Tag Archives: alliance

Minding the Interoperability Gap

By Tim McGeehan and Douglas Wahl

A significant science and technology gap currently exists between the military forces of the United States and those of most of the rest of the world. This gap is by design and has long served as a centerpiece of U.S. defense strategy. While it has allowed the U.S. to maintain military primacy for decades, the technical capabilities of many allies and partners now lag far behind, raising concerns about the gap’s impacts on interoperability. This gap can drive critical tactical and operational decisions on where, when, and how forces are employed in a multinational environment, often with political ramifications. While the science and technology gap must be maintained over adversaries for strategic reasons, just as much effort should go into mitigating it to ensure maximization of allied capability in today’s coalition environment.

Creating the Gap

It is interesting to note that America’s allies helped it get to the top and establish the science and technology gap in the first place. Microwave radar, gyroscopic gun sights, and penicillin were key innovations critical to World War II military success and all of the initial work was performed by European scientists.1 One technology transfer episode stands out in particular when in 1940, a group of British scientists came to Washington, D.C., on what would become known as the “Tizard mission.” In a series of meetings during September and October 1940, the British shared examples and schematics of advanced technology, including rockets, explosives, superchargers, the cavity magnetron (the key to airborne radar), self-sealing gas tanks, advanced sonar, and three pages concerning a project known under its code name TUBE ALLOYS, which was the seed for the Manhattan Project.2 The British provided this giant leap forward in technology because they required America’s technical expertise to further refine these inventions, but more importantly, required the American industrial base to put them into practical use and production. This mutually beneficial exchange helped to later turn the tide of the war in the Allies’ favor.

The U.S. also leveraged German advances in science and technology. OPERATION PAPERCLIP was an effort to collect and extract German scientists before the Soviet Union could capture them in the closing days of World War II. These Germans were experts in aerodynamics, rocketry, and chemistry, and had invented or contributed to several of Hitler‟s “Wonder Weapons,” including the V-2 rocket (ballistic missile), V-1 flying bomb (cruise missile), and jet fighter.3 Many of these scientists had been classified as war criminals, but instead of facing prosecution were protected and put to work by the U.S. government in many programs, including what would become the intercontinental ballistic missile program and National Aeronautics and Space Administration (NASA). The father of the U.S. space program himself, Werner von Braun, was one of these scientists.4

Dr. Wernher von Braun stands in front of a Saturn IB launch vehicle at Kennedy Space Flight Center. Dr. von Braun led a team of German rocket scientists, called the Rocket Team, to the United States, first to Fort Bliss/White Sands, later being transferred to the Army Ballistic Missile Agency at Redstone Arsenal in Huntsville, Alabama. They were further transferred to the newly established NASA/Marshall Space Flight Center (MSFC) in Huntsville, Alabama in 1960, and Dr. von Braun became the first Center Director. Under von Braun’s direction, MSFC developed the Mercury-Redstone, which put the first American in space; and later the Saturn rockets, Saturn I, Saturn IB, and Saturn V. The Saturn V launch vehicle put the first human on the surface of the Moon, and a modified Saturn V vehicle placed Skylab, the first United States’ experimental space station, into Earth orbit. Dr. von Braun was MSFC Director from July 1960 to February 1970. (Photo: NASA)

The U.S. military continues to leverage technological contributions from allies and partners, with agreements like the recently established Science and Technology Project Arrangement between the U.S. and the U.K. for energetic materials research and the Statement of Intent between the U.S. and Sweden to conduct cooperative research and development of undersea warfare and air defense technologies.5 Programs like these are the legacy of the Tizard Mission and OPERATION PAPERCLIP that helped propel the U.S. military to forefront of military science and technology, a position that it has sought to maintain ever since.

Offsets: Sustaining the Gap

The atomic bombs that ended World War II in Japan were a clear demonstration of the value and power of scientific superiority. With this lesson in mind, the U.S. engaged in massive national efforts to maintain its scientific edge. In particular, after being shocked by the Soviet launch of Sputnik, the U.S. government passed the National Defense Education Act in 1958.6 At its signing, President Eisenhower said it would “do much to strengthen our American system of education, so that it can meet the broad and increasing demands imposed upon it by considerations of basic national security.”7 Adjusting for inflation to 2017 dollars, the act provided $850 million for student loans for science majors, $2.5 billion for science equipment, and $8.5 billion worth of fellowships for graduate students in science.8 The rationale was that only federal investment in the sciences would allow the nation to achieve the technological superiority over its primary competitor, the Soviet Union.9

This was particularly important because the U.S. could not compete numerically against the conventional forces of the Soviet Union. The Eisenhower administration knew it had to rely on its science and technology advantage, specifically nuclear deterrence, to avoid the costly option of deterring the Soviet Union via a massive increase in conventional capabilities. This was the first “offset strategy” and maintaining the technological lead was absolutely imperative for it to work.
By the 1970s the Soviet Union had closed the gap in nuclear weapons. In 1973, the forerunner of the Defense Advanced Research Projects Agency (DARPA) launched the Long-Range Research and Development Planning Program to seek out a second offset strategy.10 It pursued “conventional weapons with near-zero miss” which resulted in networks, stealth, and high tech precision munitions. Again, the science and technology gap drove the offset. This focus served the U.S. well through the next 30 years, but adversaries are now acquiring increasingly complex technology in pursuit of anti-access and area-denial strategies; the gap is rapidly closing again.

In response, the Department of Defense is currently developing a third offset strategy and innovation is the vehicle to get there.11 The Defense Innovation Initiative, overseen by the Advanced Capabilities Deterrence Panel, is chartered to maintain U.S. military supremacy against any challenger. In November 2014, Secretary Hagel explained “our technology effort will establish a new Long-Range Research and Development Planning Program that will help identify, develop, and field breakthroughs in the most cutting-edge technologies and systems – especially from the fields of robotics, autonomous systems, miniaturization, big data, and advanced manufacturing, including three-dimensional printing.”12 He went on to say “we will not send our troops into a fair fight. A world where our military lacks a decisive edge would be less stable, less secure for both the United States and our allies, and the consequences could ultimately be catastrophic.”13 Note that he said “our military” (U.S.) not “our militaries” (including allies) need the decisive edge.

Impacts of the Gap

Examples throughout history have shown the value of allies and partners, both in peace and in war. Allies and partners bring authority, access, signal international resolve, and enhance the legitimacy of any endeavor. However, the opportunity to reap these benefits is increasingly put in jeopardy as advances in U.S. systems hamper interoperability.

For instance, while the U.S. Navy must maintain its technological lead amongst naval competitors, it cannot afford to operate alone. The Global Network of Navies concept illustrates how valuable allies and partners can be moving forward.14 While not every navy can afford the latest high tech systems, they often bring niche capabilities, experience, and expertise such as icebreaking, counter piracy, littoral operations, etc. One particular example is the Standing North Atlantic Treaty Organization‟s (NATO) Mine Countermeasures Group TWO (SNMCMG2). SNMCMG2 comprises mine hunters, minesweepers, support ships, and explosive ordnance disposal personnel from Belgium, Germany, Greece, Italy, Spain, Turkey, United Kingdom, and the U.S. No one nation can field this level of capability (or capacity) alone. However, this interoperability is more common at the lower-intensity end of the naval warfare spectrum. Fielding systems with the speed and complexity required to win the high intensity engagements of modern war at sea (and any domain for that matter) is costly and creates major challenges to interoperability.

PHILIPPINE SEA (April 26, 2017) – USS Carl Vinson (CVN 70), foreground, the Japan Maritime Self-Defense Force destroyer JS Ashigara (DDG 178), left, and the Japan Maritime Self-Defense Force destroyer JS Samidare (DD 106), back, transit the Philippine Sea. (U.S. Navy photo by Mass Communication Specialist 2nd Class Sean M. Castellano)

Interoperability between forces takes many forms. Compatible tactics, techniques, and procedures are required for forces to work together and achieving proficiency is largely a function of training. However, there are technology and equipment components of interoperability that are much harder to address. The U.S. military boasts a sustained long-term and large-scale investment program in science and technology, unmatched by any nation. The result is that the U.S. has fielded extremely capable but highly complex and expensive systems that are often far more sophisticated than those of its allies. Many of these systems are not capable of easily interfacing with allied systems (if they can interface at all), placing limitations on the missions that can be shared. Using an Air Force example, the fifth-generation American F-22 Raptor cannot send encrypted messages to fourth-generation fighters such as the British Typhoon or French Rafale. To remain stealthy, it was designed to communicate via encrypted messages with other F-22s and U.S. systems, but has to use traditional voice communications with these allies that nullify its stealth advantage by having to talk ‘in the clear.’15 Procuring the latest and greatest hardware from America‟s defense industry may cause the U.S. military to price itself out of fighting in and with coalitions.

The gap between U.S. and European capabilities had become so glaring that at a 2006 NATO conference a Canadian delegate remarked “NATO’s transatlantic capability gap has been at the heart of a debate over the viability and relevance of the Alliance in the new security environment.”16 To question the Alliance is shortsighted, but the concerns are valid.

Communication and interoperability of data enable the construction, maintenance, and sharing of a common operational picture (COP). This is critical for the commander’s situational awareness and allows them to mass forces and effects as required. However, some high-end systems can only communicate with similar systems or have proprietary data formats unreadable by others. In these cases, sharing the COP with incompatible units can be difficult, time consuming, and prone to errors. A lack of shared awareness adds to the fog and friction of operations, induces vulnerabilities, and in worse cases, leads to fratricide.

Incompatible units operating in close proximity can even be a detriment to mutual safety and efficiency of operations. For example, electromagnetic (EM) spectrum management is far more demanding in multinational operations than in joint operations.17 For the Navy, while operating in a tight Carrier Strike Group (CSG) formation (e.g. during a strait transit), unless explicitly deconflicted, an allied ships radar or communication system might cause EM interference on a U.S. system (or vice versa) with impacts ranging from blinding a radar to deafening a communications system. Likewise, in today’s cyber world not all defenses are created equal, and one nation’s military with lesser capabilities may inadvertently open the door to an adversary intrusion that threatens others, weakening trust.

There are also logistical concerns associated when operating with less capable forces. Highly sophisticated systems often cannot share replacement parts or components and may have unique fuel or power requirements. Additionally, a weapon system may rely on ordnance not found anywhere else in the multinational force. The aggregate effect of these issues necessitates that the U.S. maintains a unique logistical system for the sustainment of its units in the field, the burden of which usually cannot be shared by our allies. There are exceptions, like the recent Acquisition and Cross-Servicing Agreements process whereby a U.S. Navy and Japanese Maritime Self Defense Force destroyer exchanged maintenance parts.18 However, the fact that this transfer (in March 2017) was the first one ever completed illustrates how rare it is.

Another possible impact of operating with less technologically advanced allies or partners is that they may have slower decision cycles, be less lethal, or be less survivable, thus presenting softer targets to capable adversaries. The U.S. may need to provide enhanced force protection or over-watch assets to assist them, lest they be targeted by the adversary at a disproportionate rate. Such a situation could threaten the integrity of the coalition both politically and operationally. If the U.S. assigned additional resources to mitigate this situation, it would do so at the expense of finite resources available to accomplish the mission elsewhere.19 This situation could lead to U.S. attempting to micromanage coalition partners, which would further stress the coalition.20

U.S. joint doctrine states that the composition of multinational task forces “may include elements from a single nation or multiple nations depending on the situation and the interoperability factors of the nations involved.”21 In Desert Storm the coalition utilized a parallel command structure with some forces falling under a U.S. chain of command while the Arab contingent fought under a Saudi chain of command. While this arrangement was primarily adopted for political considerations to avoid the optic of a U.S. dominated effort, it was also due in part to military interoperability concerns.22

Coalition command relationships for Operation Desert Storm. (Public Domain)

This all begs an important question: if the science and technology gap leads to so many interoperability challenges, why isn’t there more effort to close it? The reality is that there is little incentive to close it.

Lack of Incentive to Close the Gap

A discussion of the incentives to close the science and technology gap between the U.S. and its allies and partners inevitably leads to the bigger question of how to best share the global defense burden. Even though the U.S. has exquisite capabilities doesn’t mean that it can afford to do all of the high-end warfighting alone. However, many other nations do not have the funding, technology, or industrial base to assume more of the burden. More importantly, many of them do not have the political will to do so. Secretary of Defense Carter and more recently Secretary of Defense Mattis both called Europe out for “not doing enough” to ensure their own security in that they have become reliant on the U.S. military to bear a large part of the collective burden.23 In 2002, NATO nations agreed to pay two percent of their gross domestic product on defense, but many nations have not made good on their commitment.24 What incentive do they have to make the substantial investment to develop their own science, technology, and industry to close the technology gap when the U.S. can be counted on to do it for them?

That said, in some ways, the U.S. may not have as much incentive to assist its allies in closing the gap as one would think. Despite the previously mentioned tactical challenges, the uncomfortable truth is that at the strategic level the U.S. has contributed to and in some ways benefited from this arrangement. As long as other countries lag behind U.S. military in science and technology, they will continue to rely on U.S. for the associated forces and hardware. This provides the U.S. influence and leadership capital. For example, the European Phased Adaptive Approach provides European ballistic missile defense (BMD). However, the U.S. has not provided Europe their BMD technology, but has instead secured permission to station four BMD-capable Aegis destroyers in Rota, Spain. The U.S. has also established an Aegis Ashore capability at the U.S. Naval Support Facility in the countryside of Devesulu, Romania.25 The U.S. readily accepts this role as senior partner for smaller countries and in doing so secures basing rights and strategic footholds, builds coalitions, and offsets attempts at hegemony by regional powers like Russia.

Often when the U.S. sells advanced, sophisticated equipment to other nations the agreement comes with U.S. training, support, and logistics which are other avenues for influence. This carries the threat of suspending the deal or making sustainment contingent on some other national behavior. This dynamic recently played out in 2014 when France refused to deliver two new Mistral-class amphibious assault ships to Russia based on its activity in the Ukraine.26 Likewise, the U.S suspended military sales and the delivery of 20 F-16 C/D fighters to Egypt in 2013 due to political unrest27 and the overthrow of their democratically elected president,28 and then again the U.S. suspended military assistance to Thailand following their 2014 military coup.29

The fluidity of today’s strategic environment also dictates that today’s ally could be tomorrow’s adversary. Iran still has F-14 Tomcats, F-4 Phantoms, and P-3 Orions in its inventory from the time when a previous regime enjoyed close relations with the U.S. Sharing sophisticated technology with an ally could be disastrous if they become overrun, captured, or surrender their equipment to an enemy. Luckily the Iraqi army had no game-changing technology to abandon to the Islamic State of Iraq and the Levant (ISIL), but the recent episode is a cautionary tale.

Another reason the U.S. won’t assist its allies in closing the gap is that it wants to prevent proliferation of strategic technologies. Through strategic nuclear deterrence the U.S. extends a guarantee to allies thereby discouraging them from pursuing their own nuclear capabilities and with fewer such weapons in play reducing the likelihood of their use. A notable exception is the joint strategic program with the United Kingdom which is currently developing the Common Missile Compartment for new ballistic missile submarine classes.30

Handover/takeover ceremony for NATO’s Baltic Air Policing Mission at Šiauliai Air Base, Lithuania. Fly-by of a mixed formation of Polish MiG-29, British Typhoon, Portuguese F-16 and Canadian CF-188. (Photo: NATO)

Finally, it is interesting to note that allies could likely narrow the gap by more frequently combining their efforts and resources to avoid duplication. While they do cooperate (on the F-35 for example), coordinating the defense enterprises of multiple nations is a monumental task and there remains significant fragmentation. For example, the European members of NATO use 27 different types of howitzer and 20 different fighter aircraft. They collectively spend more than four times as much on defense as Russia but much of it is duplicative.31 While nations are expected to first and foremost provide for their own defense and maintain a stand-alone range of capabilities tailored to their specific national requirements and circumstances, consolidating efforts could lead to economies of scale and drive down costs to develop and field more advanced technologies.

Mitigating the Gap

As there is lack of concerted effort to close the gap there must be a focused campaign to mitigate it. Formal alliances and regular exercises provide a venue to work out interoperability concerns before the crisis comes. There are also opportunities for cooperation in development of technological standards and shared doctrine. Even though coalitions are by their nature more temporary ad-hoc arrangements, some mitigation can be achieved through the use of liaison officers and loaned equipment.

There is also a human and cognitive element to interoperability. Programs like International Military Education and Training (IMET) allow foreign militaries to send their officers to a variety of courses, to include American service academies and war colleges. Beyond the content of the education, they build relationships and learn the mindset and approach of their U.S. military counterparts (and vice versa). Building on this to increase allied participation in wargaming and experimentation could further enhance commonality in how to address future challenges and boost interoperability.

Even if the science and technology gap prevents some multinational forces from full integration with their U.S. counterparts (e.g. into a Navy CSG), the gap can be mitigated by shifting consideration from just the operational factor of force to the interrelated factors of space – where to employ them and time – when to employ them.

The technical capability of a platform is often the largest determinant in where (in geographic space) it is employed. For example, an ally with a BMD capability may be assigned an operating area that will put them in the best position to make an intercept. A ship with traditional surface capabilities might be best to act as an escort or cover a transit corridor to deter piracy, just as a capable antisubmarine platform could be assigned along a submarine threat axis. As such, multinational force laydown is largely a function of technical capability. Political concerns and national rules of engagement also play a large role in this calculus.

JEJU JOINT CIVIL-MILITARY COMPLEX, Republic of Korea (Mar. 25, 2017) – Cmdr. Douglas Pegher, left, commanding officer of the Arleigh Burke-class guided-missile destroyer USS Stethem (DDG 63), shakes hands with Rear Adm. Kim, Jeongsu, commander of Maritime Task Flotilla 7, following a meeting between the two regarding the historic arrival of the ship. (U.S. Navy photo by Mass Communication Specialist 2nd Class Ryan Harper/Released)

Another consideration is when to employ less technologically advanced forces. Platforms with more rudimentary capabilities can make large contributions, particularly during Phase 0 shaping operations or security cooperation, where much of the effort relies on presence and partnership development. Likewise, they can play significant roles in the later phases of stabilization and enabling of civil authority. However, depending on the threat, less capable forces may be positioned elsewhere during the high intensity phase of an operation. This could be politically problematic, contributing to perceptions of “ally X has no skin in the fight” or “the U.S. doesn’t trust us or consider us to really be a member of the team.” Every effort should be made to give credit where it is due and highlight the importance of the diverse contributions made by multinational forces in supporting the overall effort.

Interoperability in a particular task is often constrained by the least technologically proficient participant.32 However, some data can be reformatted to comply with other standards and forwarded to feed less capable systems, such as when forwarding between tactical data links (Link 16 and Link 22 to Link 11).33 Likewise, some attributes can be stripped from data to make information releasable to partners by using systems like Radiant Mercury.34 Technology like this will be increasingly critical going forward.


America’s technological lead is perishable and due to the global connectivity afforded by the internet, advances are proliferating at an incredible rate. Unmanned aerial vehicles like quadcopters were science fiction a few years ago, but can now be purchased commercial off-the-shelf (COTS) at Walmart and flown with a smart phone. Satellite-based imagery, encryption software, secure communication gear, and navigation systems are widely available to anyone, including adversaries. The science and technology gap remains a strategic imperative that the U.S. must focus efforts to maintain. However, in the face of increasingly capable and assertive adversaries, the U.S. must use every available avenue to mitigate the gap to ensure interoperability with allies and partners.

Tim McGeehan is a member of the Navy’s Information Warfare Community.  He has previously served in S&T positions and as an exchange officer to the UK Royal Navy.  

Douglas T. Wahl is the METOC Pillar Lead and a Systems Engineer at Science Applications International Corporation.

The ideas presented here are those of the authors alone and do not reflect the views of the Department of the Navy or Department of Defense.


1. National Air and Space Museum, The Tizard Mission – 75 Years of Anglo-American Technical Alliance, November 17, 2015, http://blog.nasm.si.edu/aviation/the-tizard-mission/

2. Ernest Volkman, Science Goes to War, p. 158

3. National Air and Space Museum, “Buzz Bomb”: 70th Anniversary of the V-1 Campaign, June 13, 2014, http://blog.nasm.si.edu/history/buzz-bomb-70th-anniversary-of-the-v-1-campaign/; Annie Jacobsen, Remembering ‘Operation Paperclip,’ when national security trumped ethical concern, PBS Newshour, March 31, 2014, http://www.pbs.org/newshour/bb/operation-paperclip-national-security-trumped-ethical-concern/

4. Marshall Space Flight Center History Office, Bio: Dr. Wernher von Braun, 2015, http://history.msfc.nasa.gov/vonbraun/bio.html

5. Nikki Ficken, US, UK arrangement allows joint research, AMRDEC Public Affairs, February 23, 2017, https://www.army.mil/article/183095/us_uk_arrangement_allows_joint_research; Megan Eckstein, U.S., Sweden Sign Agreement To Collaborate On Anti-Sub, Anti-Air R&D, Exercises, USNI News, June 8, 2016, https://news.usni.org/2016/06/08/sweden_us_agreement

6. https://www.ida.org/~/media/Corporate/Files/Publications/STPIPubs/ida-d-3306.ashx

7. http://www.presidency.ucsb.edu/ws/?pid=11211

8. Ernest Volkman, Science Goes to War, p. 208; http://www.dollartimes.com/inflation/inflation.php?amount=1&year=1958

9. Ernest Volkman, Science Goes to War, p. 208

10. Bob Work, The Third U.S. Offset Strategy and its Implications for Partners and Allies, January 28, 2015, http://www.defense.gov/News/Speeches/Speech-View/Article/606641/the-third-us-offset-strategy-and-its-implications-for-partners-and-allies

11. Hagel, Chuck, “Defense Innovation Days: Keynote Speech” September 3, 2014, http://www.defense.gov/Speeches/Speech.aspx?SpeechID=1877

12. Hagel, Chuck, “Defense Innovation Days: Keynote Speech” September 3, 2014, http://www.defense.gov/Speeches/Speech.aspx?SpeechID=1877

13. Hagel, Chuck, “Defense Innovation Days: Keynote Speech” September 3, 2014, http://www.defense.gov/Speeches/Speech.aspx?SpeechID=1877.

14. Jonathan Greenert and James Foggo, Forging a Global Network of Navies, USNI Proceedings, May 2014, http://www.usni.org/magazines/proceedings/2014-05/forging-global-network-navies

15. Dan Lamothe, What happens when the most advanced fighter jets in the U.S., France, and Britain prepare for war, The Washington Post, December 17, 2015, https://www.washingtonpost.com/news/checkpoint/wp/2015/12/17/what-happens-when-the-most-advanced-fighter-jets-in-the-u-s-france-and-britain-prepare-for-war/

16. Pierre Nolin, Interoperability: The Need for Transatlantic Harmonization, NATO Parliamentary Assembly Annual Meeting, 2006, http://www.nato-pa.int/default.asp?SHORTCUT=1004

17. Joint Publication 3-16: Multinational Operations, July 16, 2013, http://www.dtic.mil/doctrine/new_pubs/jp3_16.pdf

18. Megan Eckstein, U.S., Japanese Destroyers Conduct First-Of-Kind Parts Swaps During Interoperability Exercise, USNI News, March 17, 2017, https://news.usni.org/2017/03/17/u-s-japanese-destroyers-conduct-first-ever-parts-swaps

19. Michele Zanini and Jennifer Taw, The Army and Multinational Force Compatibility, Rand Report 2000, http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA383687, p. 22

20. Michele Zanini and Jennifer Taw, The Army and Multinational Force Compatibility, Rand Report 2000, http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA383687, p. 22

21. Joint Publication 3-16: Multinational Operations, July 16, 2013, http://www.dtic.mil/doctrine/new_pubs/jp3_16.pdf , p. xv

22. Michele Zanini and Jennifer Taw, The Army and Multinational Force Compatibility, Rand Report 2000, http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA383687, p. 52

23. Robert Burns, Pentagon Chief Carter: Europe ‘Not Doing Enough’ On Defense, Associated Press, April 22, 2015, http://hosted.ap.org/dynamic/stories/U/US_CARTER_EUROPEAN_DEFENSE

24. Stephen Fidler, NATO Leaders Vow to Lift Military Spending, The Wall Street Journal, September 4, 2014, http://www.wsj.com/articles/nato-leaders-to-vow-to-lift-military-spending-1409832341

25. Luke Meineke, Aegis Ashore Missile Defense System Team Arrives at NSF Deveselu, June 6, 2015, http://www.navy.mil/submit/display.asp?story_id=87534

26. BBC News, Russia Mistral: France halts delivery indefinitely, November 25, 2014, http://www.bbc.com/news/world-europe-30190069

27. Mark Landler and Thom Shanker, U.S., in Sign of Displeasure, Halts F-16 Delivery to Egypt, July 24, 2013, http://www.nytimes.com/2013/07/25/world/middleeast/us-halts-delivery-of-f-16-fighters-to-egypt-in-sign-of-disapproval.html?_r=0

28. Ernesto Londono, U.S. halts delivery of F-16s to Egypt, Washington Post, July 24, 2013, https://www.washingtonpost.com/world/national-security/us-halts-delivery-of-f-16s-to-egypt/2013/07/24/f227ac7a-f495-11e2-aa2e-4088616498b4_story.html

29. Rachel Stohl, Shannon Dick, and Axelle Klincke, US Military Assistance To Thailand, May 28, 2014, http://www.stimson.org/spotlight/us-military-assistance-to-thailand-/

30. Tomkins, Richard, US Navy authorizes building of Common Missile Compartment Tubes, UPI, October 31, 2014, http://www.upi.com/Business_News/Security-Industry/2014/10/31/US-Navy-authorizes-building-of-Common-Missile-Compartment-tubes/8481414785104/

31. The Gryfs of Europe: Europe is starting to get serious about defence, The Economist, 23 February 2017, http://www.economist.com/news/europe/21717391-under-pressure-donald-trump-herbivores-are-thinking-about-eating-meat-europe-starting

32. Joint Publication 3-16: Multinational Operations, July 16, 2013, http://www.dtic.mil/doctrine/new_pubs/jp3_16.pdf , p. III-21

33. Northrup Grumman, Understanding Voice and Data Link Networking, December 2014, http://www.northropgrumman.com/Capabilities/DataLinkProcessingAndManagement/Documents/Understanding_Voice+Data_Link_Networking.pdf

34. Barry Rosenberg, Addressing security challenges of a common operating environment, Defense Systems, June 11, 2013, https://defensesystems.com/articles/2013/04/26/one-on-one-quinn.aspx

Featured Image: POHANG, Republic of Korea (April 7, 2017) – Staff Sgt. Robin McClain a cyber-technician assigned to the 621st Contingency Response Wing stationed at Joint Base McGuire-Dix-Lakehurst, N.J., shares knowledge with two Republic of Korea Airmen during exercise Turbo Distribution 17-3 at Pohang Air Base, Republic of Korea, April 7, 2017. (U.S. Air Force photo by Tech. Sgt. Gustavo Gonzalez/Released)

Collective Defense in the High North: It’s Time for NATO to Prioritize the Arctic

By Sally DeBoer

In late May of this year, NATO, along with Sweden and Finland, participated in the Arctic Challenge Exercise (ACE) 2015. The aerial exercise, which included more than 100 aircraft and 4,000 ace_4personnel, predictably ruffled a few feathers in Moscow; Russia responded by mobilizing their nascent but formidable ‘Arctic Brigade’ for an unannounced inspection. Russia’s ambitions in the Arctic (and in general) are thinly – if at all – veiled. Russia unabashedly considers itself the preeminent actor in the High North. Recent remarks by U.S. Coast Guard Commandant Paul F. Zukunft seem to codify this self-assessment. On July 8th, Zunkunft conceded that the U.S. is “not even in the same league as Russia right now” (this assessment was based on a comparison between U.S. and Russian Arctic investment and infrastructure). The discussion of the changing Arctic landscape is hardly new, nor is it limited to re-freezing Cold War tensions. The United States, NATO, and their Nordic allies have a vested interest in building and sustaining a meaningful presence in the High North. While a good start, ACE and other exercises like it won’t be sufficient to secure not only these actors’ self-interested notions but also the idea of the Arctic (and its rapidly opening maritime corridors) as a freely accessible extension of the global commons. The U.S. and their arctic-minded allies should encourage NATO to make the Arctic a higher priority now.

NATO’s stance on the Arctic has, to this point, been non-committal. As recently as 2013, NATO outright rejected idea of establishing a strong direct military presence in the Arctic High North, citing laudable diplomatic hopes that cooperation would win out over confrontation in the region. It’s possible, but unlikely, that a lack of meaningful counterweight in the High North will lead to more cooperative regimes or greater adhesion to existing legal precedents. The Arctic is dynamic and should be treated as such. The following analysis provides just a few reasons to support a defined, consistent, and robust role for NATO in the Arctic.

Arctic actors, including many NATO member states like the U.S., Iceland, and Norway, have much to gain economically from a rapidly opening Arctic in terms of both resources and newly navigable shipping routes. The Arctic is often described as a vast storehouse of resources – oil and natural gas, other minerals, fisheries, and forests- and the prospect that climate change will permit increased exploration for, and exploitation of, these presumed resources has generated a great deal of interest, both public and private.[1] The High North has long been a lynchpin of the Russian petro-state. Indeed, as of 2013 eleven percent of Russia’s GNP, 93 percent of its natural gas, and 75 percent of its oil came from the Russian Arctic.

Gazprom's pioneering Arctic drilling platform Prirazlomnaya
Gazprom’s pioneering Arctic platform Prirazlomnaya

With access to these lucrative resources increasing and costs to exploit them decreasing, so too will conflict over access to those resources increase. In addition to tangible reserves, climate change has also opened previously impassable shipping lanes, some of which overlie disputed sovereignty claims. The national interests of NATO and allied actors with either Arctic real estate or interests would be best served by a consistent, cohesive NATO policy on the Arctic that would serve as a counterweight to Russia’s economic ambitions; a prospect that has thus-far eluded the alliance.

A sustained allied naval presence has been, over the past several decades, been the primary arbiter of freely accessible global maritime arteries as an extension of the global commons. This protection must extend to the Arctic, particularly as new shipping routes progressively open. The Northwest Passage just to the north of Canada could become an economically viable shipping route, passable most of the year, by mid-century. Russia’s rather extensive territorial claims in the Arctic encroach on the Northern Sea Route

Map of Arctic territorial claims (2015)
Map of Arctic territorial claims (2015)

above Siberia, an issue of particular concern to the U.S. Thus far, efforts to resolve disputes over the High North have been cooperative and civil, but that civility has never been significantly challenged. As the Heritage foundation’s Luke Koffey and Daniel Kochis argue, “NATO should consider the implications of Russia’s recent aggressive military behavior; NATO is a collective security organization with five members that are also Arctic countries and two close allies (Finland and Sweden) with Arctic territory. NATO’s commitment to a consistent and robust presence in the High North would be the surest protection of continued rules-governed behavior if (and likely when) tensions rise. Rather than contribute to tensions in the High North (which, this author predicts, will be the narrative Russia will pursue in response to a more cogent NATO Arctic policy), NATO’s presence and prescience, if such a policy is meaningfully pursued, would be a stabilizing force that would ensure free access to newly navigable waters and accessible resources in accordance with international law and orderly management of territorial claims.

The practicalities of achieving the consensus necessary within NATO to move forward with such a step cannot be overlooked. Historically, the alliance has struggled with a general scarcity of consensus. U.S. leadership on the issue of the Arctic will be indispensable in convincing member states with no direct Arctic interests (and plenty of competing security concerns) to move forward with policy and action on the High North, as well as convincing fellow arctic actors that non-Arctic member states deserve their share of influence in NATO’s Arctic policies. Despite any challenges inherent in alliance operations, supporting a greater and more carefully defined role for NATO in the changing Arctic remains far preferable, in this author’s estimation, to a unilateral attempt to provide a counterweight in the High North.

A possible first step might be to cooperatively drafting a statement of intention on NATO’s intentions and intended role in the Arctic, officially acknowledging NATO’s interests and stakes in the region. Further, continued and broader participation in exercises like ACE send a clear signal to Arctic allies like Finland and Sweden, along with the international community at large, that NATO is prepared to face the unique challenges inherent in Arctic operations. The sooner that NATO can find cohesion and take action on their Arctic policy, the better. Already playing from behind in terms of investment and strategy, a comprehensive NATO Arctic policy and presence will provide the best chance to sustain not only for NATO members’ and allies’ economic interests but also the concept of the changing Arctic as an extension of the global commons.

[1] Le Miere, C., & Mazo, J. (2013). Economic Opportunities. In Arctic Opening: Insecurity and Opportunity. The International Institute for Strategic Studies.

Sally DeBoer is an associate editor for CIMSEC.  She is a graduate of the United States Naval Academy and a recent graduate of Norwich University’s Master of Arts in Diplomacy program. She can be reached at Sally.L.DeBoer(at)gmail(dot)com.

An ASEAN Maritime Alliance?

The year 2014 brought new tensions to the South China Sea, particularly as Chinese authorities sought to establish a series of island-like structures in the midst of the disputed Spratly Islands. Such provocative actions, however, are unlikely to generate sufficient political will among the other countries of the region to establish a Political-Security Community under the auspices of the Association of South East Asian Nations (ASEAN) by the 2015 deadline. But were this collection of ten countries to pool their resources into a security community or even a security alliance, it would be an impressive force and a potential deterrent to aggression in the South China Sea.

In particular, it is worthwhile noting the relative strength of ASEAN coastal defence forces. Some member states, such as Indonesia, possess respectable ‘blue water’ navies, that is to say, they have larger vessels capable of operating in deep waters and engaging in long-range standing battles. Other ASEAN countries, such as the Philippines, have considerable ‘brown water’ navies,  forces consisting of small patrol boats which can cruise inland waterways and the shallow waters that weave between tight-knit island chains. But the varied nature of the waters disputed in the South China Sea particularly requires the flexibility offered by corvettes.

Generally, corvettes fall between the Royal Canadian Navy’s Halifax-class frigates and Kingston-class coastal defence vessels in size. But there is much debate as to what constitutes a contemporary corvette. For example, the Royal Omani Navy calls its Khareef-class vessels ‘corvettes’ even though the displacement of each vessel in the class is approximately 2,660 tons. Recent advancements in shipbuilding have also allowed the US Navy to introduce new vessels with substantial displacement but with shallower drafts, meaning the new USS Liberty can approach closer to coastlines than the similarly sized but older Oliver Hazard Perry-class frigates.

For the purposes of this analysis, only those vessels with a displacement greater than 100 tons but less than 1,700 tons will be considered corvettes. China’s maritime forces, the People’s Liberation Army Navy (PLAN),  has a substantial number of vessels in this range deployed to Hong Kong and a network of naval bases off the South China Sea. 12 Jiangdao-class corvettes (1,440 tons) are the workhorses of this maritime presence in the region and China may possibly add 3 more vessels of this class by the end of 2015. Beyond the Jiangdao-class corvettes, PLAN’s southern presence includes six Houjian-class missile boats (520 tons) and approximately 80 other missile boats and gunboats of various classes and ranging in displacement from 200 to 480 tons each. This vastly exceeds the quantity and quality of vessels any individual Southeast Asian country could bring to bear in a conflict. But ASEAN’s combined maritime forces could meet the challenge presented by a limited PLAN offensive.

Brunei in particular has emerged as a promising new maritime actor in the region, even actively participating in the 2014 edition of the Rim of the Pacific Exercise (RIMPAC). The Royal Brunei Navy acquired four specially built Darussalam-class offshore patrol ships (1,625 tonnes) from the German shipbuilder Luerssen-Werft, which replaced Brunei’s previous coastal defence workhorse, the Waspada-class fast attack craft (200 tonnes). The Waspada-class vessels have since been decommissioned and donated to Indonesia to be used for training purposes. The introduction of the Darussalam-class greatly upgrades Brunei’s defence capabilities and it will be of interest for Southeast Asian observers to see how Brunei further pursues the modernization of its forces.

The Republic of Singapore Navy has much in the way of heavier frigates and submarines to defend its unique position by the Strait of Malacca, one of the world’s most significant shipping routes. Its corvette-like vessels are also impressive, six Victory-class corvettes (600 tonnes) and 12 Fearless-class offshore patrol ships (500 tonnes), but they are certainly not as new as some of the vessels boasted by Singapore’s neighbours. The Victory-class was acquired in 1990-1991 while the Fearless-class was introduced between 1996 and 1998. Therefore, it will also be of interest to see whether Singapore seeks to obtain any newer vessels which can serve as a bridge in capabilities between the Victory-class corvettes and the heavier Formidable-class frigates.

dsc_5220It is Thailand, the Philippines, and Indonesia that boast the largest complements of corvettes in the region, however. The Royal Thai Navy’s coastal defence is led by two Tapi-class corvettes (1,200 tons) and two Pattani-class offshore patrol ships (1,460 tons), which are joined by two Ratanakosin-class corvettes (960 tons), three Khamrosin-class corvettes (630 tons), three Hua Hin-class patrol boats (600 tons), six PSMM Mark 5-class patrol boats (300 tons), and 18 smaller patrol boats and fast attack boats of varying capabilities but all rather aged. The Philippines and Indonesia both have vast island chains within their respective territories, requiring corvettes and smaller patrol vessels just as much for counter-trafficking and counter-piracy operations as for countering conventional maritime forces. The Philippine Navy possesses one Pohang-class corvette (1,200 tons), two Rizal-class corvettes (1,250 tons), nine Miguel Malvar-class corvettes (900 tons), and three Emilio Jacinto-class corvettes (700 tons). Indonesia tops out ASEAN’s array of corvettes with three Fatahillah-class corvettes (1,450 tons), 16 Kapitan Patimura-class corvettes (950 tons), and 65 other missile boats and gunboats with a displacement of approximately 100-250 tons.

Yet it is unclear how much of their forces Indonesia or the Philippines would be able to deploy in the midst of a South China Sea conflict. As mentioned previously, many of these vessels have been used practically as inland patrol vessels. There are also some potential weak links in the chain should ASEAN establish some form of formalized maritime alliance. The Royal Malaysian Navy only offers four Laksamana-class corvettes (675 tons) and an array of 16 smaller missile boats and gun boats that could generally only be used to harass Chinese forces. Burma certainly has an impressive force in its own right – consisting of three domestically produced Anawratha-class corvettes (1,100 tons), six Houxin-class missile boats (500 tons), 10 5 Series-class missile boats (500 tons), and 15 Hainan-class gunboats (450 tons), but the military junta has already demonstrated that it will remain aloof from territorial disputes in the South China Sea and generally supports China’s policy toward Southeast Asia.

The Royal Cambodian Navy is in shambles, consisting solely of five outdated Turya-class torpedo boats (250 tons), five Stenka-class patrol boats (250 tons), and a lone Shershen-class fast attack boat (175 tons). But Cambodian authorities would be just as disinclined to engage in defence sharing as their Burmese counterparts. During Cambodia’s 2012 ASEAN chairmanship, Cambodian officials consistently interfered in efforts by other ASEAN member states to reach a common position on the South China Sea’s territorial disputes. Given the understanding on security issues shared between Cambodian and Chinese officials, as well as China’s status as Cambodia’s largest source of foreign investment and aid, it is apparent that Cambodia has relatively no need for the security guarantees ASEAN could provide as a regional counter-balance to China.

Vietnam is the unpredictable factor in the region. The Vietnam People’s Navy has a few corvettes of its own, including a Pauk-class corvette (580 tons), eight Tarantul-class corvettes (540 tons), and 23 patrol ships with displacements ranging from 200 to 375 tons. The Vietnamese government has also ordered two more TT-400TP gunboats (450 tons) from domestic shipbuilders with delivery expected in late 2015 or early 2016. This leaves Vietnam with a force perhaps not as sizable as that of Indonesia or the Philippines but with greater capacity to intervene should China seek to settle territorial disputes with Vietnam by force.

As Malaysia will hold the 2015 Chairmanship of ASEAN, the prospects for a maritime force in support of the bloc’s proposed Political-Security Community will depend to some degree on whether Malaysian officials will be willing to show leadership. If Malaysia looks to acquire new vessels and insists on placing maritime security on the agenda of upcoming ASEAN meetings, some arrangement could be struck by the end of the year. But this will require artful diplomacy, especially in the face of Burmese and Cambodian opposition. With Malaysian officials speaking predominantly about the need for a single market in the region and promoting a conclusion to negotiations regarding the Regional Comprehensive Economic Partnership, such a drive for maritime security may not be forthcoming.

Paul Pryce is a Research Analyst at the Atlantic Council of Canada. His research interests are diverse and include maritime security, NATO affairs, and African regional integration.

This article can be found in its original form at the  
NATO Council of Canada and was republished by permission.

With Friends Like These

It can be lonely at the top. For the U.S., it’s lonelier than we might have expected.

In a recent piece for The National Interest, Paul Pillar recently argued for a more nuanced approach to the question of U.S. credibility and alliances. Pillar points out something that sometimes needs to be pointed out: the U.S., like any nation, makes alliances when it makes sense for its interests to do so, and does not (or at any rate, for its own sake, should not) pursue alliances when they serve no such interest. “An alliance,” Pillar writes, “does not do the United States any good merely by easing an ally’s worries. The United States is no one’s mother or therapist.”

Indeed it is not. Unfortunately, it does not matter. Easing an ally’s worries may, in fact, be a necessity, if not a benefit.

The U.S.’ relative military and economic power are waning relative to a rising China. Indeed, at least in the short run (over the long run China has troubles of its own that may check its geopolitical rise), the U.S. is going to have to contend with a China that is more assertive, more widely influential, and more powerful than before. The same now applies to Russia as well. In view of all this, and in particular in view of the U.S.’ fecklessness in the face of Russia’s ongoing takeover of Ukraine, U.S. allies have legitimate cause to question the U.S.’ relevance to them, at a time when the U.S. will need to retain its influence over them.

Historically, the way for a global hegemon to deal with a rising challenger was to build a coalition. The problem is that in the nuclear era, this is not really an option anymore – at least, not in the same way. There are at least three reasons for this.

1. We don’t want anyone else to have the power. In the first place, great power war is now something that has to be avoided at nearly any cost, because of the fear of a civilization-destroying nuclear war. As we saw in Ukraine, this means that whichever nuclear state moves to take territory first tends to get to keep it. But an even bigger problem is that, because nuclear weapons are seen as too dangerous to be allowed to proliferate horizontally and wind up in multiple hands, it is not really possible anymore to ask allies to do more. Japan, South Korea, Taiwan, the eastern European states, Saudi Arabia, and other states currently protected by U.S. alliances, guarantees, or soft assurances are all quite capable of defending themselves. Forced to do so, many of these states would choose to build nuclear arsenals; indeed, this is one of the few ways in which a state can meet a nuclear rival on equal terms and deter it. And the threat of a global nuclear arms race keeps the U.S. from telling these states to fend for themselves.

The U.S. historically had to persuade South Korea to abandon a nascent nuclear program; it also (famously, in the past few months) persuaded Ukraine in 1994 to give up its nuclear arsenal in exchange for now-worthless security assurances. More recently, claims by Saudi Arabia that it might have the means to acquire a nuclear arsenal were seen as a ploy to enlist more U.S. aid and reassurance in the wake of the initial nuclear agreements between the U.S. and Iran.

As I have argued, the U.S. really does not protect allies anymore because they cannot protect themselves and cannot be allowed to fall into foreign hands. As often as not, it protects them because they cannot be allowed to protect themselves.

2. Everybody wants something for free. The problem is compounded by another feature of modern life, which is the sorry state of prosperous nations’ finances. The developed world – and this now includes China, ironically – is heir to a number of economic and socioeconomic realities that make it very difficult for it to wage a conventional war, and therefore for modern states – particularly small modern states – to defend themselves.

The states of the developed world have low birthrates, most of them below replacement levels. The geopolitical forecaster George Friedman notes in his book, The Next Hundred Years, that in developed and even developing economies, children are no longer a form of productive investment – having more children does not make one richer, and one might also note that in developed countries, where economic growth is subject to diminishing returns, providing a better future for one’s children requires more and more inputs the richer one already is. As Edward Luttwak has remarked, this makes military conscription a tough political sell and makes even professional militaries casualty-averse.

The developed states are also mired in debt of various kinds – national debts have reached critical levels, private household debt has exploded (in the U.S., it went up from 70 percent of GDP to almost 100 percent between 2001 and 2008 and has fallen back only to 80 percent since), and with aging populations (which will continue over a generation given the aforementioned low birthrates), these states also have soft obligations in the form of pensions, retirement benefits, and even just the moral obligations of private citizens to look after their parents. Most of these states already have, by historic standards, very high levels of taxation and government spending, and despite this (for all of the reasons just discussed) prefer to spend very little money on their militaries; there is therefore not a lot of slack capacity in the system.

The need to ameliorate the effects of the recent recessions, and prevent future ones, has caused governments across the developed world to suppress interest rates, further penalizing saving and investment that could drive future growth. Moreover, as Tyler Cowen has argued in his book The Great Stagnation, once an economy reaches a certain state, within certain constraints, growth slows down in any event as there are fewer available ways to increase inputs – slow growth may be the new normal. The will to build weapons and fight is not what it used to be.

The problem, therefore, is that even if the U.S. could skirt the nuclear proliferation issue and ask its allies to do more to protect themselves, the allies have an incentive to push the cost right back in the opposite direction.

3. People have other options. The hard truth is that, at least in the short run, for many U.S. allies, when faced with a choice between accepting another great power’s influence and putting up the funds to thwart it, paying for a stronger defense actually looks like the worse option.

Many U.S. allies are in fact ambivalent about belonging to a U.S.-led coalition, the more so now that the ideological conflict of the Cold War is over and there is less reason to pick a side. France historically (ever since De Gaulle) has held reservations regarding its participation in NATO operations in the event of a war, and is not part of NATO’s integrated military command structure. Virtually all of the U.S.’ European allies, each for their own reasons, spend below the 2 percent of GDP required for NATO membership on defense; Germany, most notably, has had to wrestle with post-World War Two war guilt and pacifism, and since World War Two has never been enthusiastic about maintaining, much less deploying, powerful armed forces. Since the Cold War all of the European states have become heavily dependent on Russian natural gas, to the point that trying to suspend gas purchases from Russia over Ukraine (or a few well-placed artillery shells in that conflict) would trigger a global financial crisis. Oddly enough, they seem to prefer it this way; even Poland, close to the front lines in any confrontation between Russia and the West, recently proposed a collective bargaining arrangement among EU states for Russian gas, which, while theoretically a move to strengthen European states as a bloc against Russia, in fact means a conscious choice to maintain an extremely close economic tie. Changing this state of affairs would require an expensive (again) construction effort to build liquefied natural gas facilities, something no one is in any hurry to do. Anyone who wants the EU states to step up to deter future Russian aggression against the Baltics or elsewhere should pay heed.

Nor is Europe the only area where such ambivalence is found. In the Middle East, as Pillar himself notes, Saudi Arabia has been quite happy, while protected by U.S. security assurances, to promulgate a noxious brand of Islam throughout the Islamic world that is widely seen to encourage the kind of extremism the U.S. wishes to suppress. In east Asia, South Korea is in the historically anomalous position of being joined by the U.S. security umbrella to its historic colonizer and enemy, Japan, against China, with which Koreans have a much more complex historical relationship. Taiwan, which has never formally declared independence from China, is now heavily tied economically to the Chinese mainland.

This kind of middle-of-the-road posture is all the easier to sustain now that there is that much less to fight over. The end of the Cold War eliminated a lot of the ideological reasons for remaining in the U.S.’ camp – whatever one thinks of Putin’s Russia or modern China, it is fair to say that the differences between them and the U.S. are quite muted compared to what they were, say, thirty years ago. U.S. allies are therefore in a better position to shop for larger powers with whom to align.

Although it is not fashionable to say so, and although such matters are admittedly complex, one way to look at the U.S. alliance network is that it involves a set of payments by the U.S. to remain in its coalition rather than join a balancing coalition against it. For this reason, it is difficult to ask U.S. allies to do much of anything at all – their contribution is that they do not join a rival team.

Welcome to the post-2008 great power game

Despite Pillar’s assertions to the contrary, with so little at stake ideologically, there is in fact a greater risk now of U.S. allies defecting or acting against U.S. interests than at any point in the past. One might say that in fact such a process may be underway in some places. The lack of interest in Europe in containing Russian expansionism in Ukraine, which would continue even if the U.S. were to alter its own policy, is merely a case in point. If nothing else, U.S. allies have an incentive to demand more and contribute less.

One can argue that this is merely a reversion to the norm, and that the U.S. must make the best of it. The age in which the U.S. had most of the Eurasian landmass in its camp was probably not meant to last forever. And if, as may turn out to be the case, the U.S. is not in a position any longer to retain the support of all of its allies, it might be better for it to focus on the relationships it considers most vital, and pay what is necessary. This requires, in part, a recognition that keeping certain states out of rival camps and out of trouble that could involve the U.S. may be an end in itself.

The world is in the midst of its first post-Cold War power transition. The guidelines for it are simple: there is less to fight over and less disagreement on ideology, the dominant power is still very skittish about allowing new nuclear states to come about, and everyone is broke. The U.S. is in particular going to face some tough choices as it decides how to pay its bills domestically while remaining on top internationally – or decides between them. New coalitions, and new nuclear powers, might well emerge.

Let the games begin.

Martin Skold is currently pursuing his PhD in international relations at the University of St. Andrews, with a dissertation analyzing the political strategies of states engaged in long-term security competition.