, an unmanned aerial vehicle, aboard littoral combat ship USS Coronado (LCS 4). (U.S. Navy photo by Mass Communication Specialist 3rd Class Deven Leigh Ellis/Released)

Unmanned Mission Command, Pt. 1

By Tim McGeehan

The following two-part series discusses the command and control of future autonomous systems. Part 1 describes how we have arrived at the current tendency towards detailed control. Part 2 proposes how to refocus on mission command.


In recent years, the U.S. Navy’s unmanned vehicles have achieved a number of game-changing “firsts.” The X-47B Unmanned Combat Air System (UCAS) executed the first carrier launch and recovery in 2013, first combined manned/unmanned carrier operations in 2014, and first aerial refueling in 2015.1 In 2014, the Office of Naval Research demonstrated the first swarm capability for Unmanned Surface Vehicles (USV).2 In 2015, the NORTH DAKOTA performed the first launch and recovery of an Unmanned Underwater Vehicle (UUV) from a submarine during an operational mission.3 While these successes may represent the vanguard of a revolution in military technology, the larger revolution in military affairs will only be possible with the optimization of the command and control concepts associated with these systems. Regardless of specific mode (air, surface, or undersea), Navy leaders must fully embrace mission command to fully realize the power of these capabilities.

Unmanned History

“Unmanned” systems are not necessarily new. The U.S. Navy’s long history includes the employment of a variety of such platforms. For example, in 1919, Coast Battleship #4 (formerly USS IOWA (BB-1)) became the first radio-controlled target ship to be used in a fleet exercise.4 During World War II, participation in an early unmanned aircraft program called PROJECT ANVIL ultimately killed Navy Lieutenant Joe Kennedy (John F. Kennedy’s older brother), who was to parachute from his bomb-laden aircraft before it would be guided into a German target by radio-control.5 In 1946, F6F Hellcat fighters were modified for remote operation and employed to collect data during the OPERATION CROSSROADS atomic bomb tests at Bikini.6 These Hellcat “drones” could be controlled by another aircraft acting as the “queen” (flying up to 30 miles away). These drones were even launched from the deck of an aircraft carrier (almost 70 years before the X-47B performed that feat).

A Hellcat drone takes flight. Original caption: PILOTLESS HELLCAT (above), catapulted from USS Shangri-La, is clear of the carrier’s bow and climbs rapidly. Drones like this one will fly through the atomic cloud. (All Hands Magazine June 1946 issue)

However, the Navy’s achievements over the last few years were groundbreaking because the platforms were autonomous (i.e. controlled by machine, not remotely operated by a person). The current discussion of autonomy frequently revolves around the issues of ethics and accountability. Is it ethical to imbue these machines with the authority to use lethal force? If the machine is not under direct human control but rather evaluating for itself, who is responsible for its decisions and actions when faced with dilemmas? Much has been written about these topics, but there is a related and less discussed question: what sort of mindset shift will be required for Navy leaders to employ these systems to their full potential?

Command, Control, and Unmanned Systems

According to Naval Doctrine Publication 6 – Command and Control (NDP 6), “a commander commands by deciding what must be done and exercising leadership to inspire subordinates toward a common goal; he controls by monitoring and influencing the action required to accomplish what must be done.”7 These enduring concepts have new implications in the realm of unmanned systems. For example, while a commander can assign tasks to any subordinate (human or machine), “inspiring subordinates” has varying levels of applicability based on whether his units consist of “remotely piloted” aircraft (where his subordinates are actual human pilots) or autonomous systems (where the “pilot” is an algorithm controlling a machine). “Command” also includes establishing intent, distributing guidance on allocation of roles, responsibilities, and resources, and defining constraints on actions.8 On one hand, this could be straightforward with autonomous systems as this guidance could be translated into a series of rules and parameters that define the mission and rules of engagement. One would simply upload the mission and deploy the vehicle, which would go out and execute, possibly reporting in for updates but mostly operating on its own, solving problems along the way. On the other hand, in the absence of instructions that cover every possibility, an autonomous system is only as good as the internal algorithms that control it. Even as machine learning drastically improves and advanced algorithms are developed from extensive “training data,” an autonomous system may not respond to novel and ambiguous situations with the same judgment as a human. Indeed, one can imagine a catastrophic military counterpart to the 2010 stock market “flash crash,” where high-frequency trading algorithms designed to act in accordance with certain, pre-arranged criteria did not understand context and misread the situation, briefly erasing $1 trillion in market value.9

“Control” includes the conduits and feedback from subordinates to their commander that allow them to determine if events are on track or to adjust instructions as necessary. This is reasonably straightforward for a remotely piloted aircraft with a constant data link between platform and operator, such as the ScanEagle or MQ-8 Fire Scout unmanned aerial systems. However, a fully autonomous system may not be in positive communication. Even if it is ostensibly intended to remain in communication, feedback to the commander could be limited or non-existent due to emissions control (EMCON) posture or a contested electromagnetic (EM) spectrum. 

Mission Command and Unmanned Systems

In recent years, there has been a renewed focus across the Joint Force on the concept of “mission command.” Mission command is defined as “the conduct of military operations through decentralized execution based upon mission-type orders,” and it lends itself well to the employment of autonomous systems.10 Joint doctrine states:

“Mission command is built on subordinate leaders at all echelons who exercise disciplined initiative and act aggressively and independently to accomplish the mission. Mission-type orders focus on the purpose of the operation rather than details of how to perform assigned tasks. Commanders delegate decisions to subordinates wherever possible, which minimizes detailed control and empowers subordinates’ initiative to make decisions based on the commander’s guidance rather than constant communications.”11

Mission command for an autonomous system would require commanders to clearly confer their intent, objectives, constraints, and restraints in succinct instructions, and then rely on the “initiative” of said system. While this decentralized arrangement is more flexible and better suited to deal with ambiguity, it opens the door to unexpected or emergent behavior in the autonomous system. (Then again, emergent behavior is not confined to algorithms, as humans may perform in unexpected ways too.) 

In addition to passing feedback and information up the chain of command to build a shared understanding of the situation, mission command also emphasizes horizontal flow across the echelon between the subordinates. Since it relies on subordinates knowing the intent and mission requirements, mission command is much less vulnerable to disruption than detailed means of command and control.

However, some commanders today do not fully embrace mission command with human subordinates, much less feel comfortable delegating trust to autonomous systems.  They issue explicit instructions to subordinates in a highly-centralized arrangement, where volumes of information flow up and detailed orders flow down the chain of command. This may be acceptable in deliberate situations where time is not a major concern, where procedural compliance is emphasized, or where there can be no ambiguity or margin for error. Examples of unmanned systems suitable to this arrangement include a bomb disposal robot or remotely piloted aircraft that requires constant intervention and re-tasking, possibly for rapid repositioning of the platform for a better look at an emerging situation or better discrimination between friend and foe. However, this detailed control does not “function well when the vertical flow of information is disrupted.”12 Furthermore, when it comes to autonomous systems, such detailed control will undermine much of the purpose of having an autonomous system in the first place.

A fundamental task of the commander is to recognize which situations call for detailed control or mission command and act appropriately. Unfortunately, the experience gained by many commanders over the last decade has introduced a bias towards detailed control, which will hamstring the potential capabilities of autonomous systems if this tendency is not overcome.

Current Practice

The American military has enjoyed major advantages in recent conflicts due to global connectivity and continuous communications. However, this has redefined expectations and higher echelons increasingly rely on detailed control (for manned forces, let alone unmanned ones). Senior commanders (or their staffs) may levy demands to feed a seemingly insatiable thirst for information. This has led to friction between the echelons of command, and in some cases this interaction occurs at the expense of the decision-making capability of the unit in the field. Subordinate staff watch officers may spend more time answering requests for information and “feeding the beast” of higher headquarters than they spend overseeing their own operations.

It is understandable why this situation exists today. The senior commander (with whom responsibility ultimately resides) expects to be kept well-informed. To be fair, in some cases a senior commander located at a fusion center far from the front may have access to multiple streams of information, giving them a better overall view of what is going on than the commander actually on the ground. In other cases, it is today’s 24-hour news cycle and zero tolerance for mistakes that have led senior commanders to succumb to the temptation to second-guess their subordinates and micromanage their units in the field. A compounding factor that may be influencing commanders in today’s interconnected world is “Fear of Missing Out” (FoMO), which is described by psychologists as apprehension or anxiety stemming from the availability of volumes of information about what others are doing (think social media). It leads to a strong, almost compulsive desire to stay continually connected.  13

Whatever the reason, this is not a new phenomenon. Understanding previous episodes when leadership has “tightened the reins” and the subsequent impacts is key to developing a path forward to fully leverage the potential of autonomous systems.

Veering Off Course

The recent shift of preference away from mission command toward detailed control appears to echo the impacts of previous advances in the technology employed for command and control in general. For example, when speaking of his service with the U.S. Asiatic Squadron and the introduction of the telegraph before the turn of the 20th century, Rear Admiral Caspar Goodrich lamented “Before the submarine cable was laid, one was really somebody out there, but afterwards one simply became a damned errand boy at the end of a telegraph wire.”14

Later, the impact of wireless telegraphy proved to be a mixed blessing for commanders at sea. Interestingly, the contrasting points of view clearly described how it would enable micromanagement; the difference in opinion was whether this was good or bad. This was illustrated by two 1908 newspaper articles regarding the introduction of wireless in the Royal Navy. One article extolled its virtues, describing how the First Sea Lord in London could direct all fleet activities “as if they were maneuvering beneath his office windows.”15 The other article described how those same naval officers feared “armchair control… by means of wireless.”16 In century-old text that could be drawn from today’s press, the article quoted a Royal Navy officer:

“The paramount necessity in the next naval war will be rapidity of thought and of execution…The innovation is causing more than a little misgiving among naval officers afloat. So far as it will facilitate the interchange of information and the sending of important news, the erection of the [wireless] station is welcomed, but there is a strong fear that advantage will be taken of it to interfere with the independent action of fleet commanders in the event of war.”

Military historian Martin van Creveld related a more recent lesson of technology-enabled micromanagement from the U.S. Army. This time the technology in question was the helicopter, and its widespread use by multiple echelons of command during Viet Nam drove the shift away from mission command to detailed control:

“A hapless company commander engaged in a firefight on the ground was subjected to direct observation by the battalion commander circling above, who was in turn supervised by the brigade commander circling a thousand or so feet higher up, who in his turn was monitored by the division commander in the next highest chopper, who might even be so unlucky as to have his own performance watched by the Field Force (corps) commander. With each of these commanders asking the men on the ground to tune in his frequency and explain the situation, a heavy demand for information was generated that could and did interfere with the troops’ ability to operate effectively.”17

However, not all historic shifts toward detailed control are due to technology; some are cultural. For example, leadership had encroached so much on the authority of commanders in the days leading up to World War II that Admiral King had to issue a message to the fleet with the subject line “Exercise of Command – Excess of Detail in Orders and Instructions,” where he voiced his concern. He wrote that the:

“almost standard practice – of flag officers and other group commanders to issue orders and instructions in which their subordinates are told how as well as what to do to such an extent and in such detail that the Custom of the service has virtually become the antithesis of that essential element of command – initiative of the subordinate.”18

Admiral King attributed this trend to several cultural reasons, including anxiety of seniors that any mistake of a subordinate be attributed to the senior and thereby jeopardize promotion, activities of staffs infringing on lower echelon functions, and the habit and expectation of detailed instructions from junior and senior alike. He went on to say that they were preparing for war, when there would be neither time nor opportunity for this method of control, and this was conditioning subordinate commanders to rely on explicit guidance and depriving them from learning how to exercise initiative. Now, over 70 years later, as the Navy moves forward with autonomous systems the technology-enabled and culture-driven drift towards detailed control is again becoming an Achilles heel.

Read Part 2 here.

Tim McGeehan is a U.S. Navy Officer currently serving in Washington. 

The ideas presented are those of the author alone and do not reflect the views of the Department of the Navy or Department of Defense.


[1] Northrup Grumman, X-47B Capabilities, 2015,

[2] David Smalley, The Future Is Now: Navy’s Autonomous Swarmboats Can Overwhelm Adversaries, ONR Press Release, October 5, 2014,

[3] Associated Press, Submarine launches undersea drone in a 1st for Navy, Military Times, July 20, 2015,

[4] Naval History and Heritage Command, Iowa II (BB-1), July 22, 2015,

[5] Trevor Jeremy, LT Joe Kennedy, Norfolk and Suffolk Aviation Museum, 2015,

[6] Puppet Planes, All Hands, June 1946,, p. 2-5

[7] Naval Doctrine Publication 6:  Naval Command and Control, 1995,, p. 6

[8] David Alberts and Richard Hayes, Understanding Command and Control, 2006,, p. 58

[9] Ben Rooney, Trading program sparked May ‘flash crash’, October 1, 2010, CNN,

[10] DoD Dictionary of Military and Associated Terms, March, 2017,

[11] Joint Publication 3-0, Joint Operations,

[12] Ibid

[13] Andrew Przybylski, Kou Murayama, Cody DeHaan , and Valerie Gladwell, Motivational, emotional, and behavioral correlates of fear of missing out, Computers in Human Behavior, Vol 29 (4), July 2013,

[14] Michael Palmer, Command at Sea:  Naval Command and Control since the Sixteenth Century, 2005, p. 215

[15] W. T. Stead, Wireless Wonders at the Admiralty, Dawson Daily News, September 13, 1908,,1570909&hl=en

[16] Fleet Commanders Fear Armchair Control During War by Means of Wireless, Boston Evening Transcript, May 2, 1908,,293709&hl=en

[17] Martin van Creveld, Command in War, 1985, p. 256-257.

[18] CINCLANT Serial (053), Exercise of Command – Excess of Detail in Orders and Instructions, January 21, 1941

Featured Image: An X-47B drone prepares to take off. (U.S. Navy photo)

Dynamite at the Speed of Light: How Directed Energy Can Transform the U.S. Navy

By Tim McGeehan and Douglas Wahl


On December 7, 1941, shortly after the attack on Pearl Harbor, Chief of Naval Operations (CNO) Admiral Stark issued the directive “Execute Against Japan Unrestricted Air and Submarine Warfare.”  This was the opening phase of America’s strategy to engage Japan in a long war of attrition. Japan, on the other hand, had hoped for a short and limited war that would be concluded before America could fully mobilize. The American population, economy, and industrial base were asymmetric advantages that the Japanese could not hope to counter in the long run. Simply put, we could replace combat losses of people and platforms while they could not.

Now, our potential adversaries favor Anti-Access/Area Denial (A2/AD) strategies that seek to keep our military at arm’s length and limit our power projection. Underlying this strategy is the familiar concept of attrition. To fight the “away game” our military will have to successfully penetrate multi-layered defenses extending well offshore and survive continuous engagement to carry the fight to our adversaries’ homeland. The recent proliferation of technology including long-range sensors, anti-ship ballistic and cruise missiles, and electronic warfare capabilities that aim to disrupt our command, control, communications, computers, intelligence, surveillance, and reconnaissance (C4ISR) are making their A2/AD strategies increasingly viable.

While our Navy is accustomed to fighting the “away game,” attrition is a strategy we can ill afford today. Unlike World War II, with the 24-hour news cycle and the speed of information via the Internet, the United States can no longer politically accept a war with heavy losses of personnel or platforms. We no longer possess the production facilities to rapidly replace extensive combat losses of materiel that we could in World War II. Though we are the world’s largest Navy, our number of capital ships is limited and future investments to numerically grow the Fleet must be weighed against the need for development of advanced capabilities. If we are going to successfully engage adversaries relying on A2/AD strategies, our Navy needs bold and innovative solutions that can successfully counter their attrition focus.

The Salvo Competition

Sun Tzu reminds us that it is most important to attack the enemy’s strategy and we need to do just that. A key aspect our adversaries rely on to achieve the desired attrition is winning the “salvo competition.” As we approach their coasts, our adversaries believe they can overwhelm our ships based on the sheer number of long-range anti-ship and ballistic missiles they can deliver versus the more limited number we can defend against based on our current magazine depth. Our surface ships have advanced “hard kill” point defenses such as the Standard Missile (SM-2), Close-in-Weapon System (CIWS), Evolved Sea Sparrow Missile (ESSM), Rolling Airframe Missile (RAM), and SeaRAM. No matter how effective these systems are, they may run out of missiles and ordnance long before our adversary does, opening the door to unsustainable losses. To help increase survivability, the Navy is upgrading our softkill systems such as AN/SLQ-32 as part of the Surface Electronic Warfare Improvement Program (SEWIP).1 However, as the sophistication of adversary weapons continuously increases, the continued ability of these systems to adapt is uncertain.

We need to turn the tables on attrition by changing the asymmetric balance of the salvo competition between A2/AD assets and power-projecting naval forces. However, we cannot continue to rely on incremental advances by linearly extrapolating our capabilities; instead we must take advantage of highly non-linear opportunities provided by leveraging emerging technology. In 2015, former CNO Admiral Greenert challenged the Science and Technology community to “get us off gunpowder.”The Navy needs to rise to this challenge and accelerate the investment, development, and fielding of directed energy weapons across the Fleet.3

Technologies and Advantages

Directed energy weapons offer many advantages to help us defeat an A2/AD strategy, increasing lethality and survivability while decreasing cost and logistical burdens. With a range exceeding 100 nautical miles, the Electromagnetic Rail Gun (EMRG) can execute multiple missions at significantly greater range than today’s “conventional” gun systems, including anti-surface, naval surface fire support (NSFS), air defense, and ballistic missile defense.4 Additionally, although the existing Tomahawk Land Attack Missile (TLAM) and strike aircraft have strike ranges greater than the EMRG, many targets will be well within the EMRG’s range which would allow us to husband those more limited and expensive strike resources. Additionally, the EMRG round’s small size, high speed, and kinetic energy make it extremely hard to intercept or defend against. Technical progress continues, working toward the future fielding of EMRG at sea.5

The solid-state 30 kilowatt (kW) Laser Weapons System (LaWS), on the other hand, was already operationally deployed on the USS Ponce in the U.S. Central Command AOR in 2014.6 It demonstrated the ability to disable an Unmanned Aerial Vehicle (UAV), disable a small boat engine, and detonate ammunition.Follow-on Navy efforts continue: at the 2017 Surface Navy Association (SNA) symposium, Rear Admiral Boxall, Director of Surface Warfare, announced plans to test fire a 150 kW weapon from a ship in the near future, and at the 2018 SNA symposium it was announced that USS Portland will soon host a new laser system in another technology demonstration.8 Likewise, efforts are underway with the Navy’s High Energy Laser with Integrated Optical-Dazzler and Surveillance (HELIOS) project (60kW with potential growth to 150kW) as well as the Defense Advanced Research Projects Agency’s (DARPA) High Energy Liquid Laser Area Defense System (HELLADS) project (in the 150 kW range), which may present future opportunities for demonstration at sea.9

LaWS test (U.S. Navy video)

High-powered microwave weapons are another category of directed energy weapons that could be soon employed at sea. High power microwaves can be used for electronic attack to destroy or disrupt specific components of adversary communication and sensor systems or even be applied to counter- improvised explosive device (IED) operations.10 In 2012, the Air Force Research Lab successfully demonstrated the Counter-electronics High-power microwave Advanced Missile Project (CHAMP) that developed an air-launched cruise missile outfitted with a high-power microwave payload.11

Collectively, these directed energy weapons will allow us to counter A2/AD by winning the salvo competition. The small size of EMRG rounds also translates into a vastly expanded magazine when compared to the limited number of Vertical Launch System (VLS) cells of our current surface combatants. LaWS and high-powered microwave weapons go even further, offering a virtually bottomless magazine, limited only by power generation. These new weapons also shift the cost curve in our favor. For short-range strike missions, a TLAM costs between $1.1 and 1.4 million12 per missile and an F/A-18E/F Super Hornet flying over the beach costs $80+ million,13 not including the cost to recruit, train, and maintain the pilot. On the defensive side, existing Naval surface-to-air missiles vary in cost from about $900,000 for a RAM to over $20 million for an SM-3 Block IIA for ballistic missile defense.14 In contrast, an EMRG round costs $25,000 and LaWS costs $1 per shot, making them extremely cost effective alternatives.15 The combination of decreased physical size and lower cost will also enable our surface Fleet to counter the missile, UAV, and small boat swarms of A2/AD without being overwhelmed. 

Another aspect of countering the A2/AD attrition calculus is increasing survivability. In today’s environment almost any hit to a ship is a mission kill, which places a premium on not getting hit in the first place. The increased range of EMRG allows for increased standoff distance during littoral strike or naval surface fire support missions in support of forces ashore. LaWS could engage incoming missiles at a greater range than existing CIWS systems, which have such short range that shrapnel from a destroyed anti-ship missile could still have enough kinetic energy to damage a ship and provide a mission kill. The EMRG could even be armed with a “point defense” projectile that deploys submunitions of flechette, airburst, or grapeshot against incoming threats. The increased power systems required for EMRG could also enable more powerful electronic warfare capabilities that in turn could defeat incoming missiles. However, the shift to directed energy weapons will have the greatest boost to surface ship survivability because they lack what is traditionally the most vulnerable part of the ship – the explosives in its magazine. Storing explosive rounds and propellants onboard also necessitates additional damage control systems and armor, which could be reduced, allowing tradeoffs in the constant naval architecture balance of size and weight.

Directed energy weapons also have a second order benefit in countering A2/AD by decreasing our logistics burden. Our surface Fleet is constrained and restrained by logistics – specifically our supply ships that are an often overlooked critical vulnerability. While our forward deployed Fleet relies almost exclusively on them for the resupply of food, parts, and fuel, there are very few of these ships in the inventory. On top of their limited availability, logistic ships have limited defenses and in a hostile environment will require an armed escort, which will in turn detract from forces available for the fight. Moreover, they have to cover long distances to and from logistics hubs. With directed energy weapons, our Fleet could have deeper magazines and still trade some space to carry more fuel, parts, and stores. This would reduce the Fleet’s dependence on combat replenishment, both limiting the exposure of and the burden on these scarce, vulnerable assets. Furthermore, replenishment of EMRG magazines could occur at sea and on station. Reloading of VLS cells, on the other hand, currently must be done pier-side in port, in a protected anchorage, or in optimal conditions at sea.16 Depending on the availability of these areas and their proximity to the front, combatants may incur a significant loss of time on station while transiting to and from them.

The logistical benefits of directed energy weapons may extend beyond the A2/AD environment. In future conflicts we may have to begin the fight closer to home – against enemy submarines and forward deployed long-range aircraft. Fighting our way across the ocean will entail long transits before we even get in position to fight the “away game” in our adversary’s waters. Reducing the frequency of required resupply operations will reduce the exposure and vulnerability of our limited logistics force.

Questions, Barriers, and Integration

There are additional force structure, strategic laydown, and force employment questions to consider with the adoption of directed energy weapons. How will the integration of weapons like EMRG and LaWS and their assumption of air defense and short-range strike missions impact the future requirements and composition of the Air Wing and the Strike Group? In the future, with drastically deeper magazines, one ship will have the capacity of several existing ships. Since the number of ships on station is often related to the aggregate number and type of missiles in their VLS cells, will there be a decreased requirement for the number of ships and submarines to be in theater or on station? It is true that a ship can only be in one place at a time, but with the longer range each EMRG ship could impact a greater area.

EMRG test (U.S. Navy video via AiirSource)

Could the aircraft carrier reach a point where it won’t require a “shotgun” and strike group escorts can be detached for independent operations? Could an EMRG equipped DDG-1000 holding the bulk of the theater’s projectile and missile magazines act as an “arsenal ship” that challenges the aircraft carrier as the new premier capital ship? How will directed energy weapons impact manpower? Will the technicians who maintain and operate directed energy systems and their power supplies be lured away by a private industry focusing on the next generation of battery and energy storage technology – similar to the way the defense contractor UAV market has recruited UAV pilots out of the Air Force? Will EMRG find uses beyond weapons delivery? The National Aeronautics and Space Administration (NASA) has considered building a massive EMRG to launch objects into space.17 Could a Navy EMRG someday be used to inject nanosatellites into low-earth orbit and rapidly reconstitute or augment a constellation in response to adversary attacks on our space-based systems? 

With a reduced footprint and fewer electrical requirements, LaWS (or its successor) can be deployed on a wider variety of platforms. However, USS Ponce’s laser was powered by a diesel engine independent of the ship’s power system. Likewise, during a test onboard USS Dewey (DDG-105), LaWS was powered by an independent, commercial generator system and not integrated into the ship’s power grid.18 Fielding EMRG on a vessel will require it to be able to accommodate the equipment for energy generation and storage, pulse forming, and cooling. Even with expected achievements in increased battery storage and power production, the EMRG will likely have to be installed on larger platforms such as the DDG-1000 to be feasible. But given there will be just three Zumwalt destroyers, the Navy will only be able to reap the benefits of directed energy with the next generation of surface combatants (absent a technological revolution that would enable it to be fielded on today’s combatants) and therefore directed energy must play a key role in setting the requirements for these ships.  The Navy requires additional enablers to realize and take advantage of directed energy weapons and harness the technological advances in battery technology from firms like Tesla as they move from powering cars to powering homes and building smart electrical grids.

There are risks associated with fielding directed energy weapons. As electronics-intensive systems, will they require significant modification of their components to shield against electromagnetic pulse (EMP) and microwave weapons? Likewise, the environmental impact of environments featuring extensive dust, sand, precipitation, and clouds for weapons like LaWS are unclear. Will LaWS be a ‘fair weather’ weapon and require redundant foul-weather backup capability such as the CIWS? Finally, there are damage control concerns with the extensive battery systems. Can a ship’s crew repair battle damage at sea, swap out modular battery components, or fight hurt?  

The issues extend beyond the technical barriers. Alfred Thayer Mahan wrote “an improvement of weapons is due to the energy of one or two men, while changes in tactics have to overcome the inertia of a conservative class.”19  Experimentation like the demonstrations of LaWS on the USS Ponce are important, but integrating new capabilities into major exercises and wargames will be required to prove new capabilities, develop tactics, techniques, and procedures, and overcome skepticism from those who are heavily invested in outdated systems and concepts.


The U.S. Navy must continue to leverage emerging technology to counter adversary A2/AD strategies. Directed energy weapons offer a means of denying attrition by winning the salvo competition and increasing survivability. We are on the verge of realizing the full potential of these game-changing technologies. Fielding them across the Fleet will have implications that span most aspects of the Navy, from force structure to strategic laydown, and from missions to personnel. Any change in weapons or tactics involves risk but we must not shy away from it if we are to remain ahead. In the words of President Eisenhower from his First Inaugural Address “We must be ready to dare all for our country. For history does not long entrust the care of freedom to the weak or the timid.”20

Tim McGeehan is a U.S. Navy Officer currently serving in Washington.

Douglas T. Wahl is a Systems Engineer at Science Applications International Corporation.

 The ideas presented are those of the authors alone and do not reflect the views of the Department of the Navy, Department of Defense, or Science Applications International Corporation. 

This article is an adaptation from an essay that was awarded Second Place in the 2016 U.S. Naval Institute’s 2016 Emerging & Disruptive Technologies Essay Contest which was sponsored by Leidos.



[2] David Smalley, CNO: Here’s What We Need for the Future Force, Navy News Service, February 5, 2015,

[3] Note that for the purposes of this report “directed energy weapons” includes electromagnetic railgun

[4] Office of Naval Research Fact Sheet, Electromagnetic Railgun,

[5] Sydney Freedberg, Navy Railgun Ramps up in Test Shots, Breaking Defense, May 19, 2017,

[6] David Smalley, Historic Leap: Navy Shipboard Laser Operates in the Arabian Gulf, Navy News, December 10, 2014,

[7] Sam LaGrone, U.S. Navy Allowed to Use Persian Gulf Laser for Defense, USNI, December 11, 2014,

[8] Maike Fabey and Kris Osborn, The U.S. Navy is Moving at Warp Speed to Develop Super Lasers, The National Interest, January 24, 2017, ; Megan Eckstein, LPD Portland Will Host ONR Laser Weapon Demonstrator, Serve as RIMPAC 2018 Flagship, USNI News, January 10, 2018,

[9] John Wallace, General Atomics to build a second 150 kW HELLADS military laser, this one for the U.S. Navy, January 29, 2013, Laser Focus World, ; DARPA, Notice of Intent to Award Sole Source Contract For High Energy Liquid Laser Area Defense System (HELLADS) Laser, FebBizOps, January 17, 2013, ; DARPA Press Release, HELLADS Laser Achieves Acceptance For Field Testing, May 21, 2015, ; Ronald O’Rourke, Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress, December 8, 2017, Congressional Research Service,

[10] Richard Carlin, DoD Energy and Power Roadmap (brief to Energy & Power Community of Interest), March 25, 2015,

[11] CSBA, Directed Energy Summit-Summary Report, July 28, 2015, 2015 Directed Energy Summit – Summary Report – Center … ; Boeing Press Release, Boeing CHAMP Missile Completes 1st Flight Test, September 22, 2011, ; Boeing, CHAMP – Lights Out, October 22, 2012, ; George I. Seffers, CHAMP Prepares For Future Fights, February 1, 2016,; Bud Cordova, AFRL division chief presents abilities of high-powered microwave weapons, September 16, 2016,

[12] Federation of American Scientists, BGM-109 Tomahawk,

[13] F/A-18E/F Super Hornet, Aeroweb,

[14] Ron O’Rourke, Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress, Congressional Research Service, November 6, 2015,, p. 3

[15] Ron O’Rourke, Navy Lasers, Railgun, and Hypervelocity Projectile: Background and Issues for Congress, Congressional Research Service, November 6, 2015,, p. 4

[16] Hunter Stires, CNO Announces the Return of Vertical Launch System At-Sea Reloading, The National Interest, July 5, 2017, 

[17] Rena Marie Pacella, NASA Engineers Propose Combining a Rail Gun and a Scramjet to Fire Spacecraft Into Orbit, Popular Science, December 17, 2010,

[18] Spencer Ackerman, Watch the Navy’s New Ship-Mounted Laser Cannon Kill a Drone, April 8, 2013,

[19] Alfred T. Mahan, The Influence of Sea Power Upon History 1660-1783, page 7

[20] Dwight Eisenhower, Inaugural Address, January 20, 1953, PBS:  American Experience,

Featured Image: The U.S. Navy Afloat Forward Staging Base (Interim) USS Ponce (AFSB(I)-15) conducts an operational demonstration of the Office of Naval Research (ONR)-sponsored Laser Weapon System (LaWS) while deployed to the Arabian Gulf. (U.S. Navy photo by John F. Williams)

To Rule the (Air)Waves

By Tim McGeehan and Douglas Wahl

A new domain of conflict emerges as America transitions onto a wartime footing. Military, commercial, and private interests debate how to balance security, privacy, and utility for new technology that unleashes the free-flow of information. The President issues Executive Orders to seize and defend the associated critical infrastructure for exclusive government use for the duration of the conflict.

This is not the plot for a movie about a future cyber war, nor is it a forecast of headlines for late 2017; rather, the year was 1917 and the “new” technology was wireless telegraphy.

Long before anyone imagined WiFi, there was wireless telegraphy or simply “wireless.” This revolutionary technology ultimately changed the conduct of war at sea, making the story of its adoption and wartime employment timely and worthy of re-examination. While these events took place last century, they inform today’s discussion as the U.S. Navy grapples with similar issues regarding its growing cyber capabilities.

Wireless Unveiled

In 1896, Guglielmo Marconi filed the first patent for wireless telegraphy, redefining the limits of long range communication.1 Wireless quickly grew into a means of mass dissemination of information with applications across government, commerce, and recreation. The Russo-Japanese War of 1904-5 provided a venue to demonstrate its wartime utility, when Japanese naval scouts used their wireless to report critical intelligence concerning the Russian Fleet as it sailed for Tsushima Strait. This information allowed the Japanese Fleet to prepare a crippling attack on the Russians and secure victory at sea.2 

People came to believe that wireless communication was not only invaluable, but invulnerable, as described in 1915 by Popular Mechanics: “interference with wireless messages… is practically impossible. Telegraph wires and [submarine] cables may be cut, but a wireless wave cannot be stopped.”3

Naval Implications

Command and Control

Wireless profoundly impacted command and control (C2) at sea. Traditionally, on-scene commanders exercised C2 over ships in company via visual signals; once over the horizon, units relied on commander’s intent. Wireless changed this paradigm. By enabling the long-distance flow of information, wireless allowed a distant commander to receive reports from and issue orders to deployed units in real time, increasing a commander’s situational awareness (SA) and extending their reach. A 1908 newspaper article even referred to the Royal Navy’s wireless antenna at the Admiralty building as the “Conning Tower of the British Empire,” and that the First Sea Lord, “as he sits in his chair at Whitehall,” can “survey the whole area of possible conflict and direct the movements of all the fleets with as much ease as if they were maneuvering beneath his office windows.”4

While wireless did improve communication, it did not achieve harmony between the Fleet and its headquarters. A second 1908 article appeared with a self-explanatory title: “Fleet Commanders Fear Armchair Control During War by Means of Wireless.”5 Much as today, officers considered increased connectivity a mixed blessing; they appreciated the information flow but feared interference with their ability to command.6

Vulnerabilities and Opportunities

While wireless increased SA, it introduced new vulnerabilities. The discipline of Signals Intelligence grew with the ability to intercept communications from adversary ships. While Marconi claimed to have a secure means of transmission, this was quickly disproven in the 1903 “Maskelyne Affair,” when a wireless competitor hijacked Marconi’s public demonstration and transmitted an obscene Morse code message that was received in front of Marconi’s audience.7  This “spoofing” foreshadowed similar episodes in World War I (WWI) where false messages were sent by adversary operators impersonating friendly ones.8

Militaries understood the vulnerabilities of wireless even before the outbreak of WWI. The day after declaring war on Germany, the British cut five German undersea telegraph cables. This action degraded the Germans’ long-distance communications capability and forced them to rely on less secure wireless transmissions, which were vulnerable to interception.9

While the “internals” (content) of these signals held strategic value by revealing an adversary’s plans and intentions, the “externals” (emission characteristics) held tactical value. With the advent of direction finding (DF) capabilities, friendly units could locate transmitting adversary platforms (to include a new menace, the submarine). When combined with known locations of friendly units (self-reported by wireless), these positions provided a near-real time common operating picture (COP).

Mitigations and Countermeasures

Ships could mitigate some vulnerability by maintaining radio silence to deny adversary DF capabilities. A complementary tactic was the adoption of Fleet broadcasts, with headquarters transmitting to all units on a fixed schedule (analogous to today’s Global Broadcast System).10 This “push” paradigm allowed ships to passively receive information, vice having to transmit requests for it (and risk disclosing their location to adversary DF).

In 1906, The Journal of Electricity, Power, and Gas described early countermeasures, specifically jamming techniques, where in “war games one Fleet has kept plying its wireless apparatus incessantly thereby blocking the signals of its opponents until it has passed clear.”11 It analyzed the ‘recent’ Russo-Japanese War, noting that while Russian ships sortied from Port Arthur, “the powerful station on shore began to grind out the Russian alphabet, thus paralyzing the weaker [wireless] outfits of the Japanese pickets.”12 It criticized the Russians for not continually transmitting on their wireless to interfere with the Japanese scouts reporting on their position in the run up to Tsushima Strait.13 In 1915, Popular Mechanics even described how to counter jamming, by “making frequent changes of wave length at known intervals,” a practice known today as “frequency hopping.”14

Wireless, WWI, and the U.S. Navy

On the day America entered WWI, President Wilson issued Executive Order (EO)-2585, which directed “radio stations within the jurisdiction of the United States as are required for Naval communications shall be taken over by the Government…and furthermore that all radio stations not necessary to the Government of the United States for Naval communications, may be closed.”15 The New York Times ran the headline “GOVERNMENT SEIZES WHOLE RADIO SYSTEM; Navy Takes Over All Wireless Plants It Needs and Closes All Others.”16 Weeks later EO-2605A went further and directed the removal “all radio apparatus” from stations not required by the Navy.17 In addition, EO-2604 titled “Censorship of Submarine Cables, Telegraph, and Telephone Lines” gave the Navy additional authority over all submarine cables and the Army authority over all telegraph and telephone lines.”18 Thereafter, the military controlled all means of telecommunication in the United States.

Secretary of the Navy (SECNAV) Daniels had provided rationale for wireless seizure in 1916, when he explained that “control of the Fleet requires a complete and effective Naval radio system on our coasts” and instances of “mutual interference between the Government and commercial stations, ship, and shore, are increasing.”19 He saw no way to resolve the issue “except by the operation of all radio stations on the coast under one control” (the Navy).20

Class in session, at the Wireless School at the Washington Navy Yard, D.C. December 1904. Note schematic diagram on blackboard, and apparatus in use. (Naval History and Heritage Command)

Officials prohibited foreign ships in U.S. ports from using their wireless, sealed their transmitters, and sometimes even removed their antennae. The government shut down amateur operators altogether. Two years earlier, The Journal of Electricity, Power, and Gas opined the “Government would have a tremendous task on its hands if an attempt should be made to dismantle all privately-owned stations, as more than 100,000 of them exist.”21 Nonetheless, that is exactly what happened.

Federal agents worked to track down and secure unauthorized wireless sets and their rogue operators. The Navy assigned operators at newly commissioned “listening-in stations” to monitor signals in specific frequency bands for their geographic area.22 When a suspicious signal was detected, multiple stations triangulated the transmitter and “Naval investigators would immediately [be dispatched to] reach the spot in fast automobiles.”23 The Electrical Experimenter featured a series about a “radio detective” who worked tirelessly to hunt down wireless operators. The detective described false alarms, but also the genuine discovery of hidden antennae disguised as clotheslines, tracing wires to buildings, and catching rogue operators and foreign agents.24

It is worthy to note that even after seizing control of the wireless enterprise, the government recognized the economic impact of wireless and therefore directed the Navy to continue passing commercial traffic. In 1917, SECNAV Daniels reported that the Navy made a profit providing this service and submitted $74,852.59 to the Treasury.25


The wireless actions of 1917 projected into cyber actions of 2017 would be analogous to the Navy seizing control of the Internet, passing traffic on behalf of commercial entities (for profit), censoring all email, and establishing domestic monitoring stations with deployable teams to round up hackers. The backlash would be epic.

However, rebranding the story with different terminology makes it palatable. In 1917, the Navy “seized control of the spectrum” by operating all wireless infrastructure as a “warfighting platform,” thus ensuring it was “available, defendable, and ready to deliver effects.” Censoring traffic and closing unnecessary stations (and private sets) was “reducing the attack surface.”  Navy listening stations “conducted tailored Signals Intelligence” to detect enemy activity. This language should all sound familiar to Navy cyber personnel today, as “Operate the Network as a Warfighting Platform,” “Deliver Warfighting Effects through Cyberspace,” and “Conduct Tailored Signals Intelligence” are all goals extracted from the U.S. Fleet Cyber Command/TENTH Fleet (FCC/C10F) Strategic Plan.26 Like wireless, cyber capabilities are key to ensuring the flow of information, building a COP (associated FCC/C10F goal: “Create Shared Cyber Situational Awareness”), and enabling C2. While a crack team of Sailors might not jump into a “fast automobile” to hunt down an unauthorized Internet hotspot, the function is analogous to Cyber Protection Teams (CPTs) responding to intrusions on the DoD’s network.27 

While security partnerships between government and industry still exist, there are significant differences from 1917’s arrangements. The Navy could not seize control of the entire Internet as it did with all wireless capability in 1917. Wireless was in an “early adopter” phase and did not impact daily life and commerce to the extent of today’s Internet. Likewise, given the volume of email and internet traffic, censorship on the scale of 1917 is not feasible – even  if it was legal. Finally, while the Navy passing commercial traffic during WWI seems unusual now, the Navy actually had been routinely handling commercial traffic since 1912, when the Act to Regulate Radio Communication required that it “open Naval radio stations to the general public business” in places not fully served by commercial stations.28 That act effectively required the Navy to establish a commercial entity (complete with accounting) to oversee all duties of a commercial communication company; today this would essentially mean operating as an Internet Service Provider.29 In 1913, Department of the Navy General Order #10 opened all Naval ship communications to public business while in port; today’s Navy will most likely not turn its shipboard communications systems into public WiFi hotspots.30

Information Systems Technician 3rd Class John Erskine, Chief Information Systems Technician Jennifer Williams, Cryptologic Technician (Networks) 2nd Class Tyrone Fuller, and Information Systems Technician 2nd Class Amanda Kisner work together to assess the security of the computer networks aboard the aircraft carrier USS George H.W. Bush (CVN 77). (U.S. Navy photo)

The wireless story is also a cautionary tale. Even after the war was over, the Government did not want to relinquish control of the airwaves. Among multiple Executive Branch witnesses, SECNAV Daniels testified to Congress that “radio communications stands apart because the air cannot be controlled and the safe thing is that only one concern should control and own it” (the Navy).31 The President voiced his support, spurring headlines like “Wilson Approves Making Wireless a Navy Monopoly.” However, industry applied political pressure and successfully lobbied to restore wireless to commercial and private use in 1919.32 


It is tempting to think that this story is about technology. However, the most important lessons are about people. The final goal in today’s FCC/C10F Strategic Plan is to “Establish and Mature Navy’s Cyber Mission Forces”; the Navy of 1917 had similar challenges developing a workforce to exploit a new domain. Some of their approaches are applicable today (indeed, the Navy is already pursuing some of them):

  • The Navy of 1917 leveraged outside experience by strategically partnering with industry and amateur organizations to recruit wireless operators. In 1915, with war looming, the Superintendent of the Naval Radio Service foresaw a dramatic increase in the requirement for radio operators. He contacted wireless companies to request that they steer their employees towards obligating themselves to Government service in the event of war – the companies enthusiastically complied. He also contacted the National Amateur Wireless Association, which shared its membership rosters. By 1916, it had chapters organized to support their local Naval Districts and helped form the Naval Communication Reserve the following year.33 Patriotic amateurs even petitioned Congress to allow them to operate as “a thousand pair of listening ears” to monitor wireless transmissions from Germany.34  Today the opposite of 1917 happens, where the Navy loses trained, experienced personnel to contractors and commercial enterprise. While the Navy creates its own cyber warriors, it should continue tapping into patriotic pools of outside talent. Deepening relationships with companies by expansion of programs like “Tours With Industry” could help attract, train, and retain cyber talent.
  • The Navy established a variety of demanding training courses for wireless operators. One of the Navy’s earliest courses had non-trivial prerequisites (candidates had to be “electricians by trade” or have similar experience), lasted five months, and was not an introductory but rather a “post-graduate” course.35 Later, a growing Fleet and requirements for trained radiomen necessitated multi-level training. The Navy established radio schools in each Naval District to provide preliminary training and screen candidates for additional service. In 1917, it established a training program at Harvard. These programs provided the Navy over 100 radio operators per week in 1917 and over 400 per week by 1918.36  Today’s Navy should continue expanding its portfolio of cyber training courses to more fully leverage academia’s facilities and expertise.
Recruiting Poster: “What the Navy is Doing: Live and Learn” Showing students in the Navy radio wireless school, at Great Lakes Illinois, circa 1919. (Naval History and Heritage Command)
  • During the war, the Navy looked past cultural differences (and indiscretions) when drawing personnel from non-traditional backgrounds. The “wireless detective” described rogue wireless operators as “being of a perverse turn of mind,”37 and “a reckless lot – at times criminally mischievous.”38 However, the Navy leveraged these tendencies and employed former amateurs “who were familiar with the various tricks anyone might resort to in order to keep their receiving station open” to hunt secret wireless apparatus.39 Today’s cyber talent pool may not look or act like traditional recruits; however, they possess skills, experience, and mindsets critical to innovation. The Navy should weigh traditionally disqualifying enlistment criteria against talent, capability, and insight into adversarial tactics.
  • The Navy of 1917 offered flexible career paths to recruit skilled operators. Membership in the Naval Communication Reserve only required citizenship, ability to send/receive ten words per minute, and passing a physical exam.40 New members received a retainer fee until they qualified as “regular Naval radio operators” when their salary increased. There was no active duty requirement (except during war) and a member could request a discharge at any time.41 Today’s Navy should continue expanding flexible career paths allowing skilled cyber professionals to enter and exit active duty laterally (vice entering at the bottom and advancing traditionally).


There are several parallels between the advent of “wireless” warfare last century and today’s cyber warfare. In modern warfare, cyber capabilities are potential game changers, but many questions remain unanswered on how to best recruit, employ, and integrate cyber warriors into naval operations. Like wireless in 1917, it is easy to become focused on the technical aspects of a new capability and new domain. However, to fully wield cyber capabilities, the Navy needs to focus on the people and not the technology.

Tim McGeehan is a U.S. Navy Officer currently serving in Washington.  

Douglas T. Wahl is the METOC Pillar Lead and a Systems Engineer at Science Applications International Corporation.

The ideas presented are those of the authors alone and do not reflect the views of the Department of the Navy, Department of Defense, or Science Applications International Corporation.


[1] Tesla- Life and Legacy, 2004,

[2] Steel Ships at Tsushima – Five Amazing Facts About History’s First Modern Sea Battle, June 9, 2015,

[3]  G. F. Worts, Directing the War by Wireless, Popular Mechanics, May 1915, p. 650

[4] W. T. Stead, Wireless Wonders at the Admiralty, Dawson Daily News, September 13, 1908

[5] Fleet Commanders Fear Armchair Control During War by Means of Wireless, Boston Evening Transcript, May 2, 1908

[6] B. Scott, Restore the Culture of Command, USNI Proceedings, August 1915, ; D.A. Picinich, Mission Command in the Information Age: Leadership Traits for the Operational Commander, Naval War College, May 2013,

[7] Lulz, Dot-dash-diss: The gentleman hacker’s 1903, New Scientist,

[8] H. J. B. Ward, Wireless Waves in the World’s War, The Yearbook of Wireless Telegraphy and Telephony, 1916, pp. 625-644,

[9] Porthcurno, Cornwall: Cable Wars, May 2014,

[10] Navy’s Control of Radio a Big Factor in War, New York Herald, December 12, 1918,

[11] H.C. Gearing, Naval Wireless Telegraphy on the Pacific Coast, Journal of Electricity, Power, and Gas, June 9, 1906, p. 309

[12] H.C. Gearing, Naval Wireless Telegraphy on the Pacific Coast, Journal of Electricity, Power, and Gas, June 9, 1906, p. 309

[13] H.C. Gearing, Naval Wireless Telegraphy on the Pacific Coast, Journal of Electricity, Power, and Gas, June 9, 1906, p. 309

[14] G. F. Worts, Directing the War by Wireless, Popular Mechanics, May 1915, p. 650

[15] Executive Order 2585, April 6, 1917,

[16] Government Seizes Whole Radio System; Navy Takes Over All Wireless Plants It Needs and Closes All Others, The New York Times, April 8, 1917

[17] Executive Order 2605A, April 30, 1917,

[18] Executive Order 2604, April 28, 1917,

[19] 1916 Annual Reports of the Department of the Navy, pp. 27-30

[20] 1916 Annual Reports of the Department of the Navy, pp. 27-30

[21] G. F. Worts, Directing the War by Wireless, Popular Mechanics, May 1915, p. 650

[22] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141,

[23] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141,

[24] P.H. Boucheron, A War-Time Radio Detective, lectrical Experimenter, May, 1920, pages 55, 102-106,

[25] 1917 Annual Reports of the Navy Department, p. 45

[26] U.S. Fleet Cyber Command/TENTH Fleet Strategic Plan 2015-2020,

[27] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141,

[28] An Act to Regulate Radio Communication, SIXTY-SECOND CONGRESS. Session II, Chapter 287, August 13, 1912, pp. 302-308,

[29] An Act to Regulate Radio Communication, SIXTY-SECOND CONGRESS. Session II, Chapter 287, August 13, 1912, pp. 302-308,

[30] 1914 Annual Reports of the Navy Department, p. 219

[31] P. Novotny, The Press in American Politics, 1787-2012, 2014, p. 82

[32] P. Novotny, The Press in American Politics, 1787-2012, 2014, p. 83

[33] L.S. Howeth, Operations  and  Organization  of  United  States  Naval  Radio  Service  During  Neutrality  Period, History of Communications-Electronics in the United States Navy, 1963, pp. 227-235,

[34] P. Novotny, The Press in American Politics, 1787-2012, 2014, p. 79

[35] H.C. Gearing, The Electrical School, Navy Yard, Mare Island, Journal of Electricity, Power, and Gas, May 25, 1907, p. 395

[36] G. B. Todd, Early Radio Communications in the Twelfth Naval District, San Francisco, California,

[37] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141,

[38] J. Keeley, 20,000 American “Watchdogs”, San Francisco Chronicle, January 30, 1916,

[39] P.H. Boucheron, Guarding the Ether During the War, Radio Amateur News, September, 1919, pp. 104, 141,

[40] L.S. Howeth, Operations  and  Organization  of  United  States  Naval  Radio  Service  During  Neutrality  Period, History of Communications-Electronics in the United States Navy, 1963, pp. 227-235,

[41] L.S. Howeth, Operations  and  Organization  of  United  States  Naval  Radio  Service  During  Neutrality  Period, History of Communications-Electronics in the United States Navy, 1963, pp. 227-235,

Featured Image: Soviet tracking ship Kosmonavt Yuri Gagarin.