Tag Archives: Technology

Stealing a Long March

Falling Out

Force development is much like agriculture. Seeds appear trifling things; but such small objects can engulf entire fields or grow to incredible height. Investing early in incubator programs can lead to huge changes in the future. When observed from a position of strength, the small changes garnered by others seem superficial rather than tectonic. The American defense establishment is missing those tectonic changes as China’s military begins the process of stealing a march in force development.

Whatever you do, don’t think “crash.”

China is pursuing a broad portfolio of revolutionizing technologies. We have discussed in detail the potential opportunities for drone warfare on this blog and elsewhere.  However, those working to reap such opportunities are not here in the U.S. where ideas are shared freely, but in the People’s Republic of China.  Scientists in China have developed a system by which, with thought alone, an operator can control an aerial drone.  Rudimentary technology at best, it is nonetheless a leap we have yet to take.  Even at the beginning stages, it shows smoother control with a mental operator rather than a manual one. Although the US does seem dedicated to drone saturation, we have not moved past our initial uses and operation of them. Drones still require legions of remote operators rather than partial automation and direct connections with the men in the field. While we have yet to integrate our many exciting advances in automation and bionics, the PRC has grabbed a great leap forward and changed the very way they interact with drones.

China is also marching past us in more mundane military technologies.  We have discussed the practicality and pragmatism of the Houbei versus our misbegotten LCS.  Far from the risky investment in an in-shore knife-fighter some desired, LCS was held back as a conventional, do-everything (aka: nothing) combatant without the relative advantage in speed, strength, or resilience to give it any sort of field advantage.  We essentially attempted to build a Ford RS300, but halfway through decided to finish it as an Isuzu Elf.  Meanwhile, with the PLAN following a disciplined strategy for blue-water modernization, a stream of solidly-constructed and capable warships are pouring into the Pacific, making the failures of our current investment ever more evident. Our attempts at modernization in the air are just as white-washed; worse than the do-everything design of LCS, the new Joint Strike Fighter attempts to stuff the needs of every branch into one frame that doesn’t quite make anyone happy. Even basic capabilities, like anti-ship missiles, lag embarrassingly behind. While the U.S. still uses a sub-sonic cold-war relic, the PRC rolls out DF-21Ds. Where technology does branch out, it seems unnecessary, like the laser-guided Griffen Missile system on PCs that already have far-more capable Mod 2 25mm cannons.  China’s more reasonable and planned forays into future technology have made our past-ideas decorated with sweet rims look ridiculous.

We are also shrinking from the one area in which we could claim total dominance: space.  Although our nation is now in the mini-euphoria from Curiosity’s landing on Mars, most have forgotten that this is an achievement of a program started 8 years ago.  Our current manned space program is dead.  NASA shifted the lion’s share of investment to “earth sciences,” a realm already well-manned by all the scientists ON earth.  China not only retains a manned space program, but advertises a plan for both the Moon and Mars.  Even if such a schedule is a dream, at least they still have one.  While this is not directly a military issue, it is a strong force multiplier.  Space is the ultimate high ground.  To lose dominance there undermines a vast number of U.S. capabilities.

Has never attended mandatory “Improving Financial Management” training

Our mighty oak is rotting from within. Money is pouring into failed projects.  Our Sailors are over-stretched and time is cut for the training/education necessary to add critical value to those personnel.  Our priorities are skewed, millions of man-hours are lost to politically correct schools and rubbish ship-wide life-choices training.  Meanwhile, the PLAN marches forward, steadily planting the seeds necessary to grow a modern blue-water navy supported by a far greater industrial base than anything the U.S. can muster.  They are slowly reaching into the commons, as the face put forward by the U.S. becomes harder and harder to maintain.  If we don’t get back into step soon, we may need that long-view of history to see just how far ahead of us the Chinese march has advanced.

Catching Up

The effort necessary to regain our momentum would be disruptive, but not impossible. First, stubborn pride and sunk costs are no way to direct procurement. LCS must be cancelled. In its place, begin a vetting process for contracting a pre-existant hull to be built in the US, backed up by a low-mix of new coastal patrol crafts and the new MK VI’s.  This would provide the desired coverage using fast, proven, and cheaper vessels that would save us billions in these tight times.

Where the LCS has many fine replacements, the JSF has crowded out the development of real alternatives. The diplomatic/trade capital invested also makes it an impossible program to cancel without painful follow-on consequences. However, the billions saved from LCS could fund a quicker turnover to automated and integrated ComBot technology, creating an “AEGIS in the sky” of super-fast autonomous aircraft and ComBots on the ground integrated with our fighting men and women. It’s a future closer than you may think. These new automated systems could lead to new systems to take on LCS’s failed missions, such as brown-water ASW and mine-sweeping.

With the US’s new technologies, we rely heavily on space. It is a commons commanding the ultimate high ground from which we guide our weapons, communications, and our intelligence infrastructure. Less concrete, but existentially more important, we must continue our investment in the development and exploration of space. The United States, at its very essence, doesn’t represent a set of borders, we survive as an idea. Being a nation undefined by a border, we must constantly strive beyond them. When the US landed on the Moon, we didn’t represent just ourselves, but all humanity. Such is a cause and driving force behind our constant success… a dream. To abandon that dream, even worse to cede it to the likes of the PRC, would be tantamount to ideological suicide. We must re-invest in our manned space program. This is not in defense of our physical commons, but in the commons of ideas, something to believe in. Much like the JSF and LCS programs, we don’t believe anymore. We’re going through the motions. We need to regroup and find a real direction towards the future, because the PRC marching past us.

Matt Hipple is a surface warfare officer in the U.S. Navy. The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy.

3D Printing: Logistics Tail Under The Knife

Yes, but where are the coffee mugs we ordered?

Second in our series on 3D printing.

The laser engraver is a staple of ship life. Nametags, space identifiers, and last-minute commemorative plaques can be made within moments. Engraving is a refreshingly quick process in a world of requisition forms, funding codes, mismatched part numbers, and drawn-out waiting periods. However, stateroom labels that conspicuously misspell the ship’s latin motto  – as mine did – are only the beginning. The dawn of 3D printing technology will carve away wait times, dramatically decrease the costs of space and part availability, open room for more dual-use technical personnel, and break open a whole new world of possibilities for vessels at sea. Already the buzz of the private sector, 3D printing will quickly revolutionize the way we conduct supply at sea in a variety of ways.

Waiting to Wait:

3D printing will exponentially accelerate repair times by the virtually instant availability of repair parts. While underway, simple repairs are at times impossible due a lack of parts. Incomplete repairs often pile up, degrading other systems and crew morale. Even if the time exists to complete the repairs, the parts might not arrive for weeks. With an on-board 3D printer, many of these particular pieces can be produced on demand. Ships’ systems can have their schematics loaded into a database and, using the technical drawing, identify exactly what part needs to be produced. For more complicated or legacy systems, waiting for a rare-produced item or a subcontractor to machine different pieces will become obsolete. More robust shore-side 3D printing facilities will be able to build those systems without requiring legacy facilities or downstream suppliers.

Finance and Floor Space:    

3D printing will also decrease navies’ expenditures by ending many purchasing commitments and freeing up property. When travelling on orders recently, I was rather surprised to discover the “military price” for rooms at a hotel to be higher than the regular price. It was told that while regular prices and availability change year round, rooms set aside for the military are always available and at the same price. The same principle drives the supply system. For any particular requisition parts may be more expensive than if the Navy shopped around, but deals are struck in advance to guarantee the availability of the part at the trade-off of a cheaper price. 3D printing will render obsolete the requirement for many of those deals by creating a continuous part availability. 3D printing will also drive into obsolescence acres of warehouse and administrative space for the storage and transit of these parts. The raw mineral content required for 3D printing can be housed and bought far more efficiently than the vast catalogues of part sub-types. Much of this material may not even have to be stored, since it could be purchased and transferred to replenishment ships from local markets. In terms of money and space, 3D printing is the equivalent of putting the supply community through “The Biggest Loser.”


3D printers will eliminate the need for many personnel that lack directly mission-applicable skills. Logistical Specialists (LSs) are often purely administrative, managing the arcane system of forms, finance, and finagling that they have inherited with an unwieldy logistical juggernaut designed to support an entire fleet. A logistics system that simplifies or removes huge swaths of that administrative system with 3D printing will shift the need from LS’s and supply contractors to sailors who specialized in the repair and operation of 3D printers and their software. These technically savvy sailors would be more in-sync for use in the engineering and IT world, where LSs are a rather niche service. Specialization in such equipment could even become an NEC for rates that already exist.

Blood and Beans:

Materials are important in war, but until military drones run themselves, the hunger and health of human personnel will be paramount. Military personnel are used to MRE’s, so using 3D printers to create food consumed by sailors and marines would not be a large jump. Honestly, powdered eggs could only be improved by the application of laser science. Perhaps even more beneficial, 3D printers hold out the promise of saving personnel involved in accidents or combat on ships and in the battlefield, where they could one day be used to replicate damaged tissue or even entire organs.

More Tailbone than Tail:

Shorter wait-times, leaner overhead, more flexible personnel, and better maintained personnel are only the beginning for 3D printing. 3D printers are capable of making parts that are lighter, stronger, and more efficient than the ones we produce in modern machine shops. Equipment can be made safer, removing typical seams and welds. There mere fact that technicians can see the part before it is produced, rather than waiting months to realize the wrong item has been sent, will remove untold frustrations. Biomining, the extraction of minerals using micro-organisms, also offers promise when combined with 3D printing. The ocean contains especially high concentrations of magnesium, used widely in electronics and engine components. Some raw supplies may, one day, no longer require replenishment from the shore but can be gathered by larger vessels from the sea directly for use. 3D printers can produce the guns, grub, and guts necessary to keep personnel operating.  General Sherman once said, “Good logistics is combat power.” With 3D printing, we can bring an entire industrial base with us.

Matt Hipple is a surface warfare officer in the U.S. Navy. The opinions and views expressed in this post are his alone and are presented in his personal capacity. They do not necessarily represent the views of U.S. Department of Defense or the U.S. Navy.