Tag Archives: distributed lethality

The Network as the Capital Ship

Future Capital Ship Topic Week

By Robert C. Rubel

Introduction

From the galleasses at the Battle of Lepanto to the aircraft carriers of today, the capital ship has been that ship type that is capable of defeating all other types. That is the general and simplistic definition of the term, but to speculate on the future capital ship, we must understand the underlying characteristics of a capital ship and its role in fleet architecture and design. We will start with the ship itself and then move outward to its context and implications for maritime strategy.

The Core of the Fleet

The adjective “capital” is used because the ships to which it has applied have been the biggest and most expensive of the naval vessels of their day. This was the case due to the armament they carried; the most and biggest guns available and later the most and most capable aircraft. Whether smooth bore cannon versus rams, number of guns available for a broadside or the caliber of rifled guns, the name of the game has been weight of fire and hitting at distance. The protection of capital ships required significant amounts of investment, first in armor, then in escorts. The expense and the difficulty of building capital ships meant that they were the least numerous ship type. However, their number was important in determining overall naval power. Generally, the capital ship inventory of the most powerful navies was in the dozens.

The physical characteristics just discussed had a powerful influence on fleet design and by extension on maritime strategy. The capital ship was the tool by which a nation could contend for command of the sea, either globally or regionally. Thus a nation’s fleet was designed around the capital ship in various ways.

First, they had to be supported by a variety of lesser ship types that performed functions such as scouting and protection. In this sense the capital ship was the pivot of fleet design. Given the existence of other, potentially hostile capital ship fleets, distribution of capital ships was a key issue. If there was a sea invasion threat to the nation, a “home fleet” of capital ships was necessary. On the other hand, depending on the threats to a nation’s maritime commerce, there was frequently a need to deploy capital ships, individually or in small squadrons, to counter or eliminate these threats, but that raised the danger that they would be caught by a larger force and destroyed. The British concept of the battle cruiser, a heavily armed but lightly armored and fast ship, was intended to address this dilemma. As additional threats such as the torpedo boat, submarine, and aircraft emerged, additional protective measures had to be taken such as escorts and design changes including torpedo bulges and dense anti-aircraft secondary batteries.

The capital ship has been the ultimate arbiter of command of the sea, both in war and peace. Command of the sea can be most usefully thought of as the balance of strength among contending navies. The navy with command of the sea is free to disperse its forces to exercise control in various localities and more broadly, has various strategic options open to it that are closed to the navy and nation that has lost command. The expense of capital ships and their consequent relative scarcity, the time required to replace losses and their intimate connection with command of the sea, coupled with the strategic importance of such command, led national leaders and admirals to be cautious about committing their capital ship fleets to the test of battle. Even a small perceived imbalance of power has caused admirals to try and avoid pitched battle; like going “all in” in Poker, one must be very confident of one’s hand.1 Thus decisive naval battles have been rare and most of those that have occurred involved the weaker force being surprised, cornered or forced into battle by their national leader.

Since the age of sail, the capital ship has been the unit of measure for naval power. When a nation seeks great power status, it starts building a powerful navy, this being true even of historically continental powers such as Germany, the Soviet Union, and now China. This has produced naval arms races and wars. The Washington Naval Treaty of 1922 was an attempt to suppress naval arms races by limiting the total tonnage of warships and imposing a hiatus on building capital ships among the U.S., Great Britain, France, Italy, and Japan.

Imperial Japanese Navy aircraft carrier Kaga (Colorized by Lootoko, Jr.)

After World War II, the U.S. Navy found itself with near absolute global command of the sea but retained a significant number of its capital ships for the purpose of exercising command of the sea in peacetime. Such exercise consisted of deploying carrier battle groups around the periphery of Eurasia in order to enforce the international order the U.S. desired. In this case the necessary number of capital ships became a function of the combination of deployment demands, maintenance requirements, training, and personnel tempo. 

Capital Capabilities

The large deck aircraft carrier has been the capital ship since the start of World War II. Its hold on this status is based on the effectiveness and utility of its embarked tactical aircraft. The question is whether it will retain that status or be replaced by something else. We will take on this question based on the characteristics and factors that have been discussed.

Let’s start with weapons. The advent of micro circuitry, new forms of sensing and artificial intelligence have transformed missiles, in all their forms, into perhaps the dominant and decisive type of weapon at sea, both for offense and defense. Most ship types carry them and countries such as China have developed land-based ballistic missiles of very long range that can seek ships. Advanced surface-to-air missile systems now constitute a lethal threat to any aircraft except  perhaps those possessing the most advanced stealth technology. Modern anti-ship missiles are increasingly sophisticated and hard to defend against.

All of this has difficult if not dire implications for the continued status of the aircraft carrier as capital ship. Certainly, additional measures can be taken to enhance the defense of both tactical aircraft and the carrier, but these will add to the expense of the total system to the point that it could outweigh the value of the offensive capability it possesses. At that point, according to George Friedman, it becomes “senile.”2 If indeed the missile becomes the key weapon, many different ship types can carry them, for both war at sea and shore bombardment. The question then becomes whether missiles are best concentrated in a large “arsenal ship” or distributed out among a lot of different ships. If concentrated in a few large hulls, it is possible that these “missile battleships” (BBM?) would be the new capital ship. Such concentration would certainly make it easier to coordinate missile salvos.

However, looking beyond the ship itself reveals some factors that militate against concentration. The first is the inherent risk in concentrating offensive firepower in a single ship. Vice Admiral Arthur Cebrowski articulated the concept of tactical stability which states that as we pack more offensive capability into a ship, there is a point at which its defensive capability ceases to increase proportionately. At that point, escorts are needed.3 Moreover, if a task force has a key capability installed on one or a few ships, their loss would neutralize the whole force, and thus it is tactically vulnerable and subject to catastrophic failure rather than graceful degradation. For this reason, the Navy is developing the concept of distributed lethality: mounting offensive missiles on as many ships as possible in order to complicate enemy targeting and reducing the risk of catastrophic degradation to the force as a whole. 

Another issue is the distribution dilemma. For today’s Navy, it takes two forms: global and regional. Globally, having only ten available aircraft carriers limits the presence the U.S. can generate in multiple regions simultaneously. Moreover, strategic adjustments to deployment patterns must be made on the basis of carrier groups, which is a rather coarse methodology, sort of like trying to draw a precise, detailed picture with a large-tipped magic marker. Regionally, deploying carrier groups must “starburst” into individually operating ships to accommodate all the Geographic Combatant Commander’s engagement commitments. This prevents routine training to maintain combat readiness skills and of course opens individual ships, especially the carrier, to surprise attack. There is also the risk involved in operating carriers in the threatened littoral. This risk is manifest not only at the tactical level in which attacks are more likely to be successful, but in the strategic risk of losing a precious capital ship. Again, the emerging concept of distributed lethality promises a way to avoid or at least moderate the dilemmas and risks.4

The emergence of the missile as the “weapon of decision” both at sea and ashore has a couple major implications. First, since missiles can be mounted on almost anything, the relationship between ship size and characteristics and weapon power is broken. It would seem to make little difference if a salvo of missiles is launched from a single ship or many. Second, the distribution of offensive power among a lot of different ships promises to reduce both operational and strategic risk in various ways and eases the distribution dilemmas.5 This would seem to spell doom to the capital ship concept, and in this writer’s opinion, it does, at least in the conventional sense of a single ship type.

There is, however, another way to look at the matter. The key capability of a capital ship has been to deliver a superior weight of fire at a longer range than anything else. Certainly, our “BBM” would have plenty of missiles to fire, but that is not enough. Those missiles must be fed targeting information to be of any use. International law doesn’t permit firing missiles down a line of bearing and letting them open up their sensors at a certain point and hit the juiciest-looking contact. That makes them “indiscriminate” and therefore illegal. So, without targeting, the BBM or any missile ship intending to fire over the horizon, is useless.

Guided missile cruiser USS Lake Erie (CG 70), during a joint Missile Defense Agency, U.S. Navy ballistic missile flight test.  (U.S. Navy photo)

Missiles are getting smarter, but there are a couple of reasons that it is tactically and operationally inadvisable to just light off a salvo with incomplete targeting and identification. First, if facing sophisticated defenses, the salvo must be timed precisely to saturate or at least confuse defenses so that at least some missiles get through. Second, missiles themselves will likely be at least somewhat scarce resources and so must be used efficiently. To achieve both objectives, an area-wide network of sensors, processing and decision making must exist beyond the hulls of the fleet. Granted, individual ships will have their own targeting capabilities, but these likely will not be sufficient for getting full kinetic range from their missiles.

Merging Capital Ship and Networked Force Concepts

Putting it all together, it seems useful to regard the fleet battle force network as the future equivalent of the capital ship. It and it alone allows the delivery of a useful weight of fire at long range in a naval fight. The application of the capital ship term may not be absolutely necessary, but it does confer some useful organizational effects.

First, if the network becomes the pivot of fleet design, certain new perspectives emerge. A key one is a fresh understanding of how existing and potential ship types relate to each other. There isn’t room in this essay to tease out all of these threads, but there are several insights that can be mentioned.

First, since the network consists of physical nodes and connectors (sensors, communication relays, etc.) it must receive physical as well as cyber protection. This is an important potential new role for aircraft carriers. Using a new air wing composition, the carriers can provide air superiority over distributed lethality forces and protect airborne assets like P-8s and Tritons, provide communications relay in the event that satellites are knocked out, and perhaps provide targeting services to missile ships. Thus, carriers would become escorts for the network. An advantage of this new function is that they would not have to operate as close in to the enemy shore as they would if their air wings constituted the key offensive strike capability and the risk to aircraft is reduced. This would allow carriers to remain viable and useful for the foreseeable future.

Second, since physical concentration would not be necessary for combat effectiveness, the risks associated with the regional distribution dilemma would be substantially avoided. Globally, since combat power would be distributed among a larger number of ships, a finer strategic distribution picture could be drawn, assuming that each forward fleet has its own battle force network established.

A network-enabled distributed lethality force would also mitigate the strategic risks associated with the traditional capital ship concept, especially in an era of renewed naval competition. A fight for command of the sea using such a force would not necessarily entail an “all in” decision, providing some strategic decision making flexibility for fleet commanders. Crises or perhaps limited conflicts that occur within the range arcs of major power denial systems could produce a risk dilemma for the U.S. if its offensive power remains concentrated in traditional capital ships. This is precisely what, for instance, the Chinese hope to create if conflict breaks out over any of their contested island claims or even war on the Korean Peninsula.

Missile technology appears to give a decisive edge to the tactical offensive at sea – the historically normal state of affairs. In the early years of the Pacific War, aircraft carriers dealt with this condition by attempting to strike effectively first, the paradigm being the Battle of Midway. However, if the enemy’s offensive power (missiles, say) is dispersed and hidden, then such a remedy is unavailable. Thus capital ships, in attempting to intervene in some littoral conflict would be excessively vulnerable; that is, their loss would be incommensurate with the strategic gains promised by the operation. Capital ships should only be risked when the potential strategic gain, usually command of the sea, is worth such risk. The point is that in the emerging world it may not be worthwhile to employ traditional capital ships even when regional command of the sea is at risk, as they could be lost without prospect of meaningful gain. Network-enabled flotillas would substantially obviate the dilemma.6

Without going into the murky world of cyber warfare, it is worthwhile to point out that the network has offensive and defensive potential beyond supporting missile warfare. Offensive cyber attacks can disrupt enemy command and control and targeting. It would make sense to have such capabilities inside the lifelines of a fleet battle force network in order to achieve effective coordination with missile and other forces. In terms of network design, we may yet be in the “pre-Dreadnought era” awaiting that breakthrough concept that makes all other approaches obsolete. Applying the capital ship framework to the battle force network may help us develop or at least recognize that breakthrough when it comes along.

There are other capital ship-related concepts such as staying powerthat could be useful when applied to the design and operation of battle force networks. Capital ships were built to take hits and still fight. Obviously no ship can endure multiple hits indefinitely, so the notion of staying power helped designers figure out how much protection was needed and make the necessary tradeoffs with armament, speed, sea keeping, magazine capacity, etc. How long the ship needed to hang in there was a valuable determination and so it might be with the network. Staying power might not be measured in minutes as it was with battleships, but some other criterion such as confidence or available bandwidth might be adopted.

Conclusion

This article does not advocate reducing the number of aircraft carriers or for constructing any new class of ship; the designation of the battle force network as the modern instantiation of the capital ship is a way of establishing a new logic that underpins fleet design. If fleet design is regarded as the prerequisite and precursor to fleet architecture, the logic of network-enabled missile warfare will clarify what kinds and numbers of ships the Navy should have.8 There are, of course, many other considerations and influences on fleet architecture, but achieving institutional focus via the network as capital ship concept would go a long way in helping the Navy rapidly enhance its offensive lethality and use its available resources efficiently.

Emerging technology and shifting geopolitical conditions are changing how naval warfare will be conducted in the future. The U.S. Navy must adapt or find itself strategically outmaneuvered. Effective adaptation will require more than updates to current ship types; it will require totally new approaches to fleet design. Instead of thinking outside the box, it might help the Navy to think outside the hull.9 Adopting the network-as-capital ship idea is one way to do that.

Professor Emeritus Rubel is retired but serves as an advisor to the CNO on fleet design and architecture. He spent thirty years on active duty as a light attack and strike fighter aviator. After leaving active duty he joined the faculty of the U.S. Naval War College, serving as Chairman of the Wargaming Department and later Dean of the Center for Naval Warfare Studies. In 2006 he designed and led the War College project to develop the concepts that resulted in the 2007 Cooperative Strategy for 21st Century Seapower. He has published over thirty articles and book chapters dealing with maritime strategy, operational art and naval aviation.

1. Alfred Thayer Mahan, Lessons of the War With Spain and Other Articles, (Boston, Little, Brown and Co., 1899), p. 31. Mahan discusses the effect of the loss of a single ship on the naval balance with Spain before the war.

2. George and Meredeth Friedman, The Future of War, (New York: St. Martin’s Griffin, 1996), p. 26 and Chapter 8, “The Aircraft Carrier as Midwife,” pp 180-204.

3. Wayne P. Hughes Jr, Fleet Tactics and Coastal Combat, (Annapolis, MD: US Naval Institute Press, 2000), pp. 286-291. Prof. Hughes influenced Admiral Cebrowski’s thinking, and the discussion of massing  for defense on the cited pages provides a more in-depth look at the logic of instability.

4. Robert C. Rubel, “Deconstructing Nimitz’s Principle of Calculated Risk,” Naval War College Review, Autumn 2015, (Newport, RI: Naval War College Press), pp. 31-45. The article contains a detailed discussion of the various risks and distribution dilemmas inherent to aircraft carriers using the Battle of Midway as a case study.

5. Hughes. Chapter 11, “Modern Tactics and Operations,” pp. 266-309. Prof. Hughes offers a detailed and mathematical discussion of modern missile combat through the lens of operations research.

6. Rubel, “Cede No Water: Naval Strategy, the Littorals and Flotillas,” Proceedings, September 2013, (Annapolis, MD: US Naval Institute), pp. 40-45.

7. Hughes, pp. 268-274.

8. Hughes, “The New Navy Fighting Machine: A Study of the Connections Between Contemporary Policy, Strategy, Sea Power, Naval Operations, and the Composition of the United States Fleet” (Monterey, CA: Naval Postgraduate School).

9. Rubel, “Think Outside the Hull,” Proceedings, June 2017, (Annapolis, MD: US Naval Institute), pp. 42-45.

Featured Image: USS Yorktown (CV-10) Crew stands at attention as the National Ensign is raised, during commissioning ceremonies at the Norfolk Navy Yard, Virginia, 15 April 1943. (Photographed by Lieutenant Charles Kerlee, USNR. Official U.S. Navy Photograph, now in the collections of the National Archives)

Forging a Closer Maritime Alliance: The Case for U.S.-Japan Joint Frigate Development

Future Surface Combatant Week 

By Jason Y. Osuga

Introduction

Our history is clear that nations with strong allies thrive, and those without them wither. My key words are solvency and security to protect the American people. My priorities as SECDEF are strengthening readiness, strengthening alliances, and bring business reform to DOD.” – General James Mattis (ret.), SECDEF Confirmation Hearing, 1/11/17

At current growth rates, China may become a comparable power to the United States in economic and military terms in the not too distant future. In this future world, China will be less constrained than it is today to attempt to coerce other Asian nations to its will.[1] China’s economy may be slowing at the moment, with significant concerns over sustainability of high debt and growth.[2]  Notwithstanding, China is still set to overtake the United States between 2030 and 2045 based on the global power index, which is calculated by Gross Domestic Product, population size, military spending, and technology, as well as new metrics in health, education, and governance.[3] An unbalanced multipolar structure is most prone to deadly conflict compared to a bipolar or balanced multipolar structure.[4] 

The execution of the responsibility as the regional balancer requires political will, military capability, and the right grand strategy.[5]  While it is difficult to dictate or gauge the political will in an unknown future situation, the U.S. can hedge by building capability and advocating a forward strategy to support partners in the region. One of the ways in which the U.S. can increase joint warfighting capability is through the co-development of defense platforms with key allies such as Japan. Increasing Japan’s warfighting capability is in keeping with a grand strategy of forging an effective maritime balance of power to curb growing threats from revisionist powers such as China and Russia. Production of a common frigate platform would enhance bilateral collective defense by increasing joint interoperability. Designing a ship based on bilateral warfighting requirements would enhance interoperability and concepts of operations in joint warfighting.

The joint development of frigates would deepen the U.S.-Japan security alliance and enhance the regional balance of power to offset China. Operationally, co-development of frigates will increase interoperability, reduce seams in existing naval strategy, and increase fleet size and presence. Industrially, a joint venture will reduce costs of shipbuilding through burden-sharing research and development (R&D), maximizing economy of scale production, and exploiting the comparative advantage in the defense sectors to favor both nations. Logistically, developing a shared platform enhances supply and maintenance capability through interchangeable components, streamlined bilateral inventory, and increased capability to conduct expeditionary repairs of battle damage. 

Reducing Seams in Naval Strategy and Forward Presence

A major argument for joint development of a frigate is increasing fleet size of the USN and the JMSDF. The Navy has advocated for a fleet size of 355 ships.[6] The Center for Strategic Budget Assessments (CSBA) recommended 340 ships, and MITRE recommended a total force structure of 414 ships to meet fleet requirements.[7] 

One of the main rationales behind these recommendations has been the People’s Liberation Army Navy (PLAN), which has increased its naval ship construction on a vast scale to push the U.S. Navy and JMSDF out of the first island chain.[8] China continues to produce the JIANGKAI II-class FFG (Type 054A), with 20 ships currently in the fleet and five in various stages of construction.[9] 25 JIANGDAO-class corvettes FFL (Type 056) are in service and China may build more than 60 of this class, along with 60 HOUBEI-class wave-piercing catamaran guided-missile patrol boats PTG (Type 022) built for operations in China’s “near seas.”[10]  Furthermore, the PLAN continues to emphasize anti-surface warfare as its primary focus by modernizing its advanced ASCMs and associated over-the-horizon targeting systems.[11] According to Rear Admiral Michael McDevitt (ret.), by 2020, China will boast the largest navy in the world measured by the number of combatants, submarines, and combat logistics vessels expected to be in service.[12] According to CNAS, China “will be a Blue-Water Naval Power by 2030” approaching 500 ships.[13] 

People’s Republic of China, People’s Liberation Army (Navy) frigate PLA(N) Yueyang (FF 575) steams in formation with 42 other ships and submarines representing 15 international partner nations during Rim of the Pacific (RIMPAC) Exercise 2014. (U.S. Navy photo by Mass Communication Specialist 1st Class Shannon Renfroe)

Not only is the PLAN building more frigates and ASCMs, but it also “enjoys home field advantage.”[14] Therefore, despite the PLA’s overall military inferiority vis-à-vis the U.S. military, the U.S. can execute only a partial commitment of forces to Asia due to its global commitments.[15] China can offset a fraction of the U.S. Navy with the combined might of the PLAN, PLA Air Force, and the PLA Rocket Force with anti-ship missiles, combat aircraft, and missile-capable submarines and patrol craft to deny the U.S. access to waters within the first island chain.[16] Thus, the PLA is quickly becoming a balanced force.[17] A balanced and regionally-concentrated force is creating a growing gap in the ability of the U.S. Navy or JMSDF to gain sea control. The USN and JMSDF require more surface combatants to prosecute an effective sea control strategy. One of the best ways to increase fleet size and sea presence is through building a common frigate.

Operational Advantages and Distributed Warfighting  

A new class of frigate would be in line with the Chief of Naval Operations ADM Richardson’s vision in “The Future Navy,” that a “355-ship Navy using current technology is insufficient for maintaining maritime superiority. The Navy must also implement new ways of operating our battle fleet, which will comprise new types of ships.”[18] The platform would be an opportunity to solidify the distributed lethality (DL) concept, promulgated by Commander Naval Surface Force’s Surface Force Strategy.[19] DL combines more powerful ships with innovative methods of employing them by dispersing lethal capabilities. The more distributed allied combat power becomes, the more enemy targets are held at risk, and the costs of defense to the adversary becomes higher.[20] Furthermore, the more capable platforms the adversary has to account for, the more widely dispersed its surveillance assets will be, and more diluted its attack densities become.[21] If the U.S. and Japan can increase the number of platforms and employ them in a bilateral DL architecture, it would present a tracking and salvo problem for the enemy. The new Surface Force Strategy requires an increased fleet size to amass greater number of ships forward-deployed and dispersed in theater.[22] 

Within a hunter-killer surface action group acting under the DL operational construct, Aegis destroyers and cruisers would protect the frigates from air and distant missile threats, allowing the frigates to focus on the SUW/ASW mission sets. The ship’s self-defense systems can provide point or limited area defense against closer air and missile threats. The main mission of the sea control frigate, however, will be to help deliver payloads integrated into the Naval Integrated Fire Control-Counter Air (NIFC-CA) architecture through Cooperative Engagement Capability (CEC).[23] Payloads launched by any ship in USN or JMSDF can be terminally guided by nodes in the CEC. The JMSDF is already moving toward integrating a greater portion of its fleet into the U.S. NIFC-CA architecture through combat systems modification to existing ships.[24]

A Frigate for High-Threat Sea Control

The U.S. and Japan should consider a joint venture to develop a common frigate, displacing roughly 4000-5000 tons, whose primary missions are anti-surface warfare (SUW), anti-submarine warfare (ASW), and limited-area air defense/anti-air warfare AD/AAW. In addition to increasing interoperability, a frigate dedicated to these sea control missions would reduce mission shortfalls in the current naval strategy and fleet architecture. Aegis platforms, such as the Arleigh Burke-class destroyers (DDG) and Ticonderoga-class cruisers (CG), must perform myriad missions such as theater ballistic missile defense (BMD) and air defense (AD) of the strike groups, in addition to theater ASW and SUW. While half of the CGs undergo modernization and the cruiser’s long-term replacement is undecided,[25] and where the Littoral Combat Ships (LCS) do not yet provide robust SUW and ASW capabilities,[26] the DDGs must shoulder a larger share of the burden of those missions. Thus, the Navy would benefit from a dedicated and capable platform to conduct SUW and ASW for achieving sea control and burden-sharing with Aegis platforms. A new class of frigate would be in line with the Chief of Naval Operations ADM Richardson’s vision in “The Future Navy,” that a “355-ship Navy using current technology is insufficient for maintaining maritime superiority. The Navy must also implement new ways of operating our battle fleet, which will comprise new types of ships.”[27] 

The frigate could escort ESGs, CSGs, logistics ships, and maritime commerce. A limited AD capability would fill the gap in protecting Aegis ships while the latter performs BMD missions, as well as escorting high-value units such as amphibious ships LHD/LHA, LPDs, and aircraft carriers (CVN). These specializations would benefit the planners’ ability to achieve sea control by enhancing the expeditionary and carrier strike groups’ defensive and offensive capabilities. It could also highlight the ability of future JMSDF frigates to integrate into U.S. CSGs, ESGs, and surface action groups (SAG) as practiced by its vessels in exercises such as Rim of the Pacific (RIMPAC) and ANNUALEX.

In a contingency, it is necessary to protect commercial shipping, logistics ships, and pre-positioned supply ships, which are the Achilles’ heel of the fleet. These links in fleet logistics chain are critical to sustaining long-duration operations and maintaining the economic well-being of maritime nations such as Japan and the U.S. Therefore, a sufficient number of frigates would be necessary to provide protection to logistics ships. As far as small combatant vessels, the Navy currently operates eight LCS from a peak of 115 frigates during the Cold War in 1987.

Figure 1. Only eight LCS are currently operational from a peak of 115 frigates during Cold War in 1987.[28]
A frigate would require a powerful radar to be able to provide an adequate air defense umbrella to protect a strike group or a convoy. There is some potential in making the next-generation frigate with a scalable Aegis radar such as the SPY-1F. The JMSDF Akizuki-class and Asahi-class destroyers are modern multi-mission capable ships, with a non-Aegis phased-array radar that provide limited AAW capability. Similarly, the next-generation frigate could incorporate a scaled down version of the more modern Air and Missile Defense Radar (AMDR) if the trade-offs in budget and technical specifications warrant the extra investment.

As for the ASW mission, the future frigate should be equipped with an active sonar, a towed passive sonar, an MH-60R (ASW-capable), and a long-range anti-submarine rocket (ASROC) system. A modern hull-mounted sonar connected to the future combat system could integrate the data acquired by towed or variable-depth sonars. It should also be built on a modular design with enough rack space set aside for future growth of systems to accommodate future mission modules. Therefore, the future frigate should have a greater length and beam compared to the LCS to accommodate more space for sensors, unmanned platforms, and combat systems. This should not be confused with a modular concept of the LCS where ASW, SUW, or mine warfare modules can be laboriously swapped out in port in a time-consuming process. The future frigate should focus on ASW/SUW superiority with limited area AD capabilities, and not have to change mission modules to complete this task.  These frigates also would not replace the LCS. The LCS could continue to play a niche role in the SAGs as a carrier for drones and UAV/USV/UUV. Thus, the protection of the LCS from attacks will be an important factor, which will fall on the DDGs and future frigates to contribute.     

Payloads and sensors have as much importance as platforms in the network-centric distributed lethality concept.[29] Effective joint warfighting requires not just cooperation in platform development, but also requires an emphasis on payload and sensor development.[30] The U.S. and Japan should explore joint R&D of the following payloads in the future frigate: Long Range Anti-Ship Missile (LRASM), Naval Strike Missile, and the surface-to-surface Hellfire missile. Out of these options or a combination thereof, the U.S. and Japan may find the replacement to the U.S. Navy’s RGM-84 Harpoon anti-ship missile and the JMSDF’s Type 90 ship-to-ship missile in service since 1992.[31] 

The selection of payloads for the next frigate should be based on bilateral requirements of roles and missions. Furthermore, discussions should also involve offensive and defensive options in non-kinetic electronic warfare (EW) and cyber capabilities for joint development. Effective EW and cyber capabilities will increase the options for commanding officers and task force commanders to achieve the desired effect on the operating environment. A joint development will provide both fleet commanders options to achieve this effect.  

Addressing Sufficiency

As far as increasing fleet size with next-generation frigates, how many frigates is enough? Based on global commitments for the U.S. Navy and regional commitments for the JMSDF, 60 frigates for the USN and 20 frigates for the JMSDF would be justified. By building 60 frigates, the U.S. Navy would be able to forward-deploy at least one-third (20 frigates) to the Western Pacific. The frigates should be dispersed and forward-deployed to U.S. naval bases in Japan, Guam, Singapore, and Hawaii as well as those on 7-month deployments from the continental U.S. The JMSDF would also build 20 frigates of the same class. Taken together, there would be a total of 40 frigates of the class in the Western Pacific between the USN and JMSDF. This ratio parity (1:1) would benefit the planners’ ability to conduct joint task force operational planning as well as factoring in collective self-defense considerations. 40 frigates would create enough mass to establish a distributed and forward sea presence, and when required, gain sea control with Aegis DDGs in hunter-killer SAGs.

Meanwhile, the JMSDF has not built 20 ships of any combatant class. Setting the goal high with 20 vessels of the next frigate would be an important milestone for the JMSDF toward increasing its fleet size in a meaningful way. The JMSDF recently announced that, to speed up vessel production and increase patrol presence in the East China Sea, it would build two frigates per year compared to one destroyer per year.[32] It appears the JMSDF is also realigning its strategy and procurement to cope with the changing security environment in East Asia.

Industrial Advantages of Joint Development

Bilateral development of the next frigate will enjoy industrial advantages in burden-sharing R&D, maximizing economy of scale production, and exploiting the comparative advantage of the U.S. and Japanese defense sectors. Burden-sharing R&D through cooperative development helps to reduce risks. Barry Posen, director of the MIT Security Studies Program, advocates burden-sharing as a central issue of alliance diplomacy.[33] Joint R&D mitigates risk through technology flow between two countries. Any newly developed or discovered technologies can be shared as part of the platform’s development. Thus, U.S. and Japan can tailor regulations on technology flow and export control laws to suit the scope of this bilateral development project to ensure seamless integration and manage risk.

Moreover, maximizing economies of scale production would help mitigate the rising costs of producing warships and weapons systems under unilateral R&D. Economy of scale coproduction or co-development program would be “consistent with Congress’ preference for allied cooperation in arms development (Nunn Amendment), by reducing acquisition costs and freeing resources for other burden sharing.”[34] A joint development with a close U.S. ally with a similar technology base and history of shared platforms development would make sense to cut costs, share technology, and hedge R&D risk. The U.S. and Japan have begun to move in the direction of cooperative development. In 2014, the U.S. Ambassador to Japan, Caroline Kennedy, and Japan Foreign Minister, Fumio Kishida, announced that the Defense Ministry and the DOD would hold studies to jointly develop a new high speed vessel under the bilateral Mutual Defense Assistance (MDA) agreement.[35] Although not many details were released to the public on this agreement, the studies may have centered on the LCS as a possible platform to base the bilateral project. A joint frigate project should be designed on a platform that addresses all of the LCS’ deficiencies and that meets bilateral requirements to achieve sea control via SUW/ASW superiority and distributed lethality.

Leveraging the economy of scale through joint development would also help Japan as its defense systems have also become more expensive to develop unilaterally. Many Japanese firms view international defense business as unstable and unproven in terms of profitability.[36] However, recent JMSDF Chief of Maritime Staff, ADM Takei, saw opportunities for cooperative development as Japanese defense industry has high-end technology, but lacks expertise and experience.[37] ADM Takei believed there is much potential for subsidiaries of major Japanese corporations that specialize in defense production to cooperate with U.S. defense firms to partner in the development or become a supplier of parts for U.S.-made equipment.[38] Thus, by cooperating in shipbuilding, the U.S. and Japan would benefit from reduced costs of production of components and systems by taking advantage of economies of scale.

Joint development will also leverage the comparative advantage of the respective industrial sectors to favor both nations. For example, if the U.S. produces something relatively better or cheaper than Japan such as the weapons, radar, or combat systems, the U.S. could take the lead in developing and building the systems for both countries. Conversely, if Japan produces a section or component of the ship better or cheaper than the U.S. (e.g., auxiliaries, propulsion, or hull), Japan could take the lead in developing it for both countries. However, domestic constituency and laws may prevent efficient production based on comparative advantages in the U.S. and Japan. The Buy American Act of 1933 requires the U.S. government to give preference to products made in the United States.   

In light of cultural and historical opposition to buying foreign-made ships in both countries, a practical solution would be if both countries produced its own hulls in their domestic shipyards based on the same design. This would preserve American and Japanese shipbuilding and defense jobs in their home constituencies. Comparative advantage production, though, should be sought in auxiliary/propulsion systems, weapons, and radars to make the venture as joint and cost-effective as possible. Cost savings would not be as great if both countries produced its own ships; however, there is still a net positive effect derived from increased interoperability, joint R&D, and common maintenance practice from a shared platform.[39] This would ultimately translate to increased collective security for both countries and a stronger alliance which cannot be measured solely by monetary savings.

Logistical and Maintenance Advantages

U.S.-Japan joint frigate development offers maintenance and logistical advantages. The USN and JMSDF utilize similar logistics hubs currently in forward-deployed bases in Japan. The U.S. and Japan can find efficiency by leveraging existing logistics chains and maintenance facilities by building a platform based on shared components. Theoretically, a JMSDF frigate could be serviced in a USN repair facility, while a USN frigate could be maintained in a JMSDF repair facility if the platform is essentially built on the same blueprint. This may help reduce maintenance backlogs by making efficient use of USN and JMSDF repair yards. Furthermore, the use of common components would make parts more interchangeable and would also derive efficiency in stockpiling spares usable by both fleets.     

Recently, the JMSDF and USN participated in a first of a kind exchange of maintenance parts between USS Stethem (DDG-63) and destroyer JS Ikazuchi (DD-107) during Exercise MultiSail 17 in Guam.[40] It was the first time in which U.S. and Japan used the existing acquisition and cross-servicing agreements (ACSA) to exchange goods between ships. The significance was that ACSA transfers are usually conducted at the fleet depot or combatant command (PACOM) levels, and not at the unit level. As U.S. and Japan devise creative ways to increase interoperability, commonalities in provisions, fuel, transportation, ammunition, and equipment would add to the ease of streamlining the acquisition and exchange process. Ships built on the same blueprint would in theory have all these in common.

YOKOSUKA, Japan (Feb. 26, 2016) Capt. Adam Aycock, commanding officer of the guided-missile cruiser USS Shiloh (CG 67), explains the ballistic missile defense capabilities on Shiloh in the ship’s command information center to U.S. and Japanese officers. (U.S. Navy photo by Mass Communication Specialist 3rd Class Sara B. Sexton/Released)

Common parts and maintenance would also improve theater operational logistics in the Fifth and Seventh Fleet AORs. For counter-piracy deployments to the Indian Ocean and Gulf of Aden, the JMSDF would be able to utilize U.S. logistics hubs in Djibouti, Bahrain, Diego Garcia, Perth, and Singapore to obtain parts more readily or perform emergency repairs. Guam, Japan, and Hawaii could be hubs in the Pacific to deliver common parts or perform maintenance on the shared frigate platform. The U.S. can expand its parts base and utilize ACSA to accept payment in kind or monetary reimbursement. Most importantly, the benefit to warfighters is that vessels would not be beholden solely to the logistics systems of their own country. Rather, ships can rely on a bilateral inventory and maintenance availability leading to enhanced collective security and a closer alliance.

Damage Repairs in Overseas Ports

Besides regular maintenance, the doctrinal shift to a more offensive strategy of distributed lethality requires that the Navy address the potential for a surge in battle damage.[41] There is a potential for an upsurge in battle damage as ships are more widely dispersed with a greater offensive posture, which may lead to a distributed vulnerability to taking casualties.[42] This prospect requires the Navy to focus on increasing the repair capability of naval platforms in forward ports.[43] Therefore, the need to conduct expeditionary repair, or the ability to swiftly repair naval ships that take on battle damage, becomes more important and challenging.[44] The four repair facilities in the Pacific best positioned to repair ships that receive damage are located in Guam, San Diego, Everett, and Pearl Harbor, as well as at the joint U.S.-Japanese ship repair service in Yokosuka, Japan.[45] A common U.S.-Japan platform that shares the same design and components would be better able to repair battle damage in forward repair facilities in an expeditionary and expeditious manner. Spreading the battle repair capability across the theater reduces risks in the offensively-postured DL concept.

Counterarguments

The U.S. Navy and JMSDF have achieved strong interoperability through years of conducting bilateral exercises. Having both nations producing their own warships and then achieving close interoperability through joint operations remain a convincing argument to maintain the status quo. Foreign Military Sales (FMS) have been useful mechanisms to transfer U.S. technology and reaping the benefit of technology flowback from Japanese R&D. The current system of Japan license-producing U.S. systems has preserved Japan’s status as an important client of U.S. defense systems.

The Fighter Support Experimental (FS-X) co-development project in the 1980s showed that terms and conditions of technology transfer and flowback must be equitably worked out, or Japan may also balk at pursuing a joint development with the U.S. Japan received U.S. assistance for the first time in the design and development of an advanced fighter.[46] The Japanese saw co-development as a next stage in the process toward indigenous production, as the technical data packages transferred not only manufacturing processes or “know-how,” but full design process or “know-why” as well.[47] Prominent politicians, however, such as the former-Governor of Tokyo, Shintaro Ishihara, clamored in op-ed pieces for Japan to step out from “Uncle Sam’s shadow” and pursue an independent development vice a joint development.”[48] Speaking for many of the Japanese policy elites who shared his sentiments, the FSX would “give away [Japan’s] most advanced defense technology to the United States but pay licensing and patent fees for each piece of technology we use. Washington refuses to give us the know-how we need most, attaches a battery of restrictions to the rest and denies us commercial spinoffs.”[49] If the terms of co-development such as technology flowback and terms and conditions of tech transfer are not equitably worked out, Japan may also balk at pursuing a joint development with the U.S.

These arguments have strong logic, but they still have flaws. Japan has followed the license-production model of producing U.S. systems for decades following WWII. To provide a few examples, Japan has produced the F-104 fighter, SH-60 helicopter, P-3C Orion anti-submarine patrol craft, and Patriot missiles under license. In many instances, Japanese engineers made significant improvements and enhancements to U.S. designs.[50] While license-production has advantages in guaranteeing technology flowback, it only works if the platform being license-produced is already a proven effective platform. In the case of frigates, there is no such platform yet. The LCS has too many issues for it to be a viable future frigate that could replace JMSDF’s light escort destroyers. With no viable alternative to the future frigate design, the U.S. risks “going at it alone” on a program that has already consumed precious time and resources on the problematic LCS program. It is unlikely that Japan would want to produce or buy an ineffective and problematic platform.   

Finally, the age of Japan license-producing U.S. weapon systems is increasingly an outmoded framework. While there is no ally with whom the U.S. has more commonality in defense hardware than Japan, these programs function in a manner largely detached from any real strategic vision.[51] The transfer of leading edge U.S. systems (coproduction of the F-15 fighter, the sale of Aegis-equipped warships, even the transfer of 767-based AWACS early warning aircraft) was carried out in an episodic and disjointed manner.[52] What is needed is a joint R&D program based on bilateral operational requirements from the outset, which nests with the Surface Force Strategy of the 21st century to ensure joint interoperability. In order for Japan to break the model of “U.S. as patron / supplier – Japan as client / recipient,”[53] Japan must also step up defense R&D and burden-share on a future platform that will mutually benefit the security of the Pacific. The U.S. must also be open to the idea of cooperative partnership in ship development and production that would benefit the U.S. primarily through greater security, and distance itself from the notion that co-development would only benefit Japan.

A Frigate for the 21st Century

Cooperative development of the future frigate would mutually benefit the U.S. and Japan and the security of the Pacific for the greater part of the 21st century. A common platform would enhance interoperability by basing its design on bilateral operational requirements and integrating it into Surface Force Strategy’s distributed lethality concept. Furthermore, this strategy would reduce seams in the current strategy by burden-sharing sea control responsibilities with existing platforms, principally the Arleigh Burke DDGs, and increase the size of USN and JMSDF fleets by factoring in joint planning and collective self-defense considerations.

In an age of limited resources and persistent cost growth in unilateral defense programs, a joint development program offers solutions by reducing cost through burden-sharing R&D, leveraging economies of scale and comparative advantage to favor both nations. A shared platform would enhance operational logistics and maintenance through the use of same components, streamlining bilateral inventory, and enhancing expeditionary repair capability. Therefore, the joint development of a frigate would improve operational, industrial, and logistical capabilities of the alliance in a concrete manner. Ultimately, this project would enhance the U.S.-Japan collective defense and security to counterbalance China’s revisionist policy in the maritime sphere.   

Joint frigate development is not only a good idea, but it is also an achievable and realistic proposition. If increasing fleet size is a necessity for U.S. and Japan, why not choose the most financially pragmatic and feasible option? Relative declines in defense budgets rule out the ability of any country to be completely autonomous in defense acquisitions.[54] Cooperative development and production have become a necessity—not an indulgence.[55] Thus, a practical strategy that utilizes the resources of more than one country effectively will gain the advantage over adversaries that commit only their own industry. It would behoove the U.S. and Japan to prepare for a future contingency during peacetime by forging a stronger alliance through developing an effective platform that increases fleet size and interoperability, brings defense industries closer, and improves logistics and maintenance.

The U.S. and Japan’s security relationship has developed into a robust alliance spanning the breadth of all instruments of national policy and interests. In the next phase of the alliance, the U.S. and Japan should undertake a major cooperative shipbuilding project that broadly encompasses the industrial might of these two nations, to safeguard the maritime commons that underwrites the security of the Pacific and the global economy. Let that project be the joint development of the next generation multi-mission frigate that will serve for the majority of the 21st century.

LCDR Jason Yuki Osuga is a graduate of the Advanced Strategist Program at the Naval War College, and is the prospective Naval Attaché to Japan. 

Endnotes

[1] John Mearsheimer, The Tragedy of Great Power Politics, (New York: W. W. Norton & Co., 2014), 363.

[2] “Red Ink Rising,” The Economist, March 3, 2016. Accessed on April 16, 2017 in http://www.economist.com/news/finance-and-economics/21693963-china-cannot-escape-economic-reckoning-debt-binge-brings-red-ink-rising

[3] National Intelligence Council, “Global Trends 2030: Alternative Worlds,” NIC 2012-001, December 2012, 16. Accessed on https://www.dni.gov/files/documents/GlobalTrends_2030.pdf

[4] Mearsheimer, 335.

[5] Robert D. Blackwell and Ashley J. Tellis, “Revising U.S. Grand Strategy Toward China,” Council on Foreign Relations, Council Special Report No. 72, March 2015, 39.

[6] “Secretary of the Navy Announces Need for 355-ship Navy,” 2016 Force Structure Assessment (FSA), December 14, 2016. Accessed on April 10, 2017 in http://www.navy.mil/submit/display.asp?story_id=98160

[7] Sydney J. Freedberg Jr., “Big Wars, Small Ships:  CSBA’s Alternative Navy Praised by Sen. McCain,” Breaking Defense, February 09, 2017. 

[8] Office of the Secretary of Defense, “Annual Report to Congress:  Military and Security Developments Involving the People’s Republic of China,” April 26, 2016, 66.

[9] Ibid, 27.

[10] Ibid.

[11] Ibid, 26.

[12] Michael McDevitt, “Beijing’s Dream: Becoming a Maritime Superpower,” National Interest, July 1, 2016, cited in Toshi Yoshihara and James Holmes, “China’s Rising Sea Power,” Foreign Policy Research Institute, November 5, 2016, 95.

[13] Patrick M. Cronin, Mira Rapp-Hooper, Harry Krejsa, Alex Sullivan, “Beyond the San Hai:  The Challenge of China’s Blue-Water Navy,” Center for a New American Security (CNAS), May 2017, 2.

[14] Toshi Yoshihara and James Holmes, “China’s Rising Sea Power,” Foreign Policy Research Institute, November 5, 2016, 95.

[15] Yoshihara and Holmes, 95.

[16] Yoshihara and Holmes, 95.

[17] Interview with Professor Toshi Yoshihara, November 06, 2016.

[18] Chief of Naval Operations, ADM John Richardson, “The Future Navy,” May 17, 2017. Accessed on May 21, 2017 in http://www.navy.mil/navydata/people/cno/Richardson/Resource/TheFutureNavy.pdf

[19] Commander, Naval Surface Force, “Surface Force Strategy:  Return to Sea Control,” January 9, 2017.

[20] VADM Thomas Rowden, RADM Peter Gumataotao, RADM Peter Fanta, “Distributed Lethality,” Proceedings, 141, no. 1 (2015): 5.

[21] Ibid.

[22] Commander, Naval Surface Force, “Surface Force Strategy:  Return to Sea Control,” January 9, 2017.

[23] Jeffrey McConnell, “Naval Integrated Fire Control–Counter Air Capability Based System of Systems Engineering,” Naval Surface Warfare Center, Dahlgren Division, November 14, 2013.

[24] Sam LaGrone, “Planned Japan[ese] Self Defense Force Aircraft Buys, Destroyer Upgrades Could Tie Into U.S. Navy’s Networked Battle Force,” USNI News, June 10, 2015.

[25] “US Navy’s Cruiser Problem — Service Struggles Over Modernization, Replacements,” Defense News, July 7, 2014. Accessed April 22, 2017 in http://www.defensenews.com/story/defense/archives/2014/07/07/us-navy-s-cruiser-problem-service-struggles-over-modernization-replacements/78531650/

[26] Government Accountability Office, “Littoral Combat Ship and Frigate: Congress Faced with Critical Acquisition Decisions,” GAO-17-262T, December 1, 2016, 1. Accessed on APR 06, 2017 in http://www.gao.gov/assets/690/681333.pdf

[27] Chief of Naval Operations, ADM John Richardson, “The Future Navy,” May 17, 2017. Accessed on May 21, 2017 in http://www.navy.mil/navydata/people/cno/Richardson/Resource/TheFutureNavy.pdf

[28] Naval History and Heritage Command, “U.S. Ship Force Levels: 1886-present,” U.S. Navy, accessed March 4, 2017, https://www.history.navy.mil/research/histories/ship-histories/us-ship-force-levels.html. Graph courtesy of LCDR Benjamin Amdur.

[29] Interview with Professor Toshi Yoshihara, Strategy and Policy Dept., Naval War College, November 06, 2017.

[30] ADM Jonathan Greenert, “Payloads over Platforms: Charting a New Course,” Proceedings, 138, no. 7 (2012): 16, https://search.proquest.com/docview/1032965033?accountid=322 (accessed January 12, 2017).

[31] Eric Wertheim, The Naval Institute Guide to Combat Fleets of the World: Their Ships, Aircraft, and Systems. (Annapolis, MD:  Naval Institute Press, 2007), 374.

[32] Nobuhiro Kubo, “Japan to Speed up Frigate Build to Reinforce East China Sea,” Reuters, February 17, 2017, accessed on March 4, 2017 in http://in.reuters.com/article/japan-navy-frigates-idINKBN15W150.

[33] Mina Pollman, “Discussion on Grand Strategy and International Order with Barry Posen,” January 6, 2017, accessed on http://cimsec.org/barry-posen-draft/30281.

[34] Richard J. Samuels, Rich Nation, Strong Army:  National Security and the Technological Transformation of Japan, (Ithaca, NY: Cornell University, 1994), 239

[35] J. Michael Cole, “US, Japan to Jointly Develop Littoral Combat Ship,” The Diplomat, March 7, 2014. Accessed on January 5, 2016, http://thediplomat.com/2014/03/us-japan-to-jointly-develop-littoral-combat-ship/

[36] Gidget Fuentes, “Japan’s Maritime Chief Takei: U.S. Industry, Military Key to Address Western Pacific Security Threats,” United States Naval Institute News, February 22, 2016. Accessed on January 5, 2016, https://news.usni.org/2016/02/22/japans-maritime-chief-takei-u-s-industry-military-key-to-address-western-pacific-security-threats.

[37] Fuentes.

[38] Fuentes.

[39] Interview with Professor Toshi Yoshihara, Naval War College, S&P Dept., November 06, 2017.

[40] Megan Eckstein, “U.S., Japanese Destroyers Conduct First-Of-Kind Parts Swaps During Interoperability Exercise,” USNI News, March 17, 2017. Accessed on March 31, 2017 in https://news.usni.org/2017/03/17/u-s-japanese-destroyers-conduct-first-ever-parts-swaps.

[41] Christopher Cedros, “Distributed Lethality and the Importance of Ship Repair,” The Strategy Bridge, February 14, 2017.

[42] Cedros.

[43] Cedros.

[44] Cedros.

[45] Cedros.

[46] Samuels, 238.

[47] Samuels, 241.  

[48] Shintaro Ishihara, “FSX – Japan’s Last Bad Deal,” New York Times, January 14, 1990. Accessed on April 20, 2017 in http://www.nytimes.com/1990/01/14/business/forum-fsx-japan-s-last-bad-deal.html

[49] Ishihara.

[50] Samuels, 276.

[51] Gregg A. Rubinstein, “Armaments Cooperation in U.S.-Japan Security Relations,” in Pacific Forum CSIS (ed.), United States Japan Strategic Dialogue: Beyond the Defense Guidelines, Honolulu, 2001, 90.

[52] Rubinstein, 91.

[53] Rubinstein, 91.

[54] Rubinstein, 92.

[55] Ibid.

Featured Image: Japanese Kongo-class destroyer (JSDF/MOD photo)

Future Surface Combatant Week Wraps up on CIMSEC

By Dmitry Filipoff 

This past week CIMSEC featured a topic week offering ideas for the U.S. Navy’s Future Surface Combatant Program. In response to our call for articles authors shared insightful writings on potential new warships and how history should inform ship design. We thank the authors for their excellent contributions, listed below.  

Black Swan: An Option for the Navy’s Future Surface Combatant by Brett Friedman

“The most compelling concept is the Black Swan Concept, proposed by the United Kingdom Ministry of Defense in 2012. It’s a modernized idea that traces its roots back to the Royal Navy and Royal Indian Navy Black Swan ships that served as convoy escorts in World War II.”

Strategy and Ship Design – History’s Lessons For Future Warship Concepts by Harry Halem

“History demonstrates the need to understand strategy, and a service’s role in that strategy, when modernizing a military force. In particular, a comparison of Britain’s largely successful naval modernization before the First World War can be compared to the less successful naval modernization and construction attempts in the U.S. from 1991 to the present. Comparing the underlying clarity of strategy in both modernization attempts offers major lessons to the modern policymaker that should be applied to the FSC’s development.”

Forging a Closer Maritime Alliance: The Case for U.S.-Japan Joint Frigate Development by Jason Osuga

“The joint development of frigates would deepen the U.S.-Japan security alliance and enhance the regional balance of power to offset China. Operationally, co-development of frigates will increase interoperability, reduce seams in existing naval strategy, and increase fleet size and presence.”

Dmitry Filipoff is CIMSEC’s Director of Online Content. Contact him at Nextwar@cimsec.org

Featured Image: PACIFIC OCEAN (May 11, 2017) The guided-missile destroyer USS Halsey (DDG 97) participates in a simulated strait transit during a group sail training exercise with the Theodore Roosevelt Carrier Strike Group (U.S. Navy Photo by Mass Communication Specialist 2nd Class Paul L. Archer/Released). 

Sea Control 139: What Does It Mean To Be A SMWDC Warfare Tactics Instructor?

By Matthew Merighi 

The Naval Surface and Mine Warfighting Development Center (SMWDC) is a critical element of the Navy’s Surface Force Strategy: Return to Sea Control.The command’s four lines of operation are advanced tactical training and tactical guidance development, operational support to combatant commanders, numbered fleet commanders and task force commanders, and capabilities assessments, experimentation, and future warfighting requirements. A critical supporting element in each of these focus areas are the men and women who are trained as Warfare Tactics Instructors (WTIs). 

In this interview, Sally DeBoer (SD) spoke with four WTIs who are on the cutting edge of the cultural shift taking place in the surface Navy. Our guests are Lt. Tyson Eberhardt (TE), who is an Anti-Submarine Warfare/Anti-Surface Warfare Tactics Instructor (ASW/SUW), Lt. Brittany Hubbard (BH), who is an Amphibious Warfare Tactics Instructor (AMW), Lt. Benjamin Olivas (BO), who is an Integrated Air and Missile Defense Warfare Tactics Instructor (IAMD), and Lt. Damon Goodrich-Houska (DGH), who is an ASW/SUW WTI. Read the transcript or download the audio below. 

Download Sea Control 139: What Does It Mean To Be A SMWDC Warfare Tactics Instructor?

SD: Welcome back! On this episode of Sea Control, our guests today are four Warfare Tactics Instructors from the Naval Surface and Mine Warfighting Development Center (SMWDC) in San Diego, CA. Thank you all so much for taking time out of your schedule to join us today. Let’s begin by getting a little background on each of you. What did you do prior to coming to SMWDC, and what drew you to the command?

TE: I was the ASWO officer and navigator on USS Preble as a division officer, I really enjoyed the tactical aspect of getting to meet sonar technicians and finding submarines. As a division officer, the opportunity on shore duty to expand my knowledge base and help other ASWOs drew me to the command.

DGH: I served on USS Reuben James and as the training officer on the USS Rushmore, part of that tour was going through a training cycle where you get the crew and all the watchstanders up to the level they need to be to deploy. With that experience, I got to conduct drills, run through scenarios, and train sailors. What drew me to SMWDC was the opportunity to learn and implement advanced tactics, then train warfighters on how to fight more effectively, I really enjoy ASW especially.

BH: I spent my first division officer tour on the USS Green Bay, and then I moved to a destroyer, the USS Lassen, as the damage control assistant. What interested me in SMWDC was going back to my roots as an amphibious sailor. A lot of the mission sets we conducted with the Marine Corps taught me how to be a liaison and work on the relationships between sailors and our USMC counterparts. That is what interested me in joining this program.

BO: Before I came here, I was the communications officer on USS Paul Hamilton and then I was the training officer on USS Michael Murphy, both out of Pearl Harbor. I served as air warfare coordinator and I came from a background where most of my captains knew this domain really well; I truly enjoyed that billet. Working with sailors and teaching people was something I also found enjoyable. When I heard about SMWDC, I thought what better way to use all this knowledge I have accumulated, pass it on, and make a difference?

SD: What impact do you see from the work you have done at SMWDC

DGH: One of the biggest things I have seen is a culture shift, and one of the main aspects is the PBED (Plan, Brief, Execute and Debrief) model. If you look at elite athletes, they don’t just go out and do their event, they will study, watch videos of themselves doing the actions, look over the minute details to improve, as well as watch competitors to adapt techniques and methods.

So we go out and do Surface Warfare Advanced Tactics and Training (SWATT) and have WTIs on each ship and, after doing various events, we will actually show the crew and the watchstanders a replay of the event, including voice recordings of reports. Walking through that, we start with the WTIs doing the majority of the presentation with the watchstanders and crew jumping in here and there, but by the end of the training, the watch teams are running things on their own and identifying issues themselves. So, seeing that training change hands from the WTIs to the ship’s crew, to where they are able to conduct their own training and self-improvement, is really great.

TE: We also conduct training ashore, so my primary job as an advanced sonar instructor is to provide this advanced tactical instruction to officers that will go out and conduct training. This classroom training is another important part of our mission. Getting to work with officers before they go to sea is another exciting part of our mission here.

BO: We tend to pride ourselves on not just conducting training but also building knowledge. One of the things that we have done is try to apply the same type of teaching approaches we learn from our counterparts. We put them through the ringer here in terms of making them go up and do a brief, do it well, and do it repeatedly to the point where they’ve put in so many hours, done so much research, taken and internalized these techniques…this goes for all of the schools here. So when you see a sailor give a brief, you know you will get a certain product because it’s been tailored a certain way. Since we have been doing it this way, we’ve seen a great payoff.

SD: How does the reported success of the WTI program in improving tactical proficiency translate to future training development for the Navy’s SWOs?

BH: I think that the three different schoolhouses that we currently have provide a good baseline for how we expect our future SWOs to participate in developing tactical proficiency. We take an elite cadre of junior officers and we put them through these schoolhouses and then, as we complete our production tour, which is anywhere from two or three years, those same officers then go back out to the fleet as department heads that will eventually be XOs and COs. So we are bringing our tactical proficiency to a new standard.

DGH: Another point is that as we develop new tactics and doctrine, we get a chance to take it out to sea with real world watchstanders to test it out and make sure that it is up to par, that it’s effective, and if not, we can make adjustments very rapidly.

SD: Is the emphasis more on teaching rigid existing doctrine or on allowing WTIs to develop and pursue new, original ideas?

DGH: It’s a little of both. We do rely on doctrine, but we also take our WTIs and ensure that we apply rigor, academic rigor, to our doctrine and tactics to make sure they are in fact reliable, and if there are issues, then again we identify them, correct them, and ensure the WTIs are empowered to enact changes and improve things.

TE: I think to Damon’s point, we have WTIs out at sea who have a responsibility to know the doctrine and the guidance, but have the opportunity to think critically and bring new ideas to the organizations. We’ve taken a more active role in events like the SCC (Submarine Command Course) where we have a chance to try out new tactics and see how effective they can be, then feed that back into formalized doctrine.

BO:  One of the good things about being able to test out new TTPs and doctrine is also being able to apply those things earlier and develop that muscle memory. The more we internalize tactics, the more they are applied and become part of the ship. Out there on the water where officers are asked to make quick decisions, this muscle memory represents a force multiplier for the entire fleet.

SD: How do you see yourselves speeding up and improving the Navy’s ability to field new thinking and capabilities?

 BH: A lot of what we do when we go out to ships and in the schoolhouse is not only study current doctrine but also evaluate new ways of utilizing that doctrine. We receive immediate feedback from the ships, and then we conduct workshops and working groups that take a really hard look at what we are currently teaching and make sure it is the best way to conduct that event.

BO:  The other thing we’ve hit on in terms of improvement is the impact that we see in the classroom, the way we teach. Being able to sit down and listen to briefs and take them in has created a much better experience for the students, they take on a lot of what we’ve done and they “get it.” We have created these lessons so when they walk away from classrooms they’re ready to use what they have learned. We use the ARCS (attention, relevance, confidence, satisfaction) approach – we see that as a feedback loop for the students. Once we have their attention, we present relevant information. Confidence means that they can walk away feeling like they “get it,” and satisfaction (S) means they can go to their ships and into combat or an exercise and satisfactorily apply the things we’ve taught them. 

DGH: To add on, in operational environments, the more we get WTIs out to the ships as DHs, especially once we hit that critical mass where there’s one WTI per ship, we will have already created a network of WTIs that all know how to get in touch with subject matter experts (SMEs) in various areas. Much of that reach back comes here (SMWDC HQ), and we have good communications with the aviation and undersea communities, etc.

As things change and real world events occur, we rapidly take in feedback and develop new tactics and doctrine as needed. We can model new systems going into the fleet, and any feedback from doctrine and tactics used in the real world can be brought into the classroom to make sure that the next set of WTIs that head out to train others have the most up-to-date information. We are not teaching out-of-date stuff, we are teaching the latest and greatest.

SD: What kind of collaboration and integration do WTIs have with one another and different communities (aviation, undersea, etc.)?

BH: So, one way that we do this is anytime we have a course that we are trying to teach or area of interest we need more information on, we reach out to that community. For example, we are participating in an SCC (Sea Combat Commander) course for various DESRONs and PHIBRONs working through training cycles. We recently reached out to the aviation weapons schools for input and participation to make sure we are as tactically proficient in the relevant areas we are teaching as they are.

TE: Along those lines, an important part of what WTIs do is that broad reach. While we train WTIs here at SMWDC, others are working for various other schools and groups and counterparts that have a specific focus. That allows us as a community of WTIs to try and foster cross-domain thinking about problems that don’t just affect one area, but affect the whole spectrum of naval warfare.

SD: How can you work to keep your skills current in an age of rapid change? 

DGH: We have a lot of WTIs here that are traveling, going out and doing various events, training aboard ships, and getting a lot of great experiences, such as live fire events, things that previously were something an officer might get to do once or twice in a career, we have WTIs doing multiple times a year.

What we ended up starting was what we call “Tactical Taco Tuesday,” which we hold multiple times a month. It is a long working lunch where we cross-train between domains, IAMD folks, ASUW, ASW, and amphibious folks. We also pull in other warfare areas as well, such as CW or Intelligence, and get some good cross-training in a less formal environment that allows for really good quality discussion and in-depth questions – plus everyone brings food so it builds an esprit de’corps that keeps the WTI network strong.

When we go on to our next tours, we know who to talk to and who the experts are. The more formal way we do this is that when WTIs come back to the schoolhouse, which we call Re-Bluing, we conduct refresher courses where the latest and greatest TTPs are taught.

SD: What do you think is next for SMWDC and the WTI program? How do you envision WTIs being utilized five or ten years down the line?

BH: I think that as WTIs, this is simply a two or three year tour, but when we leave this production tour, we do not take off our patch, it is still up to us to continue remaining as tactically proficient as our patch would designate us to be. So in 5-10 years, the goal is to be DHs, XOs, and COs, all the while continuing to build that knowledge base that we started back during a WTI production tour.

DGH: As we have more and more senior leadership who are WTI-qualified, it’s going to push an overall culture change, much like the phrase “a rising tide raises all boats,” it’s that idea that as increasingly more senior leadership has experience as WTIs, they will maintain that emphasis on being the best, drilling hard, working on doctrine and tactics, and that will really shift our focus.

WTIs are supposed to be warriors and thinkers and teachers, so when we get out and stand tactical watches, those same WTIs will be thinkers and work on doctrine, tactics, and improving existing processes as well as developing new systems and ideas, while also serving as teachers, in that they will train watchstanders, crews, and even strike groups. Ultimately, this will improve our warfighting ability.

BO: One of the things that we really hammer home is that this command is primarily O-3s and O-4s, which in the grand scheme is very junior in rank, but we are the ones doing the homework and teaching people in ranks above and below. Ultimately, I think what we are trying to get at is that the tactical experts will be the gatekeepers and have the breadth of knowledge to build something great.

TE: The WTI program is an effort to put warfighting first among SWOs. As SWOs we have so many things we have to be proficient at, but the bottom line is we need to be warfighters, and this requires an advanced understanding of tactics. And by building this cadre of WTIs, for years down the line as DHs and beyond, we will be making an impact by bringing that to the fleet

SD: What is your message to aspiring surface warfare officers who are interested SMWDC

TE: I think what most excites me about getting to be a part of this command is that the Navy is investing in my level of knowledge and in my ability to go out and lead sailors in the future. It is exciting to train others, to do these exercises. The bottom line is that every single day I come to work I learn something new, and the organization is committed to training me to a higher level of knowledge that will pay off for years as I have come to a whole new appreciation for expertise in surface warfare.

DGH: For aspiring SWOs, as a JO, as a non-qualified SWO working toward that pin, you have much to learn and focus on, but number one I would encourage young SWOs to learn as much as you can and focus on tactics, but communicate early with your chain of command that you’re interested in the WTI program if you have a passion for tactics and training. Of course, work on your qualifications and do your job well, but there are many opportunities to become qualified in warfare areas as a JO, whether it’s ASWE for a second tour or various air warfare qualifications on an Aegis platform. Focus on those and work toward being the best tactician you can in whatever position you are in – strive to be the “go-to” guy or gal in that position. So when you do apply to be a WTI, those recommendations will really help.

BH: For SWOs looking to come here, this is probably going to be a once-in a-career type of opportunity. Every day when I come to work, my job is to take research, take what we’re doing, take a schedule, and make it the best that I can for the fleet, event, or scenario. There wasn’t a time in the first four years of my career where someone asked me to research tactics or to figure out a problem – but for all SWOs this is your time. You’re two to three years out of your career that you can spend just focusing on making the warfare areas better, building relationships, and networking. In that way it is different from many tours you could do otherwise.

BO: Looking back on everything, I think all of us are close enough to our JO tours to realize that being a junior officer onboard a warship is not an easy task. It is a lot of sustained hard work that keeps you up many nights studying. We understand how hard you’ve worked for your pin. The shore tour is a time when many look to take some gas off the pedal and regroup. Here we have an opportunity to do that, but we also have a lot of work to do, but it’s good work. It is something that is going to make a difference.

Quite frankly, of all the people I have worked with in my career, there is no one I would rather work with. The people here are trying to make a difference, and that work will echo in the Navy for many years to come. My takeaway to you is, if you’re qualified in an area, pursue it rigorously, look at the pubs, talk to the watchstanders, and ask as many questions as you can, because one day you may be the one teaching others to do that and it is going to matter. That is why we were created.

SD: Thank you all so much for taking time out of your day to join us here on Sea Control and for leaving our listeners more informed about the work you’re doing and the mission of the Surface and Mine Warfighting Development Center. We hope you’ll join us again! For our listeners – this has been another episode of Sea Control. Thanks for listening!

Lt. Benjamin Olivas is a native of El Paso, Texas and earned his bachelor’s degree in history from the United States Naval Academy in 2011. He received a commission in the Navy and was selected to be a Surface Warfare Officer. Olivas is an Integrated Air and Missile defense Warfare Tactics Instructor (IAMD WTI), and currently serves as the Standardization Officer at the Surface and Mine Warfighting Development Center (SMWDC) in San Diego, CA.

Lt. Brittany Hubbard is a native of Grand Chain, Illinois and earned her bachelor’s degree in psychology from University of Illinois in 2012. Hubbard is currently at SMWDC Sea Combat Division as an Amphibious Warfare Tactics Instructor.

Lieutenant Damon Goodrich-Houska graduated from Indiana University in 2010 with a Bachelor of Science degree in Public and Environmental Affairs. Damon earned his commission through Officer Candiate School in 2010. Additionally, he earned his master’s degree in Cyber Security from National University in 2016. Lieutenant Goodrich-Houska is currently assigned to Navy Surface and Mine Warfighting Development Center as N5 Anti-Submarine Warfare Assistant, N5 Doctrine & Tactics Branch. Damon completed the Legacy SuASW WTI course at the top of his class, and completed the ASUW/ASW WTI Pilot Course as the honor graduate.

LT Tyson Eberhardt is a native of Seattle, Washington and earned his bachelor’s degree in from Princeton University in 2008. He holds a master’s degree in education from the University of Pennsylvania. Eberhardt earned his commission through Officer Candidate School in 2013. He is currently an ASW/SUW Warfare Tactics Instructor at SMWDC Sea Combat Division specializing in active sonar systems and tactics. During his time at SMWDC he also served as the uniformed lead for SHAREM 188 with the ROK Navy.

Sally DeBoer is an Associate Editor with CIMSEC, and previously served as CIMSEC’s president from 2016-2017. 

Matthew Merighi is the Senior Producer for Sea Control.