Category Archives: Tactical Concepts

What are the evolving ideals of tactics in maritime and naval affairs.

Escorting in the Persian Gulf: Firefighting, Policing, or Bodyguarding?

Securing the Gulf Topic Week

By Salvatore R. Mercogliano, Ph.D.

Introduction

The recent attacks on merchant shipping in the Persian Gulf, Straits of Hormuz, and Gulf of Oman by forces of the Iranian Revolutionary Guard Corps has conjured up images from the Tanker War of the 1980s. The bombing of four ships at anchor off Fujairah, the mining of two tankers as they departed the area, and the recent seizure of a British tanker has raised the question of how to best protect commercial ships plying their trade. This is an age-old problem that has been with nations and navies since the days of oars and sail. Without a rehash of every concept used since the dawn of time, there are three major methods that come to mind that can be readily adopted.

Historical Background

Before delving into these concepts, it is best to look at the most recent history, and that is from the aforementioned Tanker Wars of the 1980s. Starting in 1981, Iraq and Iran were engaged in a border conflict that quickly spilled over into the Persian Gulf. Iraqi aircraft targeted Iranian tankers with air-launched sea skimming missiles to economically weaken their enemy. Since Iraq exported its oil via overland pipeline, Iran eventually countered by striking the allies of Iraq, particularly the tankers using ports in Saudi Arabia and Kuwait. By 1987, the level of combat had reached such a crescendo that the state of Kuwait sought outside assistance to guard their fleet. After making overtures to both the Soviet Union and the United States, it was the latter who agreed to commence convoy operations, but only if the ships were registered under the American flag. From that point on, the U.S. Navy orchestrated convoys into and out of the Persian Gulf but included only American vessels.

From the beginning, challenges emerged in the convoy system. The first outbound convoy from Kuwait encountered an Iranian-laid minefield. Bridgeton, one of the eleven reflagged tankers, struck a mine. Without any minesweeping equipment on board the escorts, and with fear what a mine could do to the warships, they fell in behind Bridgeton as she plowed her way through the Persian Gulf as the world’s largest ad-hoc minesweeper. Eventually, a system of escorts and mine clearance assets allowed the U.S. to safely move ships through the challenged waters. Fast forward thirty years, the question posed is how can the nations of the world, who depend on commerce from the Persian Gulf, secure the area from potential Iranian threats and attacks? 

A helicopter from the USS Chandler helps rescue 40 crew from a Cypriot registered oil tanker, Pivot, after it was attacked and set ablaze by an Iranian warship. It was coming from Saudi Arabia with crude oil. Circa 12 Dec. 1987 (Norbert Schiller photo)

One of the overriding issues that must be addressed is the international nature of global shipping. According to the United Nation’s Review of Maritime Transport 2018, half of the world’s merchant fleet vessels are registered in the Marshall Islands, Liberia, Hong Kong, Singapore, and Malta. It is very unlikely that parent navies will be providing the necessary escorts for ships registered in these countries, except China covering those of Hong Kong. The use of open registries, or flags of convenience, developed after the Second World War and has proliferated. Even the captured Stena Impero, while flying the flag of the United Kingdom, does not employ any British nationals onboard. The initial question becomes is it the responsibility of the navies of the world, such as the United States, to assume the role of escort? The U.S. did not do so in the Tanker War until ships flying the American flag were attacked. If they do assume the mantle of protector, it does raise the question of what is the advantage of registering a ship under one’s own national flag?

Assuming the national command authority authorizes an escort of vessels in the area, the next question is method. There are many historical examples, from the Napoleonic Wars, the First World War, the Second World War, and the many scenarios conjured up from wargames against NATO and the Soviet Union in a possible third Battle of the Atlantic. These many iterations boil down to three basic types.

Operational Methods for Convoy Escort

First, there is the Bodyguard method of escorting. Whenever the President of the United States, or some other high value individual travels in the public domain, we are used to seeing a phalanx of armed guards, with high-tech weapons, armored vehicles and escorts swarming around their primary target. They are using many techniques, but one of the most immediate is the use of fear. Any assault on the target will be met with overwhelming force and hence they utilize a deterrent strategy. However, even with such a heavily armed escort, this does not mean that an attack is impossible, as we know from history. A truly determined enemy will rarely be swayed from their intended goal, no matter the obstacle.

At first, this method seems to be the option with the best outcome as it provides the most protection and can quickly respond to any potential threat. However, the issue with the Secret Service option is the cost and logistics involved. It requires a tremendous amount of resources and planning to orchestrate any movement. Currently, ships freely move through the area as soon as they are loaded. A Secret Service style convoy operation will mean ships will have to be gathered, wait, and delay their intended offload – thereby disrupting the movement of their cargoes and impacting the economics of their trade. It will also require a large commitment by navies to provide the needed escorts for any such operation.

The second operational method is the Policing method. In any community, town, or city in the United States, the police forces are in their cruisers, on their bikes, or in the air, monitoring and patrolling. The intent of these patrols is to deter crime, but also observe areas and provide quick response should an incident occur. Advocates for this style contend that this forward presence of armed officers, with the ability to call upon reinforcements from other patrolling officers, can handle most situations. Should there be a larger incident, police departments can call upon Special Response Teams (SRTs) to handle any escalation.

With the number of ships transiting the Persian Gulf, a patrol operation in the vein of a police department appears to be a likely candidate for employment. Iranian use of light mobile forces and not employing their larger units – such as frigates, submarines, or aircraft – means that naval forces, such as destroyers, frigates, and corvettes could handle the patrolling of areas in question, with a larger presence in more contested waters. The SRT back-up would be from air assets based ashore or afloat.

The third concept is the Fire Suppression method. Unlike their police brethren, firefighters do not patrol the streets in their fire trucks looking for flames. Instead, they are in stations, strategically located to respond should a contingency emerge. If the situation is beyond the resources of any one station, mutual aid can be called for assistance while other assets are moved to cover the areas vacated by responding units. The biggest change in fire departments is the proliferation of fire prevention education and fire suppression equipment. Most homes and business have smoke detectors and portable extinguishers or sprinkler systems to extinguish any fire before it can envelop a structure.

This method of patrolling could be adopted for use in convoy operations. Like the police method, naval vessels would assume strategic stations to patrol the waters in question. Due to the large number of ships traversing the area, an operation command headquarters, similar to a 911 dispatch center, can receive information from ships sailing the area to discover any potential targets or threats. As ships sail through the most dangerous and contested waters, they can embark armed teams – such as Marines, Fleet Anti-Terrorism Security Teams (FAST), or Armed Guard detachments – to provide close in security until assistance can be provided from naval forces responding from their stations. A few armed personnel on Stena Impero may have prevented the fast-rope of Iranian forces onto the ship.

Conclusion

Variants of these three concepts have all been used in the Persian Gulf, Strait of Hormuz, and Gulf of Oman area. United States convoy operations late in the 1980s during the Tanker War, and referred to as Operation Ernest Will, were similar to the Secret Service style. During the First Persian Gulf War, coalition navies established a series of checkpoints for ships to check-in at and meet with patrolling warships. In Operation Iraqi Freedom, the 92nd Infantry Brigade of the Puerto Rico National Guard, was activated and broken up into 13-person teams to embark on American merchant ships transporting materiel to the Middle East.

These recent operations, along with the three methods discussed, are the most likely options available to handle an escort mission in the Middle East. The factors that will determine the course of operation will be the level and frequency of attacks initiated by the Iranians, the amount of resources allocated by the nations undertaking the escort mission, and the willingness of commercial companies to participate in any of these methods. What may eventually develop is the use of all these methods at some point in the future or a hybrid approach to perform this important undertaking.

Salvatore R. Mercogliano is an Associate Professor of History at Campbell University in Buies Creek, North Carolina and teaches courses in World Maritime History and Maritime Security. He is also an adjunct professor with the U.S. Merchant Marine Academy and offers a graduate level course in Maritime Industry Policy. A former merchant mariner, he sailed and worked ashore for the U.S. Navy’s Military Sealift Command. His book, Fourth Arm of Defense: Sealift and Maritime Logistics in the Vietnam War, is available through the Naval History and Heritage Command. His essay, “Suppose They Gave a War and the Merchant Marine Did Not Come?” won 2nd Prize in the Professional Historian category of the 2019 Chief of Naval Operations Naval History Essay Contest.  Another of his essays “To Be A Modern Maritime Power,” was published in the August 2019 issue of U.S. Naval Institute Proceedings

Featured Image:  Iranian Students’ News Agency, via Reuters)

Options in the Stars: Automated Celestial Navigation Options for the Surface Navy

CIMSEC is committed to keeping our content FREE FOREVER. Please consider donating to our annual campaign now so we can continue to provide free content.

By LTJG Kyle Cregge, USN

In response to the four recent mishaps, the U.S. Navy Surface Force is going through a cultural shift in training, safety, and mission execution. The new direction is healthy, necessary, and welcomed in the wake of the tragedies. Admiral Davidson’s “Comprehensive Review of Recent Surface Force Incidents” examines a myriad of different aspects of readiness in the Surface Force and the recommendations are far-reaching. There will likely be more training and scrutiny added to officer pipelines and ship certifications, some of which will come from the newly-created Naval Surface Group Western Pacific.

Included in the review were the subjects of Human Systems Integration (HSI) and Human Factors Engineering (HFE), in which the Review Team Members describe how “Navy ships are equipped with a navigation ‘system-of-systems,’” and that “The large number of different bridge system configurations, with increasingly complex and ship-specific guidance on how to make them work together, increases the burden on ships in achieving technical and operational proficiency.” I had the same experience – one where an Officer of the Deck (OOD) was challenged to monitor up to five different consoles with assistance from six different watchstanders while maintaining safety of navigation and executing the plan of the day. Thankfully, the recommendations in the Comprehensive Review address these difficulties, and five specifically address the immediate, unique needs of OODs:

  • 3.2 Accelerate plans to replace aging military surface search RADARs and electronic navigation systems.
  • 3.3 Improve stand-alone commercial RADAR and situational awareness piloting equipment through rapid fleet acquisition for safe navigation.
  • 3.4 Perform a baseline review of all inspection, certification, assessment and assist visit requirements to ensure and reinforce unit readiness, unit self-sufficiency, and a culture of improvement.
  • 3.8 As an immediate aid to navigation, update AIS laptops or equip ships with hand-held electronic tools such as portable pilot units with independent ECDIS and AIS.
  • 3.13 Develop standards for including human performance factors in reliability predictions for equipment modernization that increases automation.

One solution to the recommendations would be the addition of Automated Celestial Navigation (CELNAV) systems which could provide additional navigation support to Bridge watchstanders. Specifically, the systems could continuously fix the ship’s position in both day and night with as good, if not better, accuracy provided by sights and calculations using a computer, without the risk of human error or GPS spoofing. An automated celestial navigation system could either feed directly into the ship’s Inertial Navigation System (INS) or feed into a display in the pilothouse (with which a Navigator could verify the accuracy of active GPS inputs within a specified tolerance), both of which would provide redundancy to existing navigation systems. Automatic CELNAV systems are already used in the military, could be applied to surface ships rapidly, and could serve as a redundant, automated, and immediate aid to navigation against the potential threat of GPS signal disruption.

The Review Team’s recommendation to accelerate replacement of aging radars is a primary focus to support OODs, but given the capabilities of peer competitors against our GPS, rapid investment in shipboard CELNAV systems would be a worthwhile secondary objective. There is significant evidence of Russia testing a GPS spoofing capability in the Black Sea in June of this year, when more than twenty merchant ships’ Automated Identification Systems (AIS) were receiving locations placing them 25 nautical miles inland of Russia, near Gelendyhik Airport, rather than in the north-eastern portion of the Black Sea. Further, China maintains plans to actively combat the use of the Global Hawk UAV, to include, “electronic jamming of onboard spy equipment and aircraft-to-satellite signals used to remotely pilot the drones, [and] electronic disruption of GPS signals used for navigation.” At the outbreak of broader conflict one can imagine a far greater and more extensive denial effort for surface forces.  

Due to potential threats, there are built-in securities for military GPS receivers to combat disruption threats.  These include the Selective Availability Anti-Spoofing Module (SAASM) and expected upgrades for GPS Block III, to include more secure signal coding, with a scheduled inaugural launch in Spring 2018. Automated CELNAV can actively compliment both security mechanisms by providing redundancy against a technical failure or a cyber-attack and before the remaining GPS Block III satellites are brought online.

From a training perspective, the U.S. Navy reinstituted celestial navigation instruction for midshipmen in 2016 and quartermasters and junior officers in 2011 throughout their pipelines. The officers and quartermasters are trained to use the computer-based program STELLA (System To Estimate Latitude and Longitude Astronomically), developed by George Kaplan of the U.S. Naval Observatory in the 1990s. While the use of the program has sped the process of sightings to fixes from nearly an hour down to minutes, there is still a delay and the potential for human error. Automated CELNAV systems can provide both an extra layer of shipboard security against the potential threat of GPS disruption and assist in fixing the ship’s position continuously and as accurately as human navigators. Both arguments support increased readiness in the surface force and make ships more self-sufficient in the event of potential GPS disruption.

In 1999 George Kaplan argued that independent alternatives to GPS were necessary and required and that the hardware to implement these alternatives was readily available. Potential Automated CELNAV systems that could be configured for surface ships are already used in both the Navy and the Air Force. Intercontinental Ballistic Missiles (ICBMs),  SR-71 Blackbird,  RC-135, and the B-2 Bomber each use systems like the NAS-26, an astro-inertial system initially developed in the 1950s by Northrop for the Snark long-range cruise missile. Similar systems have previously been proposed for the Surface Forces. Cosmo Gator, an automated celestial navigation system, was submitted by LT William Hughes, then-Navigator of USS Benfold (DDG 65). This system would update the ship’s Inertial Navigation System (INS) with the calculated celestial position to provide essential navigation data for the rest of the combat system. OPNAV N4 funded LT Hughes’ proposal in March 2016 following the Innovation Jam event onboard USS Essex (LHD 2). Rapidly acquiring any of these various Automated CELNAV options supports the same piloting and situational awareness recommendations as an integrated bridge RADAR suite. The Navy can continue to cultivate a culture of improvement and further equip ships through the acquisition of more immediate aids to navigation like CELNAV systems.

Conclusion

As a result of the Comprehensive Review and associated ship investigations, the Surface Force is looking at innovative solutions to ensure that tragedies aren’t repeated. While the Navy strives to build a culture of improvement and to implement the CNO’s “High-Velocity Learning” concept continually, we must seek answers not only to the problems we face today but the threats we face tomorrow. The threats from peer competitors are defined and growing, but the options to provide greater shipboard redundancy are already created. In the same context that the Surface Force will endeavor to improve human systems integration for our bridge teams, we also should pursue Automated Celestial Navigation systems to make sure those same teams are never in doubt as to where they are in the first place. 

Lieutenant (junior grade) Kyle Cregge is a U.S. Navy Surface Warfare Officer. He served on a destroyer and is a prospective Cruiser Division Officer. The views and opinions expressed are those of the author and do not necessarily state or reflect those of the United States Government or Department of Defense.

Featured Image: PHILIPPINE SEA (Sept. 3, 2016) Midshipman 2nd Class Benjamin Sam, a student at the U.S. Merchant Marine Academy, fixes the ship’s position using a sextant aboard the Arleigh Burke-class guided-missile destroyer USS Benfold (DDG 65). (U.S. Navy photo by Mass Communication Specialist 3rd Class Deven Leigh Ellis/Released)

A2/AD and the Long Lance Torpedo

In this two-part series on contested access in the Solomon Islands campaign, Part One will explore one of the IJN’s most successful weapons of World War II, which made area denial a reality for the IJN, the Type 93 ‘Long Lance’ torpedo. Part Two will compare the similarities of the Long Lance development to that of the DF-21D and discuss how the U.S. ultimately dealt with the Long Lance. 

By Bob Poling

As I mentioned in my introductory post, the intent of this column is to explore the historical use of strategies, tactics, and technologies which fall under the broad definition of anti-access and area denial (A2/AD). One of the most common practices of a nation using A2/AD is the adoption of asymmetric tactics and associated weapons systems to mitigate an adversary’s advantages in numbers and technology.

However, it this column’s assertion that the U.S. Navy may lack an appreciation for these asymmetric threats.  This is not due to a wanton disregard for A2/AD strategies and tactics, nor an unhealthy reliance on its weapons systems and technology. Instead, this lack of appreciation can be attributed to two factors. First, the U.S. Navy has not been truly challenged at sea since the end of the World War II. As such the Navy has produced several generations of naval officers that have no high-end combat experience. The second factor is a byproduct of the first. Since there has been no combat at sea for over 70 years, the Navy lacks case studies for training its current batch of officers. Therefore, this column will tap into the Navy’s combat history and offer historical examples that are arguably useful for contemporary and future challenges. For instance, the Solomon Islands Campaign is littered with examples of what today can easily be categorized as A2/AD strategies and tactics.

Contesting Access in the Solomon Islands

During the Solomon Islands Campaign, the Imperial Japanese Navy (IJN) employed a strategy based on anti-access, in which they aimed to keep out the U.S. and allied powers from the inner reaches of the Japanese Empire. To that end, Japan developed several platforms, weapons systems, and tactics which would facilitate this strategy. Moreover, in the years leading up to the start of WWII, the IJN faced a predicament like the one that drove the Chinese to develop the DF-21D anti-ship ballistic missile, that is, the challenge of how to deny freedom of access and maneuver to and ultimately defeat the U.S. Navy.

Type 93
Type 93 torpedo, recovered from Point Cruz, Guadalcanal, on display outside U.S. Navy headquarters in Washington, D.C., during World War II.

One of the most sophisticated and deadly weapons of WWII was the Type 93 torpedo. This torpedo was the ship killer of that era. The asymmetric tactics developed for its use in combat were revolutionary. Much like the DF-21D, the Long Lance was in development for 20 years. Experimental work began in 1916, and by 1935, IJN weapons designers had produced a working 24-inch torpedo. “Long Lance was the most powerful weapon of its kind in the world as it was 29ft, 6.3 in long, weighed 5982 lbs, carried a warhead of 1080 lbs, and had a range of 21,900 yards at 48-50 knots, 35,000 yards at 40-42 knots or 43,700 yards at 36-38 knots.”1 Granted, launches beyond 20 miles were unlikely, but the Type 93 gave the IJN a standoff weapon that could be launched outside of visual detection range, especially at night.  Additionally, the Long Lance out-ranged the guns of all USN ships except battleships, making this a particularly effective long range anti-access weapon. Finally, the U.S. Navy had no effective countermeasures or defenses against this torpedo.

To optimize the capability and destructive power of the Long Lance, the IJN incorporated it into their night-fighting tactics. “The origin of the Japanese Navy’s tactic of stressing the night engagement was old; in both the Sino-Japanese and Russo-Japanese wars this tactic was used.”2 It should have come as no surprise that the IJN continued to develop night-fighting tactics given their success in these two conflicts. However, the USN surface forces had an air of invincibility and arrogance about them and held the IJN in contempt. 

This contempt was based on beliefs that the USN was technologically superior and more experienced, especially when compared to the IJN, which was only 70 years old.3 While USN battle tactics were still dominated by the pursuit of daytime gunnery engagements, and some U.S. Navy ships had radar, the IJN developed tactics to counter this practice mainly by the use of torpedoes coupled with guns fired in nighttime engagements. “Standard Japanese night-fighting doctrine was to launch torpedoes first, use gunfire only when necessary and searchlights as little as possible.” As the Long Lance was wakeless, it was nearly impossible to detect at night. The IJN counted on the USN to be taken unawares by this tactic and thus to be unlikely to maneuver. To facilitate this tactic and remain undetected, the Japanese’ primary method of detecting surface ships was the use of superb night optics. In fact, the IJN was constantly refining night optics during the interwar period and was regularly producing world-class optics in the 1930s. “Particularly noteworthy were binoculars of powerful magnification and light-gathering capacity, featuring lenses as large as 21 centimeters.”To use these binoculars, the IJN selected men to be trained as Masters in Lookout, and these petty officers trained day and night to hone their skills.6 No other navy of the era had lookouts as highly trained as these. When combined with the night optics, these men were in fact a part of the Long Lance weapons system. 

The U.S. Navy’s first encounter with the Long Lance was in the early morning of August 8, 1942 in Savo Sound off Guadalcanal. On the previous morning, the U.S. Navy had landed Marines on Guadalcanal and Tulagi as part of Operation Watchtower. Upon hearing the news of the invasion, Vice Admiral Gunichi Mikawa, Commander 8th Fleet, pulled together a force of seven cruisers and one destroyer and sailed for Guadalcanal that afternoon.

Arrayed against Mikawa were six heavy cruisers, two light cruisers, and eight destroyers, which were divided into three groups. Of the eight U.S. destroyers, two were assigned radar picket duties patrolling both the western and eastern approaches to Savo Sound, but Mikawa’s striking force remained undetected. According to IJN accounts both radar pickets were detected visually at 10,000 meters by the IJN cruiser Chokai. However, neither Blue nor Ralph Talbot made radar contact even though Mikawa’s ships were only a little over five miles away.7 Once clear of the picket, Mikawa gave the order to attack.  The IJN achieved complete surprise, and its use of an A2 weapon coupled with asymmetric tactics had devastating results on the USN and RAN. As RADM Crutchley wrote,

“The result of the night actions fought during the night 8th-9th August proved costly. Four of our heavy cruisers – Vincennes, Quincy, Astoria and Canberra had been lost. Another heavy cruiser Chicago had been damaged and required dockyard repair. Two destroyers had been damaged, Ralph Talbot fairly heavily and Patterson not seriously.8

During the engagement, IJN cruisers Chokai, Aoba, Kako, Kinugasa and Furrutaka fired 45 Type 93 torpedoes.9 Of the four USN cruisers participating in the battle, Quincy and Vincennes were sunk due to damage caused by Long Lance torpedo hits and Chicago had her bow blown off by a Long Lance, which immediately took her out of the fight.10 The other two cruisers lost in the battle, Astoria and Canberra, both were sunk due to damage inflicted by naval gunfire from the IJN cruisers.11

The Japanese heavy cruiser Chokai, which led the IJN attack at Savo Island. The recessed torpedo tubes are clearly visible under the whaleboat and second stack.

Two things stand out here as noteworthy anti-access tactics. First, part of an area defense strategy will likely include forward-based forces that can rapidly respond to an incursion and immediately conduct active defensive operations. In this case, it was Mikawa’s eight ships which caught the U.S. Navy completely unawares even though this operation was being conducted inside the IJN’s defensive sphere. The second A2 tactic was the night attack using a long-range, undetectable weapon. Much of today’s angst regarding A2 systems assumes the very same thing. Once the defenders realized they were under attack, it was entirely too late to respond and because of the nature of the Long Lance, it remained undetectable. The element of surprise was made all the more decisive by the effective use of a powerful anti-access weapon. 

Conclusion

A2 tactics are nothing new, and today’s Navy is aware of what those tactics may entail and which potential adversaries embrace these tactics today. Back in the Solomons, the USN’s troubles with the Long Lance would continue well into 1943. Ultimately, the Navy learned to adapt its tactics, techniques, and procedures (TTPs) to mitigate the threat posed by the Long Lance. However, what is important in this example is that no active counter measure was developed. Instead there was a realization that the threat was not going away, and a significant amount of risk was going to be present while conducting operations in the waters of the Solomon Islands. Acceptance of significant risk is an important part of defeating an adversary that aligns its strategy and tactics with A2/AD. Part Two will explore this aspect as well and how the Navy ultimate dealt with the Long Lance threat.

Bob Poling is a retired Surface Warfare Officer who spent 24 years on active duty including tours in cruisers, destroyers and as commanding officer of Maritime Expeditionary Security Squadron TWO and Mission Commander of Southern Partnership Station 2013. From May 2011 to May 2015, Bob served on the faculty of the Air War College teaching in the Departments of Strategy and Warfighting. He was the Naval History and Heritage Command 2014-2015 Samuel Eliot Morison scholar and is pursuing his Ph.D. with the Department of Defence Studies, King’s College London where he is researching Air-Sea Battle concepts used to combat A2/AD challenges encountered during the Solomon Islands Campaign.

References

1. John Bullen, “The Japanese Long Lance Torpedo and Its Place in Naval History,” Imperial War Museum Review 3 (1988): 69–79.

2. ‘Development of the Japanese Navy’s Operational Concept against America’, Jisaburo Ozawa in Dillon and Goldstein, The Pacific War Papers, (Washington D.C., Potomac Books Inc., 2005), 74.

3. David C. Evans and Mark R. Peattie, Kaigun: Strategy, Tactics, and Technology in the Imperial Japanese Navy, 1887-1941, Reprint edition (Annapolis, Md.: Naval Institute Press, 2012), 7.

4. Bullen, 69–79.

5. Evans and Peattie, 275.

6. Bruce Loxton and Chris Coulthard-Clark, The Shame of Savo: Anatomy of a Naval Disaster, 1st edition (Annapolis, Md: Naval Institute Press, 1994), 43.

7. Captain Toshikazu Ohmae, IJN Ret., “The Battle of Savo Island,” U.S. Naval Institute Proceedings 83, no. 12 (December 1957): 1263–78.

8. RADM Victor Crutchley, “Solomons ‘Watchtower’ OPS. Guadalcanal – Tulagi. Admiral Crutchley Report T.G. 66.6 Screening Force,” August 13, 1942, National Archives of Australia: B6121, 105A.

9. Eric LaCroix, Linton Wells, and Linton Wells II, Japanese Cruisers of the Pacific War, 1St Edition,(Annapolis, Md: US Naval Institute Press, 1997), 306.

10. Bureau of Ships, “USS QUINCY (CA39), USS ASTORIS (CA34), USS VINCENNES (CA44) LOSS IN ACTION BATTLE OF SAVO ISLAND 9 AUGUST 1942,” War Damage Report (Navy Department, June 21, 1943), The Navy Department Library, http://www.history.navy.mil/research/library/online-reading-room/title-list-alphabetically/w/war-damage-reports/uss-quincy-ca39-astoria-ca34-vincennes-ca44-war-damage-report-no29.html, 21; Office of Naval Intelligence, “Solomon Islands Campaign II The Battle of Savo Island 9 August 1942 The Battle of the Eastern Solomons 23-25 August 1942,” Combat Narratives (Washington, D.C.: U.S. Navy, October 1, 1943), The Navy Department Library, http://www.history.navy.mil/research/library/online-reading-room/title-list-alphabetically/s/solomon-islands-campaign-ii-savoisland-III-easternsolomons.html., 10.

11. Bureau of Ships, “USS QUINCY (CA39), USS ASTORIA (CA34), USS VINCENNES (CA44) LOSS IN ACTION BATTLE OF SAVO ISLAND 9 AUGUST 1942”; RADM Victor Crutchley, “Report of Proceedings Operation – ‘Watchtower,’” August 18, 1942, National Archives of Australia: B6121, 105A.

Featured Image: IJN DD  Isokaze at Saeki Bay, October 20, 1941. Colorized by Lootoko Jr. 

Is A2/AD Still Useful As Doctrinal Language? A CIMSEC Debate

CNO Admiral John Richardson recently struck the term A2/AD from Navy lexicon. The debate that follows aims to ascertain the value of the term and understand the context of the CNO’s decision. Bob Poling takes the affirmative position that A2/AD is still a relevant term while Jon Askonas takes the negative. 

Affirmative: Dear CNO, A2/AD Still Matters…   

By Bob Poling

cno-john-richardson
CNO Richardson speaks at CSIS (CSIS)

On October 3, 2016, while participating in a Maritime Security Dialogue at the Center for Strategic and International Studies (CSIS), Chief of Naval Operations Admiral John Richardson announced that the Navy would strike A2/AD from its vocabulary. Admiral Richardson stated, “To some, A2/AD is a code-word, suggesting an impenetrable ‘keep-out zone’ that forces can enter only at extreme peril to themselves. To others, A2/AD refers to a family of technologies. To still others, a strategy. In sum, A2/AD is a term bandied about freely, with no precise definition, that sends a variety of vague or conflicting signals, depending on the context in which it is either transmitted or received.” Richardson went on to say, “To ensure clarity in our thinking and precision in our communications, the Navy will avoid using the term A2/AD as a stand-alone acronym that can mean many things to different people or almost anything to anyone.”

But A2/AD is not just Navy terminology. The acronym is used in any number of joint publications and is recognized as a part of joint doctrine. After all, there is perhaps no topic more “joint” than the study of countering A2/AD, and as such, the Navy should continue to use the same terminology being used by the rest of the services instead of abandoning doctrine.

In Line with Naval Tradition

With his prohibition on A2/AD, CNO has upheld the Navy’s reputation for ignoring doctrine. It is no secret that naval officers rail against doctrine and adhere to it grudgingly. Corbett warned naval strategists to not become enamored with maxims when studying war as it stifles good judgment. Roger W. Barnett in his book on the Navy’s strategic culture provides an accurate description of this anathema noting, “Navy strategists look upon written doctrine as maxims and are wholly uncomfortable with it. To the naval strategist, the combination of definitions and doctrine becomes rather toxic.” Admiral Richardson exemplifies Barnett’s views and if one watches the video of his remarks at CSIS, his disdain for A2/AD is clear. But A2/AD is not just jargon. It is a viable term that if used in the proper context can convey the fidelity CNO is looking for. Moreover, it is a term that the joint force is familiar with and continues to use. Admiral Richardson’s ban on A2/AD has in essence forced the Navy to turn its back on prescribed joint doctrine and terminology

Granted, blind adherence to doctrine is not necessarily a good thing. However, in this case adherence to the terminology laid forth in doctrine is useful, especially since all of the services are so vested in counter A2/AD. In Chapter One of Joint Publication One (JP-1), former Chief of Staff of the U.S. Army, General George H. Decker’s stated, “Doctrine provides a military organization with a common philosophy, a common language, a common purpose and a utility of effort.” The Department of Defense’s position on doctrine is clearly articulated in subsequent paragraphs declaring, “the use of joint doctrine standardizes terminology, training, relationships, responsibilities and processes among all of the U.S. forces to free the joint force commanders (JFCs) and their staffs to focus on solving strategic, operational, and tactical problems.” Finally, Naval Doctrine Publication 1, Naval Warfare defines doctrine thus, “Doctrine is not an impediment to a commander’s exercise of imagination; rather, it is a framework of fundamental principles, practices, techniques, procedures, and terms that guides a commander, commanding officer, or officer-in-charge in employing force(s) to accomplish the mission. Doctrine provides the basis for mutual understanding within and among the Services and national policy makers. It ensures familiarity and efficiency in the execution of procedures and tactics.” Based on these definitions alone, including the Navy’s cut on doctrine, Admiral Richardson’s comments clearly contradict the expectations articulated for the joint force. Instead of fostering unity of effort and a common approach to A2/AD, CNO’s edict has the potential to drive a wedge between the Navy and the other services. 

Need for Inter-Forces Cooperation

Another problem with CNO Richardson’s proclamation is it contradicts the Joint Operational Access Concept (JOAC), 1.0 which guides the joint force on how to approach A2/AD. “The JOAC describes in broad terms how joint forces will operate in response to emerging anti-access and area-denial security challenges” and,  “… envisions a greater degree of integration across domains and at lower echelons than ever before.” Likewise, the JOAC defines anti-access (A2) and area-denial (AD) for the joint force as follows, “Anti-access refers to those actions and capabilities, usually long-range, designed to prevent an opposing force from entering an operational area. Anti-access actions tend to target forces approaching by air and sea predominantly, but also can target the cyber, space, and other forces that support them. Area-denial refers to those actions and capabilities, usually of shorter range, designed not to keep an opposing force out, but to limit its freedom of action within the operational area. Area-denial capabilities target forces in all domains, including land forces.”

Granted these definitions may not be as concise as CNO may like, but they are the accepted joint definitions, and they do cover the spectrum of potential threats. As these definitions are not suitable for CNO then why not approach the A2/AD conundrum in the same fashion as the Navy approaches warfare? For example, the Navy’s approach to Air Defense is just as convoluted as CNO suggests A2/AD is. The Air and Missile Defense Commander (AMDC) is responsible for defending the force against air threats. But air threats can be a variety of things like ballistic missiles, aircraft and anti-ship cruise missiles (ASCM); all of which must be dealt with in a different fashion based on each one’s ranges and capabilities. To manage the variety of threats the AMDC publishes an OPTASK Air Defense plan which provides specific guidance that has been tailored based on the area of operations and the threats that are present, thus leveling the playing field and ensuring all the players are on the same page. The point is, this methodology represents how the Navy has successfully operated for decades. The inherent flexibility of this approach to warfare allows the Navy to adapt to ever changing environments and threats, regardless of the region. It should be no different where A2/AD is concerned.

Conclusion

Admiral Richardson’s decision to strike A2/AD from the Navy’s lexicon only sends conflicting signals to the rest of the Joint Force, our allies, and partners. On the surface, it looks as if the Navy is no longer a team player where A2/AD is concerned. Still, others are no doubt wondering why CNO has done this when none of the other services have gone this route. Arguably, the elimination of A2/AD from the Navy’s vocabulary is more likely to undermine the clarity of thinking and precise communication CNO desires. If I could whisper in CNO’s ear, I would recommend he demand more rigorous thinking and adherence to the JOAC’s vision of A2/AD instead of throwing out the term.

Negative: A2/AD is an Unoriginal and Unhelpful Term In Understanding Threats

By Jonathan D. Askonas

A2/AD, for the uninitiated, stands for “Anti-Access/Area Denial,” shorthand for a variety of technological and tactical changes supposedly creating new and unique military challenges for the United States to confront. What makes doctrinal language useful? It provides a name and set of concepts that help us think about a phenomenon in order to improve military performance. My contention is that A2/AD conceals and obscures more than it clarifies and is thus not useful doctrinal language.

What is an “Anti-Access/Area Denial” military system? In normal use, A2/AD refers to technologies and tactics which, through precision guidance, communications, and firepower, make the deployment and use of American forces riskier and more expensive. Which is to say, they are military systems. One of the beauties of A2/AD is that anything short of tactical scenarios the U.S. military is itching to engage (like a rerun of the 1991 Iraqi Turkey Shoot) becomes “A2/AD.” Anti-ship ballistic missiles (ASBMs)? A2/AD. Small, swarm-tactic Iranian littoral boats? A2/AD. Integrated air defense systems (IADSs)? A2/AD. Diesel attack subs? A2/AD. Any modern military technology that enables a great power to project force past its own borders in ways which even marginally threaten the West’s ability to conduct combined arms operations can be subsumed in a sexy operational concept. But this overbroad idea has at least three fatal problems which doom it to the conceptual dustbin.

A2/AD Deceives Us Into Confusing the Tactical, Operational, and Strategic Levels of Warfare 

4558915505_7abda290a9_z
While their role in an A2/AD strategy is up for a debate, substantial Chinese investment in new technologies, like this Type 039 Song Class diesel-electric submarine, is undeniable. (PRC Stock Photo)

The biggest problem with A2/AD is that it carelessly elides the distinguishing levels of war, smuggling all kinds of assumptions and non sequiturs into our thinking. When most people talk about A2/AD, they refer to technological capabilities which are capable of attacking/hampering Western capabilities (tactical) in ways which increase the risk of the West acting in specific areas (operational), to the end of limiting Western influence (strategic). But reality almost never lines up with this picture, even in the canonical examples of A2/AD. Take the South China Sea, where Chinese investment in ASBMs, diesel attack subs, and other hardware are supposedly part of a strategy of A2/AD designed to minimize American ability to intervene in the region. And yet, this picture falls apart on closer inspection. At the technological level, complex kill-chains create all kinds of vulnerabilities in China’s new (and relatively untested) weapons systems which, when it comes to operational considerations, render them unreliable, particularly as American forces adapt to them (the traditional response to operating in “denied” territory). And at the strategic level, A2/AD as a strategy is absurd. War is politics by other means – how are extra missiles by themselves supposed to force American carrier battle groups not to enforce freedom of the seas? China has not attempted to sink them in the past not because it lacked the capability but because it lacked the will. The ultimate anti-missile defense system is threat of unstoppable violence should the American people be attacked. A2/AD’s conceptual confusion about how technologies, tactics, operations and strategy interrelate undermines any utility the idea might have.

A2/AD Lends Itself To An Overly Cautious, Defensive, and Unhistorical Mindset

As the CNO himself pointed out, A2/AD encourages a cautious, defensive, and unhistorical mindset. To the first point, A2/AD, with its language of “area denial” lends itself to being construed as defensive in nature. For example, “A2AD capability is not offensive or aggressive in nature,”French General Denis Mercier and NATO supreme allied commander for transformation said last October. “It’s principally a defensive measure. So we have to consider it, we have to be aware of it, we have to include it in our planning but it’s not the threat as such.” Because it elides the levels of warfare, A2/AD transforms the defensive capabilities of the weapon (tactical) into a defensive intent on behalf of the enemy (strategic). And yet, as even the most greenhorn strategist knows, because warfare is a competitive activity, changes in relative advantage determine outcomes and shape the overall operational picture, regardless of whether the weapons themselves are offensive or defensive in nature. Moreover, in many cases, the weapon systems in question are not obviously solely defensive in nature, nor only capable of targeting American forces.

To the second point, that A2/AD is anachronistic, it seems peculiar that a concept as old as warfare has been highlighted as the next big new defense threat. The ability to make certain areas of the battlespace difficult or impossible for the enemy to access, thus shaping his choices, is one of the foundational mechanics of warfare. Conceptually, minefields, coastal defense guns, and U-Boats had (or sometimes had) identical functions to contemporary “A2/AD” weaponry. Because it highlights new technologies of area denial, A2/AD hampers rather than helps our ability to use military history and analogical thinking to come up with creative solutions to contemporary military challenges.

A2/AD traps Us Into a Rigid Conception of the Enemy and the Enemy’s Strategy

By fogging up the distinguishing levels of war and highlighting the ways great power rivals are working to defend against U.S. intervention, A2/AD lulls us into projecting our operational challenges onto the intentions of our enemies. In other words, A2/AD tricks us into thinking that, because it is the case that widespread ASBM deployment in the East China Sea or IADSs over Syria increase the relative risk of an American intervention, those actions were taken for that purpose. By tying an operational fact (ASBMs are a threat to American ships) to a strategic assumption (therefore, ASBMs are primarily intended to deny access to American ships), A2/AD hurts our ability to imagine what else the enemy might be up to. The same missiles which can sink an American carrier can also hold Taiwanese naval forces at risk; the same IADS that limits American intervention in Crimea can also target actively target Lithuanian or Estonian fastmovers. I don’t mean to suggest that these are likely possibilities, but they are possibilities, and ones which A2/AD belays. The problem is that the enemy gets a say, too. Just because we have an operational concept which says that Chinese investment in a blue water navy or Russian research into advanced air-to-air missiles are primarily aimed at limiting U.S. influence does not make it so. And, even if this is true today, there is nothing to suggest that the enemy might change his mind. By incorporating assumptions about enemy intent into its model, A2/AD lulls us into thinking we understand the enemy.

Conclusion

At the end of the day, A2/AD furthers a strategic culture that obsesses over the “next big thing” and neglects the fundamentals. To the extent that A2/AD is correct about the need to incorporate standoff weaponry into our tactical calculations, it is trivial; that is a well-understood part of operational art. And to the extent that A2/AD makes non-trivial claims about the enemy’s strategy or intent (or the nature of warfare), it is dangerously blithe, imprecise, and blinkered. Like the Revolution in Military Affairs, Full Spectrum Warfare, and NetWar before it, A2/AD will soon join the graveyard of Pentagon intellectual fads that preceded it. And well it should.

Bob Poling is a retired Surface Warfare Officer who spent 24 years on active duty including tours in cruisers, destroyers and as commanding officer of Maritime Expeditionary Security Squadron TWO and Mission Commander of Southern Partnership Station 2013. From May 2011 to May 2015 Bob served on the faculty of the Air War College teaching in the Departments of Strategy and Warfighting. He was the Naval History and Heritage Command 2014-2015 Samuel Eliot Morison scholar and is pursuing his Ph.D. with the Department of Defence Studies, King’s College London where he is researching Air-Sea Battle concepts used to combat A2/AD challenges encountered during the Solomon Islands Campaign.

Jon Askonas is a 2nd year DPhil candidate in International Relations at the University of Oxford, where he is a Beinecke Scholar and a Healy Scholar. He is interested in the relationship between knowledge production/transmission and decision-making in large organizations. He has a BS in International Politics (summa cum laude) from Georgetown University and a MPhil(Merit) from Oxford. He has worked at the Council on Foreign Relations and the US Embassy in Moscow.

The opinions and assertions contained herein are the private opinions of the authors and are not to be construed as official or reflecting the views of the Department of Defense, the United States Government, or the United States Navy, or any organization – they are the authors’ personal opinions.

Featured Image: U.S. Navy guided missile cruiser USS Princeton. U.S. Navy Photo by Mass Communication Specialist Seaman Jake Berenguer (Released)