Tag Archives: drones

Autonomous War

The following is an entry for the CIMSEC & Atlantic Council Fiction Contest on Autonomy and Future War. Winners will be announced 7 November.

By Matthew Hipple

               As the knife slides out, Foxtrot 2-1-1 doesn’t notice the blood. The enemy officer’s hand slumps away from the leg holster. Firearms are powerful, and a powerful comfort… but they’re useless when you’re sitting down and a blade is closer than the length of the barrel. Screens flash as untended command prompts stack up from systems patrolling several surrounding blocks. 2-1-1 feels an impulse transmitted from outside. He plants the charge as he leaps out of the torn metal hatch. Prone on the pavement outside, 2-1-1 is sprayed with rocks as an unmanned bipedal weapon vehicle (UBWV) smashes a short-cut through a corner storefront.

               With a “thump”, smoke pours out of the armored vehicle. The UBWV’s Gatling cannons whirr softly – one aimed at 2-1-1, the other aimed at his fireteam in the second-story window above. Rounds remain disengaged as it awaits target approval from the smoking corpse. Fireteam Foxtrot-2-1 has 5 seconds until the UBWV shifts its engagement prompt to another station, or engages automatically if RoE has changed. 2-1-1 leaps up, knife still in hand. He pulls the knife across a protective joint seam as his second hand comes up with his sidearm. Bypassing layers of armor plating and protective industrial coating, a full magazine of 9mm is enough to fry the UBWV’s ability to move, detect, and engage.

               Unmanned systems are powerful, and a powerful comfort.

               But like the bloody mess slumped over his darkened consoles, some commanders couldn’t learn to let go. Their confidence increased apace with technology’s subtler cognitive abilities, but they could never resist the urge to reach back. Even when the blade was at their throat, they couldn’t resist the urge to reach out for the comfort and cleanliness of human control.

               2-1-1 holds up his hand, the fireteam stacking up behind him before the next street. Like finding that word you haven’t been able to put your finger on, each member of 2-1 suddenly receives a series of mental images, intentions, and concepts outlining their next direction and target from Foxtrot Actual. They disappear through a doorway as a humming echoes from over one of the rooftops.

               Fireteam 2-1 hides from aerial surveillance, picking its way through jagged passageways and unnatural, twisting stairs. It is a dusty labyrinth created when alleyways and building interiors are re-arranged by explosives. Burrows are dug throughout the ruin, gaunt figures hiding from a war between man and machine. Each piece of data is collected, assessed, and stored temporarily away in the subconscious for later use or transmission.

               Claws scrape across the concrete. Rubble and blood explode from the rear of the team. Foxtrot 2-1-4 is in a heap, a metallic, dog-sized quadruped pinning him down. 2-1-4 screams as the sharp claws dig in and an articulating maw of blades remove the rasping throat. Against every instinct, everyone drops their weapons as they fall to the ground. Detecting no armed, moving objects of roughly human temperature – the “thing” stands by for one of the limited foot patrols to check the targets.

               One of the warm shapes move, drawing a pistol from a hidden chest holster. As the “thing” leaps down upon him, the two shapes on either side rise up, pull the “thing” up and onto its back from either side – smashing it down onto a piece of rebar sticking through a cratered wall.

               The “thing” represented the reality commanders didn’t want to face – they couldn’t control everything from over the horizon. The abandoned command vehicle, so close to the battlefield, was a bastion against electronic warfare and the limitations of physics. The “thing”, however, was invested with the autonomy eventually demanded by the enemy’s ingenuity.
               Unfortunately, a certain fear, combined with an institutional lack of creativity, always left autonomous systems with exploitable weaknesses. Commanders combined the worst of their self-confidence with their hesitancy to commit. Whole suites of artificially limited systems were deployed into the field with the assurance of a cure-all.

               With a foot patrol inbound, and the fireteam within the security perimeter, Foxtrot-Actual sends its final collection of images and directives. 2-1-1 turns to 2-1-2, saluting in one of the few remaining traditions. The sentiment represents a larger series of command processes and adaptations that have transferred the designation of 2-1-1, fireteam leader, to 2-1-2. Former 2-1-1 continues through the rubble, now designated by Foxtrot Actual as Foxtrot 2-X. 2-1-1 leads the remaining fireteam members – and the incoming foot patrols – away from the area.

               The warfighter on the ground had always been a dangerous and adaptable machine.  Even the greatest autonomous system would, in some aspects, be a cheap attempt to imitate millions of years of evolution. In the air, at sea – the speed and range of combat, the type of platforms involved, had changed to the point that the human was almost secondary to the equation. On the ground – from the easily fueled musculature to advanced cognitive functions – a human may always be best. An augmented human – cognition enhanced chemically with electrically driven muscles pulling joints wrought with new alloys and plastics – but still a human.

               But where was automation’s competitive advantage? Computers had become progressively better at understanding vast logistical and operational problems: streamlining global transport networks, beating humans at “Go”, automating a large portion of global market trading. Smaller issues of context were mastered as well, from the ability to recognize animals to human emotions. Computers could read data from minds – and had just started to show glimmers that data could be contextualized.

               After leadership’s repeated failures to understand or properly exploit autonomy in the field, someone aimed the question in a different direction. “How much Operational Availability do I sacrifice when everything from procurement to maintenance is derailed by egos or self-deceit? What is the human cost of the collected seconds, minutes, hours, and days of human friction as the front awaits orders? Do I need warfighters constrained by the indecision of dozens of human beings attempting to interpret their intelligence & advice before directing action?” Was an autonomous system’s competitive advantage… in the field?

               With a sentry’s severed hand pressed up against the door access panel, Foxtrot 2-X enters the enemy’s field command. Several dozen figures hunch over flickering screens in the dark – directing assets based on the verbal and written reports from units across the battlefield. Amid hushed voices, fingers patter across touch-screens in response to a constant stream of command prompts from unmanned systems.

               Of the several dozen or so figures in the room, only a handful realize what is about to happen. Unlike the isolated command vehicle, this space is large, and at least three weapons are drawn to kinetic effect on Foxtrot 2-X.  Two white phosphorous grenades roll onto the watch floor as a bleeding 2-X aims his collapsing body against the door – closing the heat and screaming watch standers inside.

               With his final breath, a mix of conscious and subconscious observations, passively collected signals intelligence, observations on base defenses and sentry procedures, and a series of final stress levels, queues, and correlated emotive reactions is transmitted to Foxtrot Actual.

               In orbit around the battlefield, Foxtrot Actual’s systems receive, analyze, and integrate this data for further operational planning and live assessments of troop stress levels. 2-X’s personnel file, last noted tactical adaptations, and final mission report are archived for analysis and dissemination. His fireteam’s method of destroying bladed quadrupeds has already been uploaded from 2-1, and was transmitted to Foxtrot’s human fighters. Finally, designation 2-X is made available for re-application.

               Through the collective cloud of its forces’ thoughts, Foxtrot Actual perceives a smattering of enemy soldiers retreating through a wasteland of stalled robotics. Foxtrot Actual directs Foxtrot units into the new vacuum. It catalyzes the decision making of its forces as they plot their movements, a machine in the subconscious ghost. Somewhere, an extra cooling fan kicks on as Foxtrot Actual determines how best to exploit these latest opportunities.

               Rather than replacing the warfighter, someone asked, “maybe it’s time to replace the commander?”

Matthew Hipple is a Surface Warfare Officer in the US Navy, and President Emeritus of CIMSEC. He used to write frequently for USNI and War on the Rocks, but spends most of his time now amusing a precocious 10 month old.*

*Due to CIMSEC affiliation this piece was not under consideration during the judging process and is published along with all other pieces submitted in response to the Fiction Contest call for articles.

Featured Image: B-7 Beagle unmanned surface vehicle from Al Makareb. (Al Makareb)

Naval Applications of Robotic Birds

Naval Applications of Tech

Written by Terence Bennett, Naval Applications of Tech discusses how emerging and disruptive technologies can be used to make the U.S. Navy more effective. It examines potential and evolving developments in the tech industry, communication platforms, computer software and hardware, mechanical systems, power generation, and other areas.

“The most damaging phrase in the language is ‘We’ve always done it this way!’” Rear Admiral Grace Murray Hopper in an interview in Information Week, March 9, 1987, p. 52

By Terence Bennett

The era of the unmanned aerial vehicle (UAV) has arrived. Phased implementation of the Navy MQ-XX program began this year through a reinvestment in the X-47B unmanned aircraft for use in aerial refueling and Intelligence, Surveillance, and Reconnaissance (ISR). In May of this year the Navy installed the first UAV Command Center aboard the aircraft carrier USS Carl Vinson. These moves demonstrate the need for, and versatility of, sea-based UAVs, and may signal the beginning of a revolutionary migration in naval warfare. Large, land-based ISR UAVs have been operationally employed by the Navy since 2008 with the deployment of the Broad Area Maritime Surveillance-Demonstrator (BAMS-D). Smaller, tactical level UAVs like the Scan Eagle have been in use by the Navy since 2004. To date, all these aircraft have one thing in common: they employ traditional aircraft design to meet their requirement for high power. A new generation of biomimetic UAVs that imitate the natural flight of birds has been developed and shows promising application to Navy missions.

The U.S. Air Force and the Defense Advanced Research Projects Agency (DARPA) have been working on insect-inspired UAVs recently popularized in the media. Some technology, like Aerovironment’s Hummingbird, has successfully implemented the design of bird flight into UAV design. A French inventor has created another little bird, but with a maritime twist. The Bionic Bird mimics the flight and behavior of the swallow and apparently so convincingly that it attracts other swallows and predators alike. Swallows are a common symbol in Navy life because they often appear when ships near land and are thus symbols of good luck.

bionic-bird
The Bionic Bird (mybionicbird.com)

Edwin Van Ruymbeke, inventor of the $120 Bionic Bird,  proved that small, fast, and maneuverable machines can be inexpensively manufactured. The XTIM Bionic Bird is marketed as a toy, but its technology may prove useful to the Navy. One day, the Bionic Sparrow may visit ships bringing a lot more than good luck.

Using a similar approach, the German company Festo invented a larger UAV dubbed the ’Smartbird,’ which is modeled after a Herring Gull (or seagull).1 It looks surprisingly similar to a real seagull and, at a distance, could be easily disguised as one. The Smartbird’s clever engineering and lightweight design allow for its takeoff and flight to be powered entirely by the biomimicry-inspired twisting flap of its wings. The efficiency of the design is hidden in the specially-developed flapping motion, the size (6.5 foot wingspan), and the weight (1 lb) of the Smartbird. The Smartbird is powered by a 23 Watt motor which, to put in perspective, is roughly the power consumption of a small household fan (model Honeycomb HT-900). This low power requirement is truly remarkable and opens possibilities for major advances in UAV technology.

Although NASA has made many breakthroughs in the deployment of high-efficiency, high-altitude, solar-powered UAVs, the Smartbird offers a very promising solution for application in the low altitude naval environment. The 23 Watt motor of the Smartbird could be charged through a small (2 square foot) solar panel on its wings. The primary problem with solar-power solutions in aviation is weight. The Smartbird works because it is light, so to add any substantial weight to it nullifies the advances of the technology. Through modeling the efficiencies between power and weight, researchers may be able to develop a deployable Smartbird technology with payload carrying capability. An exciting application of this technology would be an ultra-efficient communication relay that could follow a strike group indefinitely and provide a dedicated over-the-horizon data link for the geographic area. This would reduce the need for each ship to have a dedicated satellite communication link and could provide for greater redundancy of systems.

robird-anti-vogeldrohne-clear-air-solutions-jpg-8335688
Clear Air Solutions’ Robird (Clear Flight Solutions)

In some civilian airports and harbors, biomimetic UAVs are already providing a significant contribution to operations through bird control. Clear Flight Solutions manufactures the Robird for use at airports and harbor facilities because of its ability to prevent the loitering and nesting of small birds. The Department of Defense, which reports roughly 3000 bird strikes a year, is bound by strict federal legislation when it comes to the conservation of bird species. A 2002 federal court ruling actually shut down Navy training in Guam due to the violation of the 1918 Migratory Bird Treaty Act. The Robird may be a new and exciting tool for the Navy to efficiently and sustainably control bird populations and their very real effect on Navy operations.

This new generation of energy efficient, quiet, and innocuous UAVs has tremendous potential for intelligence collection, communication relay, and even the mundane task of bird control. Future maritime UAVs will likely serve the fleet in many ways while blending into the horizon like the many birds we rarely notice. By taking a hint from nature, we can adapt our UAVs to have the same advantages that maritime birds have over land-based birds. This may mean long-range travel, survivability in high winds, and even high-speed predatory diving. It is remarkable what we can learn from nature and copy for the Navy’s use.

LT Bennett is a former Surface Warfare Officer and current Intelligence Officer. The views express herein are solely those of the author and are presented in his personal capacity on his own initiative. They do not reflect the official positions of the Department of the Navy, Department of Defense, or any other U.S. Government agency.

1.”Festo: Smartbird.” Aerodynamic Lightweight Design with Active Torsion. April 2011. Accessed September 21, 2016. Aerodynamic lightweight design with active torsion.

Featured Image: X-47B in flight after first-ever catapult launch from USS George H.W. Bush in May 2013.(U.S. Navy)

Members’ Roundup: July 2016 Part One

By Sam Cohen

Welcome to Part One of the July 2016 members’ roundup. Through the first half of July, CIMSEC members examined several international maritime security issues, including the Permanent Court of Arbitration ruling in the South China Sea, Russia’s continued air campaign against ISIS, the U.S. Navy’s procurement objectives for the Virginia-class submarine successor, and the United States’ position on the United Nations Convention on the Law of the Sea (UNCLOS). Here is a roundup of their writings. 

Mira Rapp-Hooper and Patrick Cronin, at War on the Rocks, provide an analysis on the long-anticipated Permanent Court of Arbitration ruling in the Philippines vs. China case over the South China Sea. Using a ‘Choose Your Own Adventure’ format, the authors breaks down the different geopolitical and legal implications of the ruling, including potential Chinese responses, political fallout for China–Philippines relations, and the future of maritime and sovereignty claims in the South China Sea. The authors explain that for China to comply with the Court’s ruling it must not claim any water or airspace from the reefs it occupies or make a 12 nautical mile assertion from any claimed land features. With the ruling being highly unfavorable to China’s maritime objectives, the authors highlight that if Beijing begins to prioritize territorial claims while easing off claims to water and air, it would likely reflect a China looking to move beyond its defeat while saving face.

Armando J. Heredia at U.S. Naval Institute News, examines the tribunal’s decision from the perspective of Manila and how the recent election of Rodrigo Duterte as President of the Philippines will impact regional relations. He explains how the previous administration chose to accelerate the modernization process of the country’s military in response to increased hostility from China while opening the way for American forces to return to the Philippines through the Enhanced Defense Cooperation Agreement (EDCA). He notes that even under the modernization program the Philippines remain weak in terms of kinetic responses to a Chinese incursion. He also notes that any engagement by the Philippines would have to leverage the country’s poorly equipped Coast Guard, which lacks sufficient hulls to establish presence operations near disputed maritime regions and land features.

Jake Bebber, at the U.S. Naval Institute Blog, discusses the centrality of cyberspace operations in the People’s Liberation Army’s (PLA) strategy for long-term competition with the United States. He discusses aspects of informationized warfare and how the PLA is seeking to position its sources of information power to enable it to win a short, overwhelming victory for Chinese forces in a notional conflict. He notes that in response to China investing large amounts of time, energy, people and resources towards achieving the country’s cyberspace and information warfare objectives, the DoD must ensure that U.S. Cyber Strategy supports the force planning, training, and equipping of cyber forces while integrating advanced technology into information planning and acquisition.

Kyle Mizokami, at Popular Mechanics, provides an overview of Moscow’s decision to deploy the country’s only aircraft carrier to the Mediterranean to carry out airstrikes against the Islamic State until next year. Discussing some of the ship’s features, he explains that the ship’s propulsion system is unreliable and is so prone to breaking down that an oceangoing tugboat always accompanies it on long distance voyages. He also discusses the capabilities the carrier will deploy, including Su-33 air superiority fighters, Su-25UTG ground attack aircraft, and MiG-29KUB two-seater multi-role fighters.

Dave Majumdar, at The National Interest, discusses the U.S. Navy’s procurement objectives for the next-generation SSN(X) successor to the Virginia-class attack submarines. His article argues that one priority, permitting the Navy will have the technological know-how to do so, is to effectively turn the future attack submarine into an underwater platform for unmanned underwater vehicles (UUV). Another objective would be to eliminate noise-generating moving parts such as a propulsor or driveshaft in the propulsion system to decrease the possibility of detection in an increasingly competitive undersea environment.

Members at CIMSEC were also active elsewhere during the first part of July:

At CIMSEC we encourage members to continue writing, either here on CIMSEC or through other means. You can assist us by emailing your works to dmp@cimsec.org.

Sam Cohen is currently studying Honors Specialization Political Science at Western University in Canada. His interests are in the fields of strategic studies, international law and defense policy.

Featured Image: A view from the deck of the Russian carrier  Admiral Kuznetsov (Wikimedia commons)

The Future of Sea-Air Drones and Protecting Maritime Assets

By Jack Whitacre

What are some of the ways the U.S. and other countries could defend maritime assets against swarms of Sea-Air drones? Consider a convoy system with human centered technology, algorithms from nature, and elements of gaming.

Loon-Copter-Drone
Oakland University’s Loon Copter works equally well above and below the water’s surface. Photo: Oakland University

The FAA estimated that one million drones would be sold during this 2015 holiday season. This estimate was based primarily on the proliferation of flying drones, however new domains of operation may open up soon. Premiering in 2015, the Loon Copter proves that, in time, these devices will be capable of traditional aerial flight, on-water surface operations, and sub-aquatic diving. Embedded Systems Research at Oakland University created the Loon Copter in 2014. In 2016, the design placed third in the UAE Drones for Good competition. The system works in air as well as in water because the four rotors balance and cut through air and water equally well.  

dronemap1
A map of nations with a drone program as of 2011. Courtesy Defense One, via RAND Corporation.

According to the New America Foundation, at least 19 countries possessed or were acquiring armed drone technology as of 2015. The Washington Post and The Aviationist reported in July of 2014 that even non-state actors like Hamas have manufactured drones capable of firing rockets or missiles. At the time of reporting it was unknown whether this specific group had the ability to launch missiles, but the story does show the willingness of non-state actors to weaponize technology. The same Washington Post article describes how low-tech “suicide” drones effectively function as guided missiles. With the history of state actors increasingly acquiring armed drones and non-state actors weaponizing drones, Sea-Air drones could open new realms of battlespace.

“The profound influence of sea commerce upon the wealth and strength of countries was clearly seen long before the true principles which governed its growth and prosperity were detected.” –Alfred Thayer Mahan 

Sea-Air drones are not currently available off the shelf, so their ramifications are not yet recognized. If non-state or state actors designed suicide drones with sufficient range, it would be very difficult to defend global maritime trade against these threats due to the sheer size of the oceans. The Canadian Military Journal hypothesized that it is only a matter of time before pirates use drones offensively. Articles like these contemplate an important issue, but are limited by only considering the skies. Currently, our ability to detect air drones far exceeds capabilities to detect devices beneath the surface of the ocean. Even by diving ten or fifteen meters beneath the surface, Sea-Air drones may be able to elude satellites. NASA’s Ocean surface topography site describes how the best satellites measuring ocean temperature pierce only one inch below the ocean’s surface.

Shrouded by shadowy depths, would-be aggressors could potentially take down or ransom large freight vessels and trade flows that are so essential to many countries’ survival. According to Rose George in Ninety Percent of Everything,” nearly 90% of goods are transported by sea. The stakes are high and the arena is huge. While it’s unlikely that every inch of the sea will become a combat zone, NOAA estimates that there are nearly 321,003,271 cubic miles of water in the world’s oceans. To this end, DARPA is re-thinking distributed defense by creating small aircraft carrier cooperatives. In the face of such a large and deep strategic chessboard, what are some of the ways the U.S. and other maritime nations could defend shipping from Sea-Air Drones? One option would be to revive the convoy system. The tipping point for such a decision may have to unfortunately be a tragedy with lives lost at sea. By contemplating these scenarios now, we could build in defenses before deaths occur.

“When [the enemy] concentrates, prepare against him.” –Sun Tzu

The cost of drone technology, like other innovations, continues to decrease; beginners models are available for less than $100. As this trend is likely to also occur in the maritime arena, it would be wise to match high-value vessels with an accompanying group of friendly Sea-Air drones offering constant defensive protection. In other words, a convoy must have the ability to destroy or electronically neutralize attacking drones. A ship with a 24/7 security presence would likely be safer than standard battle group coordinated operations. This is because there are simply too many ships at sea at any given time to protect them all through traditional means. The International Chamber of Shipping estimates there are least 50,000 merchant ships plying the oceans at any given time. Having constant convoys would reduce vulnerability amidst the uncertainty of when, where, and how an enemy might attack.

These convoys could be combinations of complex programmable drones capable of truly autonomous decisions and human operated systems. The most successful formations might be inspired from millions of years of evolution and derived through phenomena like flocks of birds and schools of fish. In such swarms it would be possible to make a human operator the “lead,” balancing machine autonomy with human decision-making. To this end, P.W. Singer and August Cole’s futuristic Ghost Fleet novel describes human helicopter pilots flying missions in conjunction with drones. The video below shows many different formations that could be programmed for swarms.

In order to recruit talent, the defense community might consider incorporating crowd-sourcing and gaming to meet increasing demands, at least until convoy defense systems can function in fully automatized ways. Pilots could be given a convoy interface (like Eve Online) and point systems tied to real world rewards to incentivize behavior. With this approach, the U.S. could capitalize upon large reserves of talent to protect trade, coasts, and even fishing vessels. This is merely an opening suggestion. There would, of course, be clear difficulties with such a strategy, such as ensuring a clearance system, similar to that of the Merchant Marine, payments to operators, and contract stipulations surrounding the use of force. However, the proliferation of third-party defense contracting proves that new types of defense arrangements can be made quickly in the face of emergent threats.
 
It may be many years before Sea-Air drones, suicide drone piracy, and other forms of maritime threats emerge in full force. However, there are already clear modes of attack and high valued targets. The future may be hard to predict but that shouldn’t it preclude it from strategic thinking.  

Jack Whitacre is an entrepreneur and former boat captain who studied international security and maritime affairs at The Fletcher School of Law and Diplomacy.