All posts by Jan Musil

A Fleet Plan for 2045: The Navy the U.S. Ought to be Building

Alternative Naval Force Structure Week

By Jan Musil

Rather than the usual discussion of what the U.S. Navy has and how to get Congress to fund more and better ships and systems, this article concentrates on the fleet we ought to be constructing in the decades ahead. 2045 is a useful target date, as there will be very few of our Cold War era ships left by then, therefore that fleet will reflect what we are building today and will build in the future. This article proposes several new ship designs and highlights enduring challenges posed by the threat environment. 

A New Transoceanic Frigate Design

The retirement of the Oliver Hazard Perry-class frigates has left a substantial hole, both in terms of surface ship numbers and ASW capability in the U.S Navy’s warfighting capabilities. An understandable move on our part given recent budget pressures, but this author is convinced that we are going to have to replace the transoceanic escort and ASW capability the class provided the fleet.

Perry Replacement

Building a class of frigates that are 21st century versions of the Perry class is an obvious alternative for us to consider. I suggest designing a slightly larger version, say 3800 tons, with a fighting ability heavily focused on the ASW mission. Since the Navy is building plenty of littoral capability in the various LCS classes, this new design should be expressly built to operate effectively in the high sea states the North Atlantic and North Pacific are notorious for generating at regular intervals.

Using the larger turbine engine already in use with the LCS in the new design is expensive, both in construction and operating costs, but not so much more that it makes sense to retain two support and maintenance trails in the fleet and shipyards. Yes, the extra speed will be nice, but in reality is not really necessary. But with the larger engine already baked into the Navy’s operating budget it is better to stick with it even if the operating advantages of more speed in deep blue waters are marginal.

Foremost is the wider beam the bigger turbine will force on the designers. Make a virtue of this fact by making the focus of the new frigate design its helicopter deck, hanger, assigned Seahawk, two Fire Scouts, and ten to twelve TFS buoys. This ship class will exist to provide ASW escort to the CSGs, ARGs and transoceanic convoys in the deep blue.

There will be a 5″ gun to put aboard, the basics of AAW self-defense and plenty of VLS capability for ASW, AAW and the developing distributed long-range strike abilities the Navy has decided it requires. Other than that though, this ship exists to screen against or out and out hunt, submarines.

Those concerned over such a design’s lack of more substantial AAW and offensive capabilities should understand the same argument used to defend the purchase of the original Perrys. Neither the Navy nor the nation can afford to put all three capabilities in substantial measure aboard this small a ship build. We couldn’t afford it with a fifty-six ship build against the Soviet Union and we cannot afford it with the thirty plus frigates we need to build of this new design in the decades ahead.

Hull Design Opportunity

This author shares in the lack of enthusiasm for the use of aluminum in the hulls of the Independence class. But the potential capabilities of the trimaran portion of that class’s design are intriguing.

Whether made of steel or the still-to-be-proven aluminum, a trimaran hull properly designed could provide substantial improvements in stability for helicopter operations in high sea states.

Traditionally Mediterranean navies, the Italians in particular, turned to trimaran designs for speed to use against heavier gunned opponents. With the U.S. Navy speed is never going to be first on a skippers mind in heavily rolling waters, but safely operating the ships ASW equipment, helicopters, and buoys, frequently will be.

So let’s take the time in the design phase to see what can be designed into the new class by utilizing a wide beamed trimaran design, possibly a few more missile tubes and AAW assets can be squeezed in topside if the extra beam is available forward of the hangar deck, even if merely above the waterline. Finally, the offshore oil industry has had some recent success reducing instability in their workboats by moving the bridge all the way forward to the very front of the ship. The result is a vertical, or nearly vertical brow topside with the amidships area given over to work, or in the Navy’s case, fighting space.

This sized frigate should cost the taxpayers under 400 million dollars, probably well under that figure, making the construction of thirty plus ships over the years ahead an affordable investment for the Navy in both the number of ships and our ASW fighting capabilities.

A Flexible New Cruiser Design

In the decade ahead, the U.S. Navy is facing the need to extend and eventually replace the Ticonderoga class CGs now in service. We should look to a flexible new cruiser design that can be adapted for varying purposes through the mid-21st century.

By using a basic class design incorporating the same propulsion plant installed across various  adopted designs we will generate very substantial lifetime cost savings. Additional lifetime savings can be gained by using the same bow and forecastle steel framework across the ship classes. A third, smaller, but still meaningful set of savings can be derived from using the same bridge and AAW working spaces layout. This will provide a great deal of flexibility in what sorts of guns, radars, VLS loadouts, helicopter deck and hangar layout details are selected to serve the purposes of a particular cruiser class.


To meet the substantial electrical power needs of the fleet of the future, energize a single railgun if installed, provide plenty of length and beam for the radars of today and tomorrow, enough space to house computers and operators, adequate AAW warfare capability, something from 15,000 to 20,0000 tons is needed. Since every ton added adds significant construction and maintenance costs this author suggests considering a 17,000 ton modern version of the Baltimore-class cruisers built during WW2. Utilizing a proven sea going design like the Baltimore’s for a proven bow and forecastle design for all of the cruiser classes will provide a cost effective way of providing ships with good sea keeping abilities, with fewer design-from-scratch headaches and lower lifetime costs.

Engine Room

A non-nuclear electric power system such as the permanent magnet motor (PMM) originally planned for the Zumwalt class is another important design parameter that needs to considered and decided upon from the very beginning of the design process. Whatever the power plant settled on, it needs to provide enough electrical power to operate one railgun and associated radars, or the extensive radars, computers and refrigerated working space required by the CGs of tomorrow, or the power needs of a long range ballistic radar if installed. All that generation and conversion equipment needs the space provided by a 17,000 ton sized design.

Bridge, CIC, and Working Spaces

This issue comes to the forefront for the AAW class of cruiser that will replace the Ticonderogas. Computers are wonderful tools, capable of providing multiple ways to enable a fighting sailor. They are also demanding, down right finicky and demanding, pieces of equipment that simply ‘just have to be’ at the right temperature, humidity level, amount of electrical power provided and discharged, and are highly intolerant of any variation in these conditions. Sailors are much easier to provide working space for.

But to be effective, the CGs of the future will also need plenty of  thoroughly refrigerated space in the bridge, CIC, electronic equipment spaces, and working space for the sailors operating and maintaining all this wonderful gear. And let us not forget the multiple radars that will be installed, ever growing in size and number, that also require space, power, and cooling inside the hull.

Therefore, designing a large, as uniform as possible set of working spaces behind the forward gun and before the ventilation stack, helicopter deck, and hangar is strongly recommended as a third set of crucial design criteria.

This author suggests applying the suggestions above in the cruiser classes listed and briefly described in the following sections.

CS – Scout Cruiser

Putting one railgun on a scout cruiser, with plenty of VLS and helicopter space for needed ISR drones, ASW oriented Seahawk, two Fire Scouts, and ten TFS buoys while completely independent of a CSG is a very useful addition to NATO we can make at a far lower cost than any aviation oriented asset. Particularly since there is a very useful mission for the cruiser class to perform, namely Backfire and Bear hunting in the North Atlantic, North Sea, or potentially even the Barents Sea.

CG – AAW Cruiser

The Navy is going to need fifteen plus AAW cruisers as replacements for the Ticonderoga-class as those Cold War veterans wear out. This class design is easily described as simply upsizing the Ticonderoga to 17,000 tons. Give the class the space and power the radars of today and tomorrow demand to be effective, plenty of CIC and electronic room space for the computers and sailors aboard, and as many VLS as practical and this ship class is ready to go.

CBD – Ballistic Missile Defense Cruiser

This author is far from convinced that putting a long range ballistic missile radar to sea is a wise and prudent idea. It almost certainly is not when in close proximity to a CSG, ARG, SSG or transoceanic convoy, at least on a routine basis.

That said, the majority of the worlds seas are, almost by definition, not in close proximity to our primary ocean going assets. There very well may be occasions in the future when the U.S. Navy can provide a cost effective alternative for the president to consider making use of by building three CBD class cruisers.

This cruiser design is obviously dominated by the enormous radar mast mounted amidships. It is unlikely that a non-nuclear power plant will generate enough power for both radar and a railgun, so it will go to sea with our standard 5” weapon, as much of the base bridge, CIC, and electronic working spaces that can be accommodated once the huge ballistic radar requirements are met. It will also include as many VLS tubes that can be squeezed in, and a standard, one Seahawk-sized helicopter deck and hangar.

The reader can easily come up with alternative cruiser class designs of their own, whether improvements on the three suggestions above or for other mission requirements not considered in this article. But having a flexible base cruiser design to hand, available for development or alternation as the world changes around us seems to be an excellent investment in capabilities for the decades ahead.


The author has explored a variety of other ship designs in previous articles that form a part of the fleet design described here. 

The CVLN (carrier aviation light, nuclear powered) is intended to operate with carrier task forces, providing a home for the many ISR drones, UUVs, UAVs and buoys needed in the increasingly dangerous A2/AD environment and to prosecute ASW.

The AORH (auxiliary oiler replenishment helicopter) is a ship class based on a modified AOR-sized and double hulled design without a full flight deck, approximately 25,000 tons and oil powered. This class is intended to provide very substantial helicopter and VTOL launching and servicing capabilities, for ASW, amphibious, special-ops or other missions and then executing these missions  alongside a large variety of allied nation navies; hence the built in patrol boat capabilities as well as at least one UNREP station port and starboard.

The CARN (cruiser gun armor, nuclear powered) will accompany the fleet’s capital ships to provide defensive AAW capabilities with a primary armament of twelve railgun in order to realize favorable cost exchanges.

Strategic Demands of the Threat Environment

For discussion purposes, this author assumes the usual conventional wisdom about the strategic intentions, announced and anticipated fleet construction plans and patrol utilization patterns of the various major Eurasian major powers are mostly true and applicable.


Russia has been consistent in describing her intentions in fleet building and disposition. Given her need to disperse naval assets to four widely separate parts of the world, establish and maintain her strategic ballistic missile force, and meet the need for substantial littoral forces. There is only limited Russian ability to impact U.S. interests far from her shores, certainly nothing like in Soviet days.

The Russians have been quite open in their intent to field enough attack submarines to reestablish a 21st century version of the old Soviet anti-convoy abilities in the North Atlantic. They also are aware of the opportunities that present themselves in disrupting trade and generating geopolitical influence in Northeastern Asian waters as well as the North Pacific; though they are frank that pursuing such a strategy in Pacific waters is some distance down their priority list. Given the many needs the Russian fleet has, having enough assets to operate effectively in the North Pacific may always remain a hope and intent rather than a reality.

As always with Russia, from the days of Ivan IV or Peter the Great onward, there is an enormous difference between Moscow’s perceived military needs and her ability to fund them. This will remain true far into the 21st century, regardless of how much or little change Putin manages to introduce as a response to sanctions and the fall in the price of oil.

That said, Russian naval ambitions and intentions have been clearly stated and certainly include creating and maintaining a substantial nuclear powered attack submarine force to be deployed in the North Pacific, North Atlantic, and Arctic as needed. In addition, Moscow clearly intends to continue fielding enough A2/AD protected assets in the Eastern Mediterranean.


China has been consistently and thoughtfully expanding the PLANs capabilities and mission choices for years now. This expansion has been quite focused, foremost on improving China’s home defense situation. The PLAN has also established abilities to protect and pursue her interests in and around the two island chains. Finally, China has developed modest naval expeditionary capability for ongoing use in the Indian Ocean.

A map of the Asia-Pacific with the first and second island chains indicated. (Consortium of Defense Analysts)
A map of the Asia-Pacific with the first and second island chains indicated. (Consortium of Defense Analysts)

To date there does not seem to be any interest in creating additional substantial capabilities in order to operate far from home waters, much less on the global scale like the U.S. Navy.

Unlike Russia, China does have the financial capability to expand the PLAN if desired, both today and in the decades to come. This capability, if exercised to construct substantial additional surface and attack submarine assets that could be targeted far out into the Central Pacific, beyond the Second Island Chain, would be the single greatest change in world conditions requiring a revision of the fleet building plan presented here.

Ships, and mission requirements, are flexible and can easily be targeted in different areas, and the waters from Taiwan/Okinawa to Guam to Hawaii are an obvious alternative for PLAN planners to study for opportunities. This author is not especially concerned about China’s current fleet in this regard, but if future PLAN submarine building includes plentiful nuclear attack submarines beyond current needs and tasking then the U.S. needs to seriously reassess how it will get fuel and munitions delivered to Guam or Okinawa. 

The interlinked issues that Taiwan and China’s substantial A2/AD capabilities raise can be largely mitigated by adding the suggested CVLN and CARN assets on an ongoing basis to the CSG operating in the Western Pacific. A significant amount of deterrence can be obtained by making the necessary additional investment in these two new ship classes and the associated equipment and doctrine adjustments.

Other challenges presented by China’s increasing presence and differing intentions in the region should be manageable, at least from the Navy’s point of view, by appropriate deployment of the AORH, LCS, and other smaller ship classes that need to be built.

Persian Gulf/Indian Ocean

The many complicated rivalries that rend this part of the world show no sign of dissipating, meaning that the U.S. Navy will need to operate substantial assets on an ongoing basis in the area for decades to come.

The increasingly difficult challenges presented by the rise of Al Qaeda, Daesh, and Iran’s threats to close the Strait of Hormuz suggest the need for routine deployment of a task force. operating independently of the CSG, centered on a AORH, one to two LCS, a LSD, and whatever associated or Allied assets are locally present at any given time for years to come.


The renewed challenge to NATO that is being made by Russia should be met with a different set of assets than were deployed during the Cold War. Modern day challenges in A2/AD capabilities, a more substantive Eastern Mediterranean presence, resumed Backfire and Bear patrols, and the intent to resume routine attack submarine patrols in the North Atlantic require a different set of fleet assets now and in the future.

Much of these changes will have to come ashore in various locations across Europe. As always the substantial littoral assets needed should be provided by our allies in NATO.

We do have unique abilities to provide, particularly the Aegis system whether at sea or installed ashore, and the new railgun. Establishing a routine  task force centered on the suggested scout cruiser (CS) class and a handful of U.S. or other NATO nation frigates in the North Atlantic or North Sea as Backfire and Bear hunters would be powerful way to reinforce NATO, and at a far lower cost than deploying already very busy CVN assets.

Convincing the German Navy to build and operate two or three ships similar in design as an AORH in Baltic waters or around the North Cape of Norway would also substantially improve NATO’s ability to deal with the challenge Russia presents.

Ever Expanding A2/AD Threat

Threats posed elsewhere, which will almost always be less powerful than what China has built, will have to be met with a mixture of the new anti-drone, anti-missile weapon systems under discussion, the assistance of shore based assets or wide dispersal when operating in deep blue waters. All of our new assets should be built with the ability to flexibly add or subtract as needed new weapon systems as they are developed over the decades to come.

Suggested Fleet

The following fleet should be able to handle these challenges and threats well into the middle of the 21st century.

Ship TypeCurrent FleetProposed 2045 Fleet
SSN (Seawolf-class)30
SSN (Virginia-class)1224
SSN (Virginia-class extended)012
SSN (Los Angeles class Flights I, II, 688i)380
SSN (Los Angeles class Flight III)024
CVLN (carrier aviation light, nuclear powered)06
AORH (auxiliary oiler replenishment helicopter)09
AORH (ice strengthened)02
CS (scout cruiser)03
CBD (ballistic missile cruiser)03
CG (Ticonderoga replacements)2215
DDG (Zumwalt class)33
FF (new transoceanic frigate)030
FF (ice strengthened)05
FP (new LCS frigate)1616
FM (Freedom class)1212
FM (Independence class)1212
EPF (formerly JHSV)1212
LSD (replacement LSD design – 12k tons)1218
ESD (formerly MLP)24
ESB (formerly AFSB)24
T-AKE 1212


At just over 340 ships this suggested fleet plan provides the U.S. Navy with an adequate number of vessels, while simultaneously adding needed new high-end surface ship designs and providing the numbers of smaller ships the nation needs now and will need into the future. As always, the time to start planning ahead is now.

Jan Musil is a Vietnam era Navy veteran, disenchanted ex-corporate middle manager, and long time entrepreneur currently working as an author of science fiction novels. He is also a long-standing student of navies in general, post-1930 ship construction thinking, design hopes versus actual results, and fleet composition debates of the twentieth century.

Featured Image: PACIFIC OCEAN (July 22, 2016) – The Nimitz-class aircraft carrier USS John C. Stennis (CVN 74) conducts a vertical replenishment with the Military Sealift Command fast combat support ship USNS Rainier (T-AOE 7) during Rim of the Pacific (RIMPAC) 2016. (U.S. Navy photo by MC2 Ryan J. Batchelder/Released) 

OK, Explain Again Just Why the American Taxpayer Should Pay For All This (Series Finale)

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.

Select a Donation Option (USD)

Enter Donation Amount (USD)

OK, Explain Again Just Why the American Taxpayer Should Pay For All This

This article, the sixth of the series, presents reasons why Congress and the American taxpayer should pay for all the drones, buoys, railguns and the additional necessary ships to deploy them at sea introduced earlier in the series. Some of the justifications briefly discussed below are sure to be familiar to the reader, some less so. In either event, please feel free to mentally rearrange them according to your own priorities. Read Part One, Part Two, Part Three, Part Four, Part Five

Expensive Assets

These are not inexpensive assets that can be squeezed into the Navy’s spending plans somehow. With a likely cost of $3 billion plus for the CVLN and CARN classes, less the cost of at least one, possibly two DDGs that a CARN replaces in a carrier task force and $2 billion plus cost for an AORH, Congress and the American taxpayer are going to have to be persuaded to purchase these as additional assets for the Navy. So why should they do so?


Adding large quantities of ISR and ASW drones along with a dozen, or more, railguns as a matter of routine will provide a credible defense against the increasing A2AD threat the Navy faces. Presenting a potential adversary with overwhelming force in a potential area of conflict is a time proven technique for preventing conflict and promoting dialogue. It should also be noted that while these additional assets are expensive, combined they are still less than half the construction cost of just the CVN being protected, much less the air wing embarked aboard.


For CVNs

Much of the surface warfare assets the Navy possesses are routinely dedicated to protecting other critical ship classes and their embarked sailors. The CVNs operating in their dedicated task forces normally find themselves free to go where they please given the protection against air, submarine and surface threats the surrounding ships provide. Adding a CVLN and a CARN to this operating procedure is simply adding to a proven recipe by countering the increasingly formidable A2AD assets other nations are steadily acquiring.

For amphibious assaults

The Marine Corp routinely catches a ride on an ARG provided by the Navy. Most of the time there is no need to provide the extra protection provided by the suggested new ship classes. Come the big moment though, both during the few days leading up to and then during an amphibious assault placing a CARN, an AORH and a Zumwalt class destroyer between the opposing forces ashore and the ARG can very substantially improve the chances of success and measurably lower the anticipated casualty rates amongst the Marines making the landing. By providing substantial ASW assets in the coastal waters involved, numerous ISR and target spotting assets from the AORH, formidable fire support abilities from the CARN and Zumwalt and substantial anti-missile, rocket or artillery shell protection courtesy of the twelve railguns the new ship classes will significantly improve the Navy’s ability to support an amphibious invasion. Plus the Marines making the ride ashore will be able to start from just over the horizon thanks to the presence of multiple targeting drones and railguns instead of the much discussed fifty mile seasick inducing slog currently anticipated.

Ally reassurance

Protecting the carrier strike groups also means reassuring our allies that we will be able to fulfill the defense commitments we have made, particularly in the Western Pacific. However, building and deploying the means to allow the fleet to go where it wants is a globally useful capability, allowing the U.S. to confidently assert it will be there in time of need.

Multi-polar world

We live in a multi-polar geopolitical structure. China, Russia, India, Europe, the Gulf States, Brazil and others already are jostling with the U.S. for influence and trade. Including a China who already is in some respects, and will remain our economic equal in world affairs. This economic equivalence is something the U.S. has not had to deal with since our enormous industrial expansion in the last three decades of the 19th Century. We need to refresh our thinking with some of the concepts that worked well for us as we dealt with Great Britain, the existing economic power back then.

That said being a rival is not the same as being an enemy. There certainly are many areas where the U.S. and China will find ways to cooperate to our mutual benefit. We are certain to jostle each other though, especially in China’s immediate area as that proud civilization looks to ‘put things right’ after their many difficulties of the last two centuries. As mentioned above, we want to deter everyone in the area from using violence to bring about change, instead encouraging patience while the various nations involved discover mutually acceptable adjustments via discussion.

Playing defense to maintain the world as it is

There are other issues that come with being in a multi-polar world. In the new global circumstances the U.S., and the Navy in particular, need to execute defense, and first things first, keep our ships afloat. Something we have not had to overly concern ourselves with since the demise of the Soviet Union or the destruction of the Imperial Japanese Navy in the 1940s. Increasingly we will no longer be able to exercise the freedom of the seas and engage in whatever activity we want, whenever we want to. Russia is already building a submarine and long-range bomber force to potentially contest our passage. Others, China in particular, will be able to invest steadily increasing resources in military assets that make sense for their geo-political situation. Investments that mean the U.S Navy may have to fight our way across the North Pacific or North Atlantic before we commence operations at the location of our choice.

Hawaii has to eat

Our geography as a nation includes Hawaii, control of which easily translates into the control of the bulk of the Pacific Ocean. Yet Hawaii is a series of islands, thousands of miles from the mainland with a population of 1.4 million. Again, the change to a multi-polar world means we have to give thought to just how we can ensure the population on the islands can eat when trouble arrives. Russia already has the submarine assets needed to threaten mining or torpedoing ships crossing the North Pacific. Obviously the naval assets based at Pearl Harbor and the West Coast should be able to prevent that. However, we can no longer just take it for granted. The Navy needs to consciously add this to its long list of missions to accomplish.

The same issues apply to Guam, though the much smaller population can be fed by air if necessary, which means the mission is more one of being able to get our needed fuel and ammunition supplies delivered. Once more, the local air and naval forces should be able to ensure it happens. This is an area where the rise in China’s capabilities means we cannot take free passage for granted there either.

Maritime Commons

Protecting the global commons to ensure free passage of American trade was one of the primary reasons the U.S navy was originally built in the 18th Century. The need, a global need in the 21st Century, continues unabated.


Occasionally over the years the U.S. has chosen to impose a blockade during a dispute. This is a capability, or more importantly for our relationship with China, a potential capability that we need to maintain. And the world needs to be reminded of on occasion.


As many others have noted over the last few years, a British citizen in the 19th Century could travel the world secure in the realization that the local government, regardless of whether it got along well with London or not, was not going to antagonize Britain by harming, or allowing to be harmed, the traveling Brit. A benefit that transferred to American citizens as a result of our overwhelming victory in 1945.

Unfortunately, in growing numbers of places in the world this benefit no longer exists due to the inability of many local governments to provide law and order within their borders for anyone, much less wandering Americans. This means that the U.S. Navy and Marine Corp have to face the reality that just as in the ‘olden days’ of the 18th and 19th Centuries, they are on call to provide basic protection to Americans all across the globe.


The need for the Navy and Marine Corp to provide rescue service as needed has never gone away. And given the monotonous regularity of severe weather events, civil disturbances and the endless list of troubles that arise, this is certainly not going to change.

AORH uses

The AORH class suggested earlier in this series of articles was quite consciously designed to be capable of taking on some of the responsibilities, new and old, mentioned above. First among these was to be flagship capable, coupled with the resupply abilities and the substantial ASW and special forces capabilities built into the design.

These abilities are capable of being useful undertaking missions beyond the obvious applications in the Gulf, South China Sea and Northeast Asia. In addition, an ice-strengthened version of an AORH is very well suited to leading a small task force of frigates on ASW duty in the Arctic. It can also be used as the centerpiece for an old-fashioned hunter killer group prosecuting submarines or to provide transoceanic convoy protection in either the North Pacific or North Atlantic.

Current Political Impasse

As for the likelihood of persuading the current Congress to pay for this the Navy needs to be frank. The additional spending being asked for here are additional dollars for additional capabilities. Beyond some small incremental steps, most of the needed dollars will not fit inside the spending limits in place over the next few years. It is intended as a long term plan, to be funded as a recovering economy allows, with the big ticket items being built starting in the 202os and extending into the late 2030s.

For the economy is slowly growing and just as importantly the deficit is in notable decline. There are multiple reasons for this and there is good reason to believe they will continue to positively impact the deficit. A growing economy, the impact fracking is having on energy production, the beginning of the return of some manufacturing to North America from China due to higher wages there, the fact that Medicare costs are much less onerous than forecast five years ago, Obamacare is not costing nearly as much as feared when it was passed, and ending the Bush-era tax cuts are having a real impact on the actual deficit as well as on the, far larger, feared one.

So the enormous fear factor that was driving the deficit reduction hawks back in 2010/11 is in the process of dissipating, being replaced with some truly old-fashioned value driven politics. It is important to note that the Republic has been down this road before. After both the Revolutionary War and the Civil War Congress chose to slowly bring down an enormous deficit by running small annual surpluses. In essence, some variation of this strategy, regardless of how fiercely you espouse the ‘value’ part of balanced budgets, is what we are going to have to do as we deal with the left over Cold War debt and the enormous additional debt load piled on post 9/11 and due to the Great Recession.

Die Hard Yankee Frugality

Or depending on one’s viewpoint, good old-fashioned small town frugality, skinflints, True Blue small town values defending America from corrupt Big City mentalities, etc. The reader should feel free at this point to insert the variation(s) he hears most often where he lives. This cultural attribute came to the New World with the Pilgrims and remains a vigorous part of American culture. It has not, and will not be, departing from our political discussions. Or budgeting decisions.

So, how should we address those who hold this belief? In my experience, when trying to influence or alter decisions made by those operating from this position, argument and persuasion can work. If. Actually two ifs. Big ones. First a resolution to the revenue versus budget issue forcing hard choices has to be visible to the individual you are working with. And it is they that have to see it; regardless of how obvious it is to you, they are the ones that have to see, understand and agree. Then you need a plan dealing with anticipated results and consequences that you can clearly articulate, including how you will execute the plan, deal with the known potential problems and be convincing about being able to complete the task on time and most importantly, within the agreed upon budget.

Mid-America Teary-Eyed Balanced Budget Goodness

Across much of interior America another strong cultural value, the Intrinsic Goodness of Balancing Your Budget also accompanied some of the earliest English settlers of North America. Over the centuries this value has also been passed on to succeeding generations over family dinner tables, political discussions at the local diner or at the town’s barbershop. The at times teary-eyed value some of it’s current believers place in it can be almost moving to observe by someone who considers it merely another number. Plus, minus or zero each have meaning, yet no particular cultural Goodness.

To the True Believers amongst us it constitutes one of life’s bedrock values though. And it is not departing the American political scene either. Which means it will strongly impact budgeting issues far into the future as well.

However, unlike those professing Yankee Frugality, True Believers are virtually impervious to discussion and argument. Sometimes they will patiently listen to you and your points, still no matter how cogent and persuasive one might be, True Believers, once they start their decision making process, will cycle back and check your argument against various values and beliefs they hold. And if they find your argument in conflict with one of their values, for the purposes of this article, the Intrinsic Goodness of Balancing Your Budget, your suggested plan will be rejected.

Any additional information you might provide tends to ultimately provoke something along the line of this real life quote. “You are just trying to confuse me with facts,” responded one individual a few years ago. Global warming was the topic that day rather than the budget and the end result was, “I have my faith (in the rightness of their belief – not really a conclusion, a belief) and I will not change my position.”

This attribute is very much in play when discussing the current budget situation. Unfortunately it is, in my experience anyway, impervious to analysis and discussion. All those carefully honed arguments and points of persuasion potentially useful when speaking with those convinced of the value of frugality will only be considered by True Believers after the budget is balanced. Maybe.

Their faith in the correctness of the uttermost value of balanced budgets can be trumped by another value however. Not by many though, as it ranks high in their pantheon. Historically of course the value to use was the need for defense. Whether national defense from other nations, personal defense against crime or terrorism or preserving orderly and lawful procedures when discussing social issues, over the decades this has proven an effective approach.

Unfortunately the current spending debate has been embroiled in the revolt of a significant number of voters, primarily though not entirely, conservative Republicans, over the blatant abuse of this trump value during the second Bush administration. Vice President Cheney was incorrect when he claimed there were no electoral consequences to running vast deficits. There are, both economic and political, a truth that is not going away.

A significant portion of their political base could, and did for a while, accept the national defense against terrorism argument after 9/11. However subsequent failures to control Federal spending, under a Republican President, Senate and House no less infuriated them. Fury then became something close to horror after the Salomon Brothers debacle unleashed a need for massive federal deficits to restore the economy.

So after years of serious abuse of the national defense trump value, its use with those who fervently believe in the Intrinsic Goodness of Balancing Your Budget has been heavily invalidated. For a significant portion of the American electorate the call for a return to this basic value remains a hot button issue. It is five years on from the revolt that took place in 2010 and the fury and horror seem to have been replaced with a grim resolve to never allow spending to run out of control again. And balance the budget.

This implies, barring a serious political change in the House in a future election year, we may well have to wait for the sanctified day when the Federal government takes in more revenue than it spends before any substantive increases in spending, or allocations for substantial new abilities for the U.S. Navy can be expected.

In all likelihood this means it will not be until sometime in the 2020s before much of what has been suggested in terms of shipbuilding, i.e. the new AORH, CVLN and CARN class ships and large quantities of the associated drones and buoys, can obtain the political support needed for the substantial sums needed.

Count Our Blessings

It is always useful to Count Your Blessings though. The bulk of the resistance in Congress is to additional spending, with no more than the usual amount of Congressional meddling in the details of departmental, including DOD, spending. Just figure out a way to get things done within the dollar amount allotted is a frequently expressed desire by many in the House.

Nor is there any value based or carefully analyzed opposition to new equipment programs from any of the services. So while the suggested ship classes and drones will provoke a fierce defense of spending limits, there is no reason to anticipate Congressional opposition to the new equipment if the Navy develops a coherent plan including them. As suggested above in all probability the big items will not be affordable until sometime in the 2020s, nonetheless if the items are part of a long term acquisition plan it will merely be a question of waiting for funds to become available rather than overcoming fierce opposition to the plans and equipment.

So have a long-term plan in place

This means the U.S. Navy needs to have that forward looking plan in hand, constantly being updated as various improvements in doctrine, sensors and drones are developed. And be ready when additional funds become available, rice bowl pointed upwards as the saying goes. Whether the motivation to Congress is a perceived problem somewhere across the globe, the occasional Congressional compromise over something or other that includes extra funds for some department, a call for ‘shovel ready’ projects when recessions hit, or the slippery processes of logrolling; having a plan in place will allow the extra funds to be applied far more beneficially to the Navy’s, and the countries, benefit than a haphazard purchase of a few more of this and that.

Honor the Premise

In the end though, funding for the U.S. Navy, and all other Federal government departments, is only going to grow as fast as the economy. Which will happen, meaning any plan including the suggestions made in this series of articles will have to be implemented over a period of many years. Into the late 2030s or mid-2040s before the last of nine ship CARN build for instance. The early 2030s for eleven AORHs and the same for a six ship CVLN build are also reasonable build out expectations at this point.

Clearly the time to start to work on such a plan is now.

Jan Musil is a Vietnam era Navy veteran, disenchanted ex-corporate middle manager and long time entrepreneur currently working as an author of science fiction novels. He is also a long-standing student of navies in general, post-1930 ship construction thinking, design hopes versus actual results and fleet composition debates of the twentieth century.

Surviving the Fabled Thousand Missile Strike (Part Five)

Surviving the Fabled Thousand Missile Strike

CARN class jpeg

Sketch by Jan Musil. Hand drawn on quarter-inch graph paper. Each square equals twenty by twenty feet.

This article, the fifth of the series, examines how fitting lots of drones, of all types, and large numbers of railguns, aboard a CVLN and either one or two CARNs, can allow the U.S. Navy to confidently ride out the fabled thousand missile strike from the mainland of Eurasia. To do so let’s walk through a possible exercise involving Red, a Eurasian mainland power and Blue, essentially a typical Western Pacific carrier strike group. Read Part One, Part Two, Part Three, Part Four.

Red’s motivation might be ensuring that Blue cannot interfere with, or arrange for reinforcements to reverse, an offshore invasion. An alternative, somewhat more likely though, is that Red is intent on challenging one of Blue’s friends or allies and finds that it cannot achieve its objectives without removing Blue’s powerful naval forces from the area. When threats and warnings do not result in a satisfactory result, Red’s leader authorizes a massive missile strike on Blue’s carrier strike group at sea. This missile strike will be an attempted TOT (time-on-target) strike where all the missiles launched, regardless of distance to the carrier strike group or their speed, i.e. a combination of subsonic and hypersonic missiles, will arrive within a five minute window at the target location. The strike will primarily consist of land-based missiles, but some of Red’s numerous submarines will attempt to participate as well, for the purposes of this exercise it is assumed 29 missiles launched from three different submarines will arrive on target within the five minute TOT time period. Red’s commander has elected to hold his meaningful, though not massive, long-range aircraft striking power in reserve, hovering in a threatening position but not immediately participating. Thus a total of 1,029 missiles are launched.

This exercise assumes that Red can coordinate the command and control challenges involved in such a large undertaking. It also assumes that Red possesses adequate space based surveillance capabilities that real time targeting information down to the nearest kilometer, or better, is available on a timely basis to the relevant land, air and submarine commanders.

It should be emphasized here the importance of the compressed TOT portion of Red’s attack plan. Any incoming missiles, whether land or sub launched will be far easier for Blue to defend against if straggling in before or after the massed attack. This advantage of Blue’s is magnified by the presence of the railguns with their enormous magazine size and the ability to fire every five seconds.

It is assumed that Blue’s carrier strike group consists of:



1 CG (Ticonderoga class)


4 DDG (Arleigh Burke)

4 FF (the new ASW frigate under development)

2 squadrons of F-18s

6 EA-18G Growlers

1 squadron of F35s

1 squadron of strike drones

15+ ISR drones

4 E-2D Hawkeyes

2 S-3 Vikings

6 refueling drones

15+ Fire Scouts

10+ Seahawks

75+ buoys with UUVs or a dipping sonar installed and a radar/infrared lure

Blue’s carrier strike group commander has taken full advantage of the ASW capabilities provided by all the Fire Scouts and buoys, spreading the strike group out over a thirty mile radius in a preplanned dispersal strategy. The commander has also been successful at maneuvering the strike group into a position where there are no Red submarines within at least 30 miles, and it is believed (or hoped) by Blue’s commander that the strike group is at least 50 miles from the nearest Red submarine.

Blue also possesses space based surveillance capabilities and is able to provide Blue’s carrier strike group a twenty minute warning of the incoming attack. Blue’s commander selects one of his preplanned spatial deployment plans, concentrating the majority of his surface assets in a compact zone with the CARN taking position and turning its broadside closest to the incoming missile strike, three of the four DDGs some distance behind it, then the CG and two of the frigates, then the CVLN and finally the CVN. One frigate is so far off on the periphery on ASW duty that it will fire chaff rounds repeatedly during the attack and hope the handful of aircraft overhead and many radar lures dropped in its vicinity will allow it to emerge unscathed. On the opposite side of the strike group one DDG and the fourth frigate will do the same, though with the added protection of the DDGs AAW missiles.

This dispersion plan means a large portion of the area where the strike group is located is simply empty ocean. The intent is to use the strike groups EEW and radar lures to effect and make thorough use of the fact that even a subsonic missile cannot maneuver quickly enough to search out targets if presented with enough empty ocean upon their initial arrival at the selected target location.

Blue’s commander has also chosen a specific plan for utilizing his air assets in a layered defense, intent on maximizing the effectiveness of the various weapon systems embarked. Let us follow the resolution of the attack, starting with the outermost layer, and work our way inwards as the strike progresses.

Cap Layer

2 E-2D Hawkeyes and 12 F-18 Super Hornets

Blue’s strike group commander has assigned these air assets to anti-aircraft duty, approximately 250 miles from the strike group’s location. Since Red’s long-range bombers are known to be airborne, but apparently are not immediately participating, the decision is taken for these Super Hornets to hold their fire, confident that the rest of the strike group can deal with the incoming missiles, and continue to guard against any enemy aircraft that might intrude later.

Shot Down/Eliminated/Missed/Decoyed This Layer: Zero

SD/E/M/D Cumulative: Zero           Of 1,029 incoming missiles

ISR Drones Layer

8 ISR Drones

These eight drones are individually scattered in an arc 150 miles out from the strike group’s location. They are there to provide accurate targeting information, primarily for the SM-2 and railgun equipped surface ships of the strike group. In particular the presence of this arc ensures timely targeting information so the railguns can effectively engage at their maximum range of 65 miles.

SD/E/M/D This Layer: Zero 

SD/E/M/D Cumulative: Zero           Of 1,029 incoming missiles

Railgun Layer

13 railguns (12 on the CARN and 1 on the CVLN)

With the targeting information provided initially by the ISR drones and later by the various aircraft and AAW radars of the strike group the railguns will steadily engage at their maximum rate of every five seconds. Since it is unlikely that any particular missile, even subsonic ones, will not close the remaining 65 miles to the strike group before a second shot can be taken this exercise assumes each railgun will only fire once at any given missile.

Each railgun can fire every seconds, 60 seconds/5 = 12 shots a minute. Therefore over a five minute time period each railgun will get off 5 x 12 = 60 carefully aimed shots. 13 railguns x 60 equals 780 opportunities to hit an incoming missile.

This exercise will assume a 50% success rate for the railguns. Therefore 390 incoming missiles are eliminated.

SD/E/M/D This Layer: 390  

SD/E/M/D Cumulative: 390           Of 1,029 incoming missiles

SM Family Missile Layer

420 surface ship launched SM-2 missiles and 2 E-2D Hawkeyes operating approximately fifty miles out from the strike group’s location.

The CG (100) and four DDGs (80 each) in the strike group are assumed to have 420 SM-2 missiles available to fire in their collective VLS cells.

This exercise will assume a 70% success rate for the missiles. Higher success rates can easily be argued for, though there will be some unavoidable overlap with the railguns resulting in double targeting by some missiles. 420 x .70 = 294. Therefore 294 incoming missiles are eliminated.

SD/E/M/D This Layer: 294  

SD/E/M/D Cumulative: 684           Of 1,029 incoming missiles

Air Wing Layer

12 F-35s, 12 Strike Drones, 12 F-18 Super Hornets, 6 EA18-G Growlers, and 2 S-3 Vikings carrying 4 air-to-air missiles each = 176 AAW missiles

Blue’s air commander has elected to concentrate the bulk of his air assets close to the strike group. This allows the air commander to attempt to concentrate this groups AAW missiles in defense of the three zones occupied by the surface ships below. This allows more of the incoming missiles that have survived to this point but appear to be targeted on empty ocean to be ignored.

This exercise will assume a 70% success rate for the AAW missiles. Again, higher success rates can easily be argued for, though given the tight time constraints on pilots decision making some double targeting will be unavoidable. 176 x .70 = 123.2 rounded down to 123. Therefore 123 incoming missiles are eliminated.

SD/E/M/D This Layer: 123   

SD/E/M/D Cumulative: 807           Of 1,029 incoming missiles

Eliminated Due to Malfunction Layer

If everything always worked perfectly the world would be a much happier place. But things inevitably go awry and the incoming missiles are not immune to this problem. This exercise assumes a standard 5% malfunction rate. 1,029 x .05 = 51.45, rounded down to 51.

SD/E/M/D This Layer: 51     

SD/E/M/D Cumulative: 858           Of 1,029 incoming missiles

Missed Due to Dispersal Layer

The high rate of speed of the incoming missiles will sharply limit their ability to effectively search for a target if they happen to encounter one of the areas of empty ocean Blue’s commander has contrived. This exercise assumes, rather arbitrarily, a 5% missed rate, but empty ocean will certainly greet some of Red’s missiles. 1,029 x .05 = 51.45, rounded down to 51.

SD/E/M/D This Layer: 51     

SD/E/M/D Cumulative: 909           Of 1,029 incoming missiles

Decoyed Layer

The strike groups EEW capabilities, including the Growlers, all the strike group helicopters, Fire Scouts and over 75 buoys with various types of lures aboard can be utilized to great effect. This exercise assumes, rather arbitrarily, a 5% decoyed rate. It is tempting to select a higher rate, but to be conservative the 5% rate is used. 1,029 x .05 = 51.45, rounded down to 51.

SD/E/M/D This Layer: 51     

SD/E/M/D Cumulative: 960           Of 1,029 incoming missiles

Internal Rolling-In-Frame Layer

The CARN has six rolling-in-frame close defense missile launchers installed on each side of the ship. As Red’s surviving missiles reach the LOS horizon, these missiles engage those missiles targeted on the primary layered group of surface ships, which includes the crucial CVN.

This exercise will assume a 70% success rate for these missiles. 48 x .7 = 33.6, rounded down to 33. Therefore 33 incoming missiles are eliminated.

SD/E/M/D This Layer: 33    

SD/E/M/D Cumulative: 993           Of 1,029 incoming missiles

Last Ditch Layer

At this point the last 36 missiles of the original 1,029 are assumed to acquire surface targets and close on them. At this point the targeted ships individual CIW and close range missile defense provide a last ditch defense layer.

To be consistent, this exercise will assume a 70% success rate for the CIW and close range defense missiles. 29 x .7 = 20.3, rounded down to 20. Therefore 20 incoming missiles are eliminated.

SD/E/M/D This Layer: 20    

SD/E/M/D Cumulative: 1,013           Of 1,029 incoming missiles

The hits the remaining 26 missiles inflict will do varying amounts of damage, with the highest variability being the size of the target. One hit can easily destroy one of the ASW frigates. Depending on where the hit occurs, damage to a DDG or the CG will merely damage some portion of its functionality but the combination of the damage and the resulting fires could easily incapacitate the ships fighting ability for quite some time. A hit or two on the CARN with its extensive armor are likely to incapacitate some of its weapon systems but not seriously impair the ships ability to fight. Obviously the more hits, the greater the collective damage. The CVLN and CVN, hopefully spared the worst by their placement at the far back of the layered spatial deployment chosen by Blue’s strike group commander, should be able to continue to function at close to normal capabilities, with the obvious proviso that any fires started do not prove difficult to bring under control.

So at the conclusion of the first round of the exercise, Red has achieved some significant, but not decisive damage with its massive 1,000 missile strike. So what does the Red Commander do next? If that is the sum of his assets, committing his modest long-range aircraft to anything other than continued harassing missions does not seem prudent. Blue’s obstructing carrier strike group has more or less survived and Red must now consider alternative means of achieving its objectives.

Unless Red, assumed to be a major East Asian land power, has utilized its substantial economic capability to construct a second wave of long-range missiles.

Red Force Commander

If so, then Red force commander, after a rapid but thorough review of the results of the first strike provided by his space-based reconnaissance assets decides to proceed with a pre-planned second strike. This time all of his available air assets will participate in the attack and Red Force commander does his best to coordinate another five minute time-on-target attack by hundreds of land based missiles and orders a much larger number of submarines to participate. Hopefully many of them will be able to evade Blue Forces SSNs and contribute at least some missiles from a multitude of different directions.

The intent here is to take advantage of the fact Blue Force will not have time to reload his ship borne missile tubes and in the intervening 30 minutes to an hour, only a few aircraft will have time to re-arm with AAW missiles. This will leave only the magazines of the railgun equipped ships with a significant amount of ammunition available for use.


At this point we will take leave of the exercise for with the results so far we are capable of making several conclusions.

1- Adding the various types of drones now available as well as the railgun, IN QUANTITY, to the fleet combined with appropriate doctrine adjustments, and flexible and carefully thought through battle plans means the fabled 1,000 missile strike can be survived by a typical carrier strike group.

2- This is particularly true of what most non-East Asian powers across the Eurasian landmass are likely to be able to field over the next few decades.

3- Adding a second CARN to the Western Pacific carrier strike group might well be a wise additional investment.

4- Several of the layers discussed above were deliberately provided with conservative success rates. The railgun itself may very well be able to operate, even at 65 miles, at much higher success rates. The ability to utilize our EEW and decoying assets could also provide significantly better results than estimated, as could the effects of dispersal.

5- Installing one or two railguns aboard the new CVNs as they are built looks to be an excellent idea. Consideration should also be given to installing one or two during refits, or during the refueling process, of our existing carrier assets.

In the next article we will discuss just why Congress and the American taxpayers should pay for all these additional UAVs, UUVs, Fire Scouts, buoys, railguns and the necessary ships to deploy them at sea.                                                                           

Jan Musil is a Vietnam era Navy veteran, disenchanted ex-corporate middle manager and long time entrepreneur currently working as an author of science fiction novels. He is also a long-standing student of navies in general, post-1930 ship construction thinking, design hopes versus actual results and fleet composition debates of the twentieth century.

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.

Select a Donation Option (USD)

Enter Donation Amount (USD)

Is There a Class of Armored Cruisers in the U.S. Navy’s Future? (Part Four)

Is There a Class of Armored Cruisers in the U.S. Navy’s Future?


CARN class jpeg

Sketch by Jan Musil. Hand drawn on quarter-inch graph paper. Each square equals twenty by twenty feet.

This article, the fourth of the series, presents a suggestion on how to incorporate the new railgun technology into the fleet in an efficient and effective manner. Railguns, when used as a complement to the various UAVs, UUVs and Fire Scouts discussed earlier will provide the fleet with a potent AAW weapon. Read Part One, Part Two, Part Three.

Interestingly enough, the most important piece of information concerning the new railgun is a number. A single round of ammunition costs $10,000. Eighteen inches of railroad tie shaped steel (which costs less than $200) fitted with the wonders of modern microelectronics provides a startling contrast with the $1M+ cost of the missiles the Navy currently uses against incoming aircraft and missiles. A contrast that is even more in the Navy’s favor since any future opponent will be spending comparable sums for their attack missiles and substantially more for hypersonic cruise missiles.

There are no explosives purchased with the $10,000. This means hundreds of rounds of railroad ties and microelectronics can be safely stored in a ship’s magazine. This is a substantial advantage compared to the VLS missiles in current use by navies around the globe, most of which require specialized loading facilities to reload their missile tubes. In contrast, a railgun-equipped ship can take a much larger ammunition load to sea with it, and reload the magazine at sea if necessary.

The next relevant parameter of the new railgun is its range. At 65 miles this is far less than many long-range missiles, though still quite useful against incoming aircraft and missiles. Note that with an ISR drone or Hawkeye providing over-the-horizon targeting information, a surface ship equipped with a railgun can shoot down incoming aircraft such as the Russian Bear (Tu-95) reconnaissance aircraft before the intruder can lock in on the firing ship. The same is true for any attacking aircraft carrying long-range strike missiles.

This highlights the importance to both sides of providing accurate targeting information first. It also means, strategically, at its heart the railgun in the 21st century maritime environment is a defensive weapon: well positioned to provide defensive fire against incoming attacks, but with an offensive punch limited to sixty-five miles.

That said, with the ability to fire every five seconds the railgun can be very effective, particularly when utilized in quantity when escorting carrier strike groups or when placed between a hostile shore and an ARG.

So far we have noted the positive distinguishing capabilities of the railgun but there are three significant difficulties that come with fielding the weapon. Foremost is the enormous amount of electrical power discharged by the gun when firing. This means any ship equipped with a railgun needs substantial electric power generating capabilities, something certainly beyond the abilities of the DDGs and CCGs currently in the fleet.

Secondly, using these vast amounts of electricity means a large capacitor needs to be located on the deck below the railgun. Large does mean large in this application. No little white pieces of ceramic plugged into a circuit board will do here. The necessary equipment is physically massive and in need of protection from the elements. They will be taking up a substantial amount of space just below the main deck where the railgun has to be mounted, probably one per gun.

The third problem is that all the energy dissipated in launching a round generates heat. Lots and lots of it. Most, but not all, of the energy used to launch the eighteen inches of steel will be recovered back into the ships capacitor, but enough will be lost that the launching rails flexing as the railgun is fired simply must be exposed to the elements so the heat will dissipate in the air. No sailors or flammables nearby please.

The inevitable follow up conclusion means a railgun equipped ship is going to be impossible to hide from opponent’s infrared sensors. Regardless of how stealthy versus radar the ship is, all of that heat is going to stand out like the sun itself to incoming aircraft and missiles equipped with infrared targeting systems, which means it is almost a certainty the firing ship is going to get hit if subjected to a seriously prosecuted attack.


This ship is not going to be able to hide in a cloud of chaff, it will be heading into the incoming missile strike, placing its full broadside in a position to fire and it will be considered a high priority target.

Unlike almost all naval ships built across the globe since the end of WW2, this class needs to be built with the assumption that incoming missiles will hit it, the plural is intentional, and be able to survive the multiple collections of missile slag and burning fuel and the occasional warhead detonation. Just as we built the 44 gun class of frigates back in the 1780s to be thick hulled in order to survive the gunnery practices of the time, armored up the ironclads of the Civil War and multiple classes of ships intended for the main battle line of the last half of the 19th Century and first half of the 20th Century, we need to built this class to ‘take a licking and keep on ticking’.

Topside armor should cover most of the ship, but the prime purpose of this armor will be to shed missile slag, i.e. what is left of the incoming missile after being intercepted and its fuel. The impact of the metal missile parts is not the prime danger to be protected against here. It is the fuel, and the accompanying fires after impact that is the true danger. So the topside armor needs to keep the slag and fuel on the outside of the ship, hopefully allowing gravity to carry much of the burning fuel to the gunnels and overboard; in the process vastly easing the firefighting teams job in putting out any fires that have started.

Additional armor, probably using a combination of layered materials and empty space, is appropriate for selected topside compartments that need to be protected against a successful missile warhead detonation. Whether it is sailors or equipment that is being protected, only some compartments will need beefed up exterior armor.

After that the CARN (cruiser gun armor, nuclear powered) will need to adapt the principles of the ‘armored citadel’ concepts developed a century ago for battleships to the needs of securing the two, possibly three, nuclear reactors aboard and their associated pumps and other equipment. Whether this is best done with one internal armor layer or two will keep the engineers debating for quite a while as the CARN is designed.

CARN Equipment

So what should the new 25k+ ton armored cruiser have aboard? Nuclear propulsion is an unavoidable necessity given the enormous amounts of power each railgun requires; every five seconds when engaged. Since the primary use of the CARN will be to accompany the fleet’s carriers to provide defensive AAW capabilities, this is actually an advantage for both strategic and tactical reasons. Depending on the amount of power twelve railguns firing broadsides will require, two or three of the standardized nuclear plants being installed in the new carriers should work just fine.

Lots of armor and nuclear power are unavoidable. The following basic list of desired equipment should provide the reader with a good idea of what the CARN should go to sea with.

12 railguns mounted in six dual mounts. In the attached sketch A and B mounts are placed forward of the bridge while C, D, E and F mounts are located starting roughly amidships and extend back to the helicopter deck. Dual mounts are suggested since the large size of the capacitors that need to be located directly below each railgun will in practice utilize the full 120 feet of beam provided. Obviously if the capacitors are even larger than this, then single mounts will have to be employed. Let’s hope not as doubling up makes for a much more efficient ship class.

36 VLS tubes capable of a varying load out of ASW, SM-2, SM-6 and long-range strike missiles as the mission at hand calls for.

4 CIWS with one located in the bow, a pair port and starboard amidships and one aft, just behind F mount.

12 rolling missile launchers for close in defense. It will be no secret the CARN is in the task force so a substantial number of the incoming missiles will be using infrared targeting, either in place of, or as a supplement to radar. So adding half dozen rolling missile packs to port and another half a dozen to starboard will provide plenty of localized missile defenses for both the CARN and the task force as whole.

2 ISR drones if VTOL capable. None if VTOL capability is not available

2 Seahawk helicopters

This suggested list very deliberately reduces the VLS and ASW capabilities aboard to a bare minimum. Good ship design concentrates on the primary mission the class needs to accomplish. In the case of the CARN that is absolutely, positively AAW.

In the next article we will examine how adding UAVs, UUVs, Fire Scouts, buoys and railguns in quantity to the fleet can substantially enhance the Navy’s ability to survive in the increasingly hostile A2AD world of the 21st Century. Read Part Five here.

Jan Musil is a Vietnam era Navy veteran, disenchanted ex-corporate middle manager and long time entrepreneur currently working as an author of science fiction novels. He is also a long-standing student of navies in general, post-1930 ship construction thinking, design hopes versus actual results and fleet composition debates of the twentieth century.

CIMSEC content is and always will be free; consider a voluntary monthly donation to offset our operational costs. As always, it is your support and patronage that have allowed us to build this community – and we are incredibly grateful.

Select a Donation Option (USD)

Enter Donation Amount (USD)